UNIVERSIDAD NACIONAL DE JAÉN FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA DE INDUSTRIAS ALIMENTARIAS

"MODELO CINÉTICO DE SECADO DE ALBUMEN DE COCO (Cocos nucífera L.)"

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO DE INDUSTRIAS ALIMENTARIAS

Autor: Bach. Ángel Yeudi Sánchez Perales

Asesor: Mg. Polito Michael Huayama Sopla

JAÉN-PERÚ, ABRIL, 2021

UNIVERSIDAD NACIONAL DE JAÉN UNIVERSIDAD NACIONAL DE JAÉN

Ley de Creación N° 29304

Universidad Licenciada con Resolución del Consejo Directivo N°002-2018-SUNEDU/CD

ACTA DE SUSTENTACIÓN

El día 26 de ab	oril del año 20)21, siendo las 17:	:00 horas, se	reunieron los i	ntegr	antes
delJurado de mbvs-dvs:	manera vir	cual, mediante el	enlace http	://meet.google	e.com	ı/cgz-
	· NASa NAA	NED COLNAENIA DE	EC NANVANICA			
Presidente Secretario		INER COLMENARE I DÍAZ RUIZ	ES IVIATAING	1		
Vocal informe final:		IK FERNÁNDEZ RC	SILLO, para e	evaluar la Suste	ntaci	ón del
() Trabajo (X) Tesis	de Investigad	ión				
() Trabajo	de Suficiencia	a Profesional Titulad	do:			
el Bachiller Á Industrias Alir	ingel Yeudi S nentarias de	do de Albumen de Sánchez Perales d la Universidad Na n y defensa, el Jur	de la Carrera acional de Ja	a Profesional d én.		
(X) Aproba Con la siguien	•) Desaprobar	(X)	Unanimidad	() Mayoría
a) Exceler	ite	18, 19, 20	()		
b) Muy bu	ieno	16, 17	()		
c) Bueno		14, 15	(15	5)		
d) Regula	r	13	()		

Siendo las 18:20 horas del mismo día, el Jurado concluye el acto de sustentación.

12 ò menos

MS.c. Wagner Colmenares Mayanga Presidente Jurado Evaluador

M. Os Adan Diaz Ruiz

e) Desaprobado

Mg. Adán Díaz Ruiz Secretario Jurado Evaluador Mg. Frank Fernández Rosillo Vocal Jurado Evaluador

ÍNDICE GENERAL

ÍNDICI	E GEI	NERAL	ii
ÍNDICI	E DE	TABLAS	iii
ÍNDICI	E DE	FIGURAS	vi
RESUN	MEN		iχ
ABSTR	RACT		χ
I.	INT	RODUCCIÓN	1
II.	OBJ	ETIVOS	6
	2.1	General	6
	2.2	Específicos	6
III.	MA	TERIALES Y MÉTODOS	7
	3.1	Materia prima	7
	3.2	Materiales y equipos	7
	3.3	Procedimiento experimental	8
		3.3.1 Selección y acondicionamiento de la materia prima	8
		3.3.2 Obtención de láminas de coco	8
		3.3.3 Cinética de secado	9
		3.3.4 Análisis fisicoquímico de las láminas de coco	11
		3.3.5 Diseño estadístico	17
		3.3.6 Análisis estadística	18
IV.	RES	SULTADOS	19
	4.1		19
		Cinética de secado de coco	19
	4.3	Modelo matemático de la cinética de secado de coco	26
	4.4	Análisis físico – químicos de las láminas de coco seco	28
V.		CUSIONES	31
VI.		NCLUSIONES	33
VII.		COMENDACIONES	34
VIII.		FERENCIAS BIBLIOGRÁFICAS	35
Χ.		DICATORIA	36
XI.		RADECIMIENTO	37
ANEX(Imágenes de las operaciones para la obtención de láminas de coco.	38
ANEX) 2	Secado de láminas de coco en el laboratorio de Refrigeración y	•
	0.0	Deshidratación de la Universidad Nacional de Jaén.	39
ANEX		Imágenes de los análisis fisicoquímicos de las láminas de coco.	40
ANEX) 4	Resultado de los análisis fisicoquímicos evaluados mediante	40
A 3 (F) 3 (A	o 5	estadística descriptiva.	43
ANEX(J 5	Resultados de los datos experimentales de secado de láminas de coco	4 -
ANIDATA	2.6	realizados con aire a $T = 50$ °C y velocidades de 2.0, 2.5 y 3.0 m/s.	46
ANEX	J 6	Resultados de los datos experimentales de secado de láminas de coco realizados con aire a $T = 60$ °C y velocidades de 2.0, 2.5 y 3.0 m/s.	62
		Teahzados con aire a $T = 00$ U v velocidades de Z.U. Z.5 v 3.U m/s.	63

ANEXO /	realizados con aire a $T = 70$ °C y velocidades de 2.0, 2.5 y 3.0 m/s.	79
	ÍNDICE DE TABLAS	
Tabla 1.	Descripción de los nueve tratamientos y sus variables	18
Tabla 2.	Análisis fisicoquímico de las láminas de coco fresco	19
Tabla 3	Datos experimentales del secado de coco a 50 °C y una velocidad de	
	2.0 m/s	20
Tabla 4.	Ecuaciones correspondientes a la parte recta y a la parte curva de cada	
	una de las gráficas experimentales analizadas con el software SPSS y	
	sus parámetros cinéticos.	27
Tabla 5.	Análisis físico – químicos de las láminas de coco seco.	28
Tabla 6.	Análisis mediante estadística descriptiva – caja y bigotes.	43
Tabla 7.	Datos experimentales de la operación de secado de láminas de coco,	
	secador de bandejas con flujo de aire a 50 °C y velocidad de 2,0 m/s.	46
Tabla 8.	Resumen modelo de regresión lineal (T = 50 °C; velocidad = 2,0 m/s).	48
Tabla 9.	Análisis de varianza (ANOVA) del modelo de regresión lineal	
	$(T = 50 ^{\circ}\text{C}, \text{ velocidad} = 2,0 \text{m/s}).$	48
Tabla 10.	Coeficientes de la ecuación lineal ($T = 50$ °C; velocidad = 2.0 m/s).	49
Tabla 11.	Resumen del modelo de regresión exponencial (T = 50 °C; velocidad =	
	2.0 m/s).	50
Tabla 12.	Análisis de varianza (ANOVA) del modelo de regresión exponencial (T	
	= $50 ^{\circ}\text{C}$; velocidad = 2.0m/s).	50
Tabla 13	Coeficientes de la ecuación exponencial (T = 50 °C; velocidad =	
	2.0 m/s).	50
Tabla 14.	Datos experimentales de la operación de secado de láminas de coco, en	
	un secador de bandejas con flujo de aire a 50 °C y velocidad de 2,5 m/s.	51
Tabla 15.	Resumen modelo de regresión lineal (T = $50 ^{\circ}$ C; velocidad = 2.5m/s).	54
Tabla 16.	Análisis de varianza (ANOVA) del modelo de regresión lineal (T = 50	
	°C; velocidad = 2.5 m/s)	54
Tabla 17.	Coeficiente de la ecuación lineal (T = 50 °C; velocidad = 2.5 m/s).	55
Tabla 18.	Resumen del modelo de regresión exponencial (T = 50 °C; velocidad =	
	2.5 m/s).	56
Tabla 19.	Análisis de varianza (ANOVA) del modelo de regresión exponencial	
	$(T = 50 ^{\circ}C; \text{ velocidad} = 2.5 \text{m/s}).$	56
Tabla 20.	Coeficientes de la ecuación exponencial (T = 50 °C; velocidad	
	= 2.5 m/s).	56
Tabla 21.	Datos experimentales de la operación de secado de láminas de coco, en	

Tabla 22. Resumen modelo de regresión lineal (T = 50 °C; velocidad = 3,0 m/s.)

un secador de bandejas con flujo de aire 50 °C y velocidad de 3,0 m/s.

57

60

Tabla 23.	Análisis de varianza (ANOVA) del modelo de regresión lineal (T = 50 °C; velocidad = 3,0 m/s).	60
Tabla 24.	Coeficientes de la ecuación lineal (T = 50 °C; velocidad = 3,0 m/s).	60
Tabla 25.	Resumen del modelo de regresión exponencial (T = 50 °C; velocidad =	
	3.0 m/s).	61
Tabla 26	Análisis de varianza (ANOVA) del modelo de regresión exponencial	
	$(T = 50 ^{\circ}\text{C}; \text{ velocidad} = 3.0 \text{m/s}).$	61
Tabla 27.	Coeficiente de la ecuación exponencial (T = 50 °C; velocidad = 3,0 m/s).	62
Tabla 28.	Datos experimentales de la operación de secado de lámina de coco, en	
	un secador de bandejas con flujo de aire a 60 °C y velocidad de 2,0 m/s.	63
Tabla 29.	Resumen de modelo de regresión lineal ($T = 60$ °C; velocidad = 2.0 m/s).	65
Tabla 30.	Análisis de varianza (ANOVA) del modelo de regresión lineal (T = 60	
	$^{\circ}$ C; velocidad = 2.0 m/s).	65
Tabla 31.	Coeficientes de la ecuación lineal ($T = 60$ °C; velocidad = 2.0 m/s).	66
Tabla 32.	Resumen del modelo de regresión exponencial (T = 60 °C; velocidad =	
	2.0 m/s).	67
Tabla 33.	Análisis de varianza (ANOVA) del modelo de regresión exponencial	
	$(T = 60 ^{\circ}C; \text{ velocidad} = 2.0 \text{m/s}).$	67
Tabla 34.	Coeficientes de la ecuación exponencial (T = 60 °C; velocidad =	
	2.0 m/s).	67
Tabla 35.	Datos experimentales de la operación de secado de láminas de coco, en	
	un secador de bandejas con flujo de aire a 60 °C y velocidad de 2,5 m/s.	68
Tabla 36.	Regresión de modelo de regresión lineal (T = 60 °C; velocidad = 2.5	
	m/s).	70
Tabla 37.	Análisis de varianza (ANOVA) del modelo de regresión lineal (T = 60	
	$^{\circ}$ C; velocidad = 2.5 m/s).	70
Tabla 38.	Coeficientes de la ecuación lineal ($T = 60$ °C; velocidad = 2.5 m/s).	71
Tabla 39.	Resumen del modelo de regresión exponencial (T = 60 °C; velocidad =	
T 11 10	2.5 m/s).	72
Tabla 40.	` '	
T 11 41	$(T = 60 ^{\circ}\text{C}; \text{velocidad} = 2.5 \text{m/s}).$	72
Tabla 41.	Coeficientes de la ecuación exponencial (T = 60 °C; velocidad	70
T 11 42	= 2.5 m/s).	72
Tabla 42.	Datos experimentales de la operación de secado de láminas de coco, en	
	un secador de bandejas con flujo de aire a 60 °C y velocidad	72
T-1-1- 42	de 3,0 m/s.	73
Tabla 43.	Resumen de modelo de regresión lineal (T = 60 °C; velocidad	75
Table 44	= 3.0 m/s).	75
Tabla 44.	Análisis de varianza (ANOVA) del modelo de regresión lineal ($T = 60$	75
Table 45	°C; velocidad = 3.0 m/s).	75 76
Tabla 45. Tabla 46.	Coeficientes de la ecuación lineal ($T = 60$ °C; velocidad = 3.0 m/s).	70
1 avia 40.	Resumen del modelo de regresión exponencial ($T = 60$ °C; velocidad = 3.0 m/s).	77
	JAV 111/51.	11

Tabla 47.	Análisis de varianza (ANOVA) del modelo de regresión exponencial (T = 60 °C; velocidad = 3.0 m/s).	77
Tabla 48.	Coeficientes de la ecuación exponencial (T = 60 °C; velocidad =	,,
	3.0 m/s).	77
Tabla 49.	Datos experimentales de la operación de secado de láminas de coco; en	
	un secador de bandejas con fluido de aire a 70 °C y velocidad de 2,0 m/s.	79
Tabla 50.	Resumen de modelo de regresión lineal (T = 70 °C; velocidad = 2.0 m/s).	81
Tabla 51.	Análisis de varianza (ANOVA) del modelo de regresión lineal (T = 70	
	$^{\circ}$ C; velocidad = 2.0 m/s.)	81
Tabla 52.	Coeficientes de la ecuación lineal (T = 70 °C; velocidad = 2.0 m/s).	81
Tabla 53.	Resumen del modelo de regresión exponencial (T = 70 °C; velocidad =	
	2.0 m/s).	82
Tabla 54.	Análisis de varianza (ANOVA) del modelo de regresión exponencial	
	$(T = 70 ^{\circ}C; \text{ velocidad} = 2.0 \text{m/s}).$	82
Tabla 55.	Coeficientes de la ecuación exponencial (T = 70 °C; velocidad =	
	2.0 m/s).	83
Tabla 56.	Datos experimentales de la operación de secado de láminas de coco; en	
	un secador de bandejas con flujo de aire a 70 °C y velocidad de 2,5 m/s).	84
Tabla 57.	Resumen de modelo de regresión lineal ($T = 70$ °C; velocidad = 2.5 m/s).	86
Tabla 58.	Análisis de varianza (ANOVA) del modelo de regresión lineal ($T = 70$	
	$^{\circ}$ C; velocidad = 2.5 m/s).	86
Tabla 59.	Coeficientes de la ecuación lineal (T = $70 ^{\circ}$ C; velocidad = 2.5m/s).	86
Tabla 60.	Resumen del modelo de regresión exponencial (T = 70 °C; velocidad =	
	2.5 m/s).	87
Tabla 61.	Análisis de varianza (ANOVA) del modelo de regresión exponencial (T	
	= $70 ^{\circ}$ C; velocidad = 2.5m/s).	87
Tabla 62.	Coeficientes de la ecuación exponencial (T = 70 °C; velocidad = 2.5	
m 11 - 4	m/s).	88
Tabla 63.	Datos experimentales de la operación de secado de láminas de coco; en	00
m 11 24	un secador de bandejas con flujo de aire a 70 °C y velocidad de 3,0 m/s).	89
Tabla 64.	Resumen de modelo de regresión lineal ($T = 70 ^{\circ}$ C; velocidad = 3.0 m/s).	90
Tabla 65.	Análisis de varianza (ANOVA) del modelo regresión lineal ($T = 70$ °C; velocidad = 3.0 m/s).	91
Tabla 66.	Coeficientes de la ecuación lineal (T = 70 °C; velocidad = 3.0 m/s).	91
Tabla 67.	Resumen del modelo de regresión exponencial (T = 70 °C; velocidad =	
	3.0 m/s).	92
Tabla 68.	Análisis de varianza (ANOVA) del modelo de regresión exponencial	
	$(T = 70 ^{\circ}C; \text{ velocidad} = 3.0 \text{m/s}).$	92
Tabla 69.	Coeficientes de la ecuación exponencial (T = 70 °C; velocidad =	93
	3.0 m/s).	

ÍNDICE DE FIGURAS

Figura 1.	Influencia de la velocidad de aire (w) sobre la operación de secado, a temperatura constante W3>W2>W1.	4
Figura 2.	Secador de bandejas	5
Figura 3.	Flujograma para el proceso de obtención de láminas de coco.	9
Figura 4.	Plan experimental, para cada temperatura se evaluaron tres diferentes velocidades de aire de secado.	10
Figura 5.	Humedad residual en función del tiempo ($T = 50$ °C, velocidades 2.0, 2.5 y 3.0 m/s).	22
Figura 6.	Humedad residual en función del tiempo ($T = 60$ °C, velocidades 2.0, 2.5 y 3.0 m/s).	23
Figura 7.	Humedad residual en función del tiempo ($T = 70$ °C, velocidades 2.0, 2.5 y 3.0 m/s).	23
Figura 8.	Variación de la humedad con el tiempo en función de la humedad residual promedio ($T = 50$ °C, velocidades 2.0, 2.5 y 3.0 m/s).	24
Figura 9.	Variación de la humedad con el tiempo en función de la humedad residual promedio ($T = 60$ °C, velocidades 2.0, 2.5 y 3.0 m/s).	25
Figura 10.	Variación de la humedad con el tiempo en función de la humedad residual promedio ($T = 70$ °C, velocidades 2.0, 2.5 y 3.0 m/s).	25
Figura 11.	Diagrama de caja y bigotes para proteínas total.	29
Figura 12.	Diagrama de caja y bigotes para extracto etéreo.	29
Figura 13.	Diagrama de caja y bigotes para fibra cruda.	30
Figura 14	Diagrama de caja y bigotes para extracto libre de nitrógeno.	30
Figura 15.	Cocos en estado madurez fisiológica intermedia.	38
Figura 16.	Cortado del endocarpio para extraer el agua de coco y pulpa.	38
Figura 17.	Extracción del albumen (pulpa) de coco.	38
Figura 18.	Láminas de coco.	38
Figura 19.	Pesado de las láminas de coco.	38
Figura 20.	secador junto con la balanza triple brazo.	38
Figura 21.	Láminas de coco después de ser deshidratadas.	39
Figura 22.	Láminas de coco envasado.	39
Figura 23.	Colocando las bandejas a la cabina del secador. Para el deshidratado de coco.	39
Figura 24.	Láminas de coco para deshidratado.	39
Figura 25.	Láminas de coco deshidratadas en el desecador.	39
Figura 26.	Secado de las láminas de coco hasta su peso constante.	39
Figura 27.	Control de peso de las láminas de coco.	40
Figura 28.	Anemómetro digital regulador de velocidades de aire.	40

Figura 29.	Determinación del pH de las láminas de coco.	40
Figura 30.	Determinación de cenizas.	40
Figura 31.	Determinación de acidez titulable de las láminas de coco.	40
Figura 32.	Determinación de la humedad por método estufa.	40
Figura 33.	Resultados de los análisis fisicoquímicos	42
Figura 34.	Diagrama de caja y bigotes para % cenizas.	44
Figura 35.	Diagrama de caja y bigotes para % acidez.	44
Figura 36.	Diagrama de caja y bigotes para pH.	45
Figura 37.	Diagrama de caja y bigotes para % humedad.	45
Figura 38.	Humedad residual en función del tiempo (T = 50 °C, velocidad 2,0 m/s).	48
Figura 39.	Representación de los datos experimentales (0) y de la línea recta (-)	49
	generada por el SPSS. ($T = 50$ °C; velocidad = 2.0 m/s).	
Figura 40.	Representación de los datos experimentales (0), de la curva logarítmica (-	51
) y de la curva exponencial (-) generada por el SPSS. La curva	
	exponencial es la más representativa. (T = 50 °C; velocidad = 2.0 m/s)	
Figura 41.	Humedad residual en función del tiempo ($T = 50$ °C, velocidad =2.5 m/s).	52
Figura 42.	Representación de los datos experimentales (0), y de la línea recta (-)	55
	generada por el SPSS. ($T = 50$ °C, velocidad = 2.5 m/s).	
Figura 43.	Representación de los datos experimentales (0), de la curva logarítmica (-	57
) y de la curva exponencial (-) generada por el SPSS. La curva	
	exponencial es la más representativa. (T = 50 °C; velocidad = 2.5 m/s)	
Figura 44.	Humedad residual en función del tiempo ($T = 50$ °C, velocidad =3.0 m/s).	59
Figura 45.	Representación de los datos experimentales (0), y de la línea recta (-)	61
	generada por el SPSS. ($T = 50$ °C, velocidad = 3.0 m/s).	
Figura 46.	Representación de los datos experimentales (0), de la curva logarítmica (-	
) y de la curva exponencial (-) generada por el SPSS. La curva	62
	exponencial es la más representativa. (T = 50 °C; velocidad = 3.0 m/s)	
Figura 47.	Humedad residual en función del tiempo ($T = 60$ °C, velocidad =2.0 m/s).	65
Figura 48.	Representación de los datos experimentales (0), y de la línea recta (-)	66
	generada por el SPSS. ($T = 60$ °C, velocidad = 2.0 m/s).	
Figura 49.	Representación de los datos experimentales (0), de la curva logarítmica (-	68
) y de la curva exponencial (-) generada por el SPSS. La curva	
	exponencial es la más representativa. (T = $60 ^{\circ}$ C; velocidad = 2.0m/s).	
Figura 50.	Humedad residual en función del tiempo ($T = 60$ °C, velocidad =2.5 m/s).	70
Figura 51.	Representación de los datos experimentales (0), y de la línea recta (-)	71
	generada por el SPSS. ($T = 60$ °C, velocidad = 2.5 m/s).	
Figura 52.	Representación de los datos experimentales (0), de la curva logarítmica (-	73
) y de la curva exponencial (-) generada por el SPSS. La curva	
	exponencial es la más representativa. ($T = 60$ °C; velocidad = 2.5 m/s).	
Figura 53.	Humedad residual en función del tiempo ($T = 60$ °C, velocidad = 3.0 m/s).	75
Figura 54.	Representación de los datos experimentales (0), y de la línea recta (-)	76
	generada por el SPSS $(T - 60 ^{\circ}C)$ velocidad -3.0m/s	

Figura 55.	Representación de los datos experimentales (0), de la curva logarítmica (-	78
1 iguia 55.) y de la curva exponencial (-) generada por el SPSS. La curva	70
	, , ,	
	exponencial es la más representativa. ($T = 60 ^{\circ}\text{C}$; velocidad = 3.0 m/s).	
Figura 56.	Humedad residual en función del tiempo ($T = 70$ °C, velocidad = 2.0 m/s).	80
Figura 57.	Representación de los datos experimentales (0), y de la línea recta (-)	82
	generada por el SPSS. ($T = 70$ °C, velocidad = 2.0 m/s).	
Figura 58.	Representación de los datos experimentales (0), de la curva logarítmica (-	83
) y de la curva exponencial (-) generada por el SPSS. La curva	
	exponencial es la más representativa. (T = 70 °C; velocidad = 2.0 m/s).	
Figura 59.	Humedad residual en función del tiempo (T = 70 °C, velocidad = 2.5 m/s).	85
Figura 60.	Representación de los datos experimentales (0), y de la línea recta (-)	87
	generada por el SPSS. ($T = 70$ °C, velocidad = 2.5 m/s).	
Figura 61.	Representación de los datos experimentales (0), de la curva logarítmica (-	
) y de la curva exponencial (-) generada por el SPSS. La curva	88
	exponencial es la más representativa. (T = 70 °C; velocidad = 2.5 m/s).	
Figura 62.	Humedad residual en función del tiempo (T = 70 °C, velocidad = 3.0 m/s).	90
Figura 63.	Representación de los datos experimentales (0), y de la línea recta (-)	92
	generada por el SPSS. ($T = 70$ °C, velocidad = 3.0 m/s).	
Figura 64.	Representación de los datos experimentales (0), de la curva logarítmica (-	
) y de la curva exponencial (-) generada por el SPSS. La curva	94
	exponencial es la más representativa. (T = 70 °C; velocidad = 3.0 m/s).	
	1	

RESUMEN

Los productos que se obtienen del fruto del coco (Cocos nucífera L.): la pulpa, copra (pulpa seca), el aceite extraído de la copra, la leche de coco, la fibra, la harina y el agua de coco, se utilizan en varias aplicaciones como alimentos, piensos, jabones, detergentes y cosméticos. El objetivo de esta investigación fue determinar el modelo de la cinética de secado de albumen de coco. El albumen fue cortado en láminas y colocadas en un secador de bandejas con aire caliente. Empleándose un diseño estadístico totalmente al azar con arreglos factorial de 3Ax3B, con repeticiones. Se ensayaron tres temperaturas de secado (50 °C, 60 °C y 70 °C) y tres velocidades del aire 2,0; 2,5 y 3,0 m/s. con un tiempo de 300 min. Bajo esa condición mediante el análisis de regresión de los datos se obtuvo para el periodo de velocidad constante la ecuación lineal que representa mejor los datos y = -0.016x + 1.225y para el periodo de velocidad decrecientes la ecuación logarítmica que representa los datos $y = 0.735 e^{(-0.010x)}$ con coeficientes de determinación $R^2 = 0.996$ y $R^2 = 0.987$ respectivamente. Los mejores resultados para el proceso de secado a 50 °C y velocidad de 2,5 m/s. con el tiempo critico de 30 min., la humedad critica de 0,74 g agua/g coco seco. Las características fisicoquímicas para el producto final de láminas de coco obtenidos fueron proteína total: 8.82%, grasa total: 47.96, fibra cruda: 31.81%, cenizas: 2.14%, acidez: 0.133, pH:6.35, humedad: 2.18%, extracto libre de nitrógeno: 7.09%.

Palabras clave: Modelo matemático, cinética de secado, albumen de coco

ABSTRACT

Products obtained from coconut fruit (Cocos nucífera L): pulp, copra (dried pulp), oil extracted from copra, coconut milk, fiber, flour and coconut water, are used in various applications such as food, feed, soaps, detergents and cosmetics. The objective of this research was to determine the model of the kinetics of coconut albumen drying. The albumen was cut into sheets and placed in a hot air tray dryer. Using a totally random statistical design with factorial arrangements of 3Ax3B, e repetitions. Three drying temperatures (50 °C, 60 °C and 70 °C) and three air velocities 2.0; 2.5 and 3.0 m/s. with a time of 300 min. Under these conditions by means of the regression analysis of the data, the linear equation that best represents the data was obtained or the period of constant velocity is y = -0.016x + 1.225and for the period of decreasing velocity the logarithmic equation that represents the data and $y = 0.735 e^{(-0.010x)}$ with coefficients of determination $R^2 = 0.996$ and $R^2 = 0.987$ respectively. The best results for the drying process at 50 °C and speed of 2.5 m/s. With the critical time of 30 min, the critical humidity of 0,74 g water/ g dry coconut. The physicochemical characteristics for the final product of coconut slices obtained were total protein: 8.82%, total fat: 47.96, crude fiber: 31.81%, ash: 2.14%, acidity: 0.133, pH: 6.35, humidity: 2.18%, free extract nitrogen: 7.09%.

Keywords: Mathematical model, drying kinetics, coconut albumen

I. INTRODUCCIÓN

El coco (*Cocos nucífera* L.) proviene del portugués "cocu", fruta oriunda en américa del sur se distribuye en regiones tropicales y subtropicales de África, el Caribe y América del sur. Debido a su presencia y su larga historia en las regiones tropicales y subtropicales de todos los continentes, no hay certeza sobre su centro de origen. (Zaragoza, 2013).

Coco (*Cocos nucífera* L.), encontrándose en las regiones del Perú como: Loreto, Ucayali, San Martin, Cajamarca, entre otros (Minagri, 2018). La cadena productiva de coco (*Cocos nucífera* L.) está identificada como uno del mayor interés, debido al impacto que tiene en la población de Jaén – Cajamarca, vista desde las familias que dependen la producción primaria hasta su comercialización.

En la actualidad el cambio en estilos de vida ha motivado la necesidad de reducir tiempo en la preparación de alimentos; así como los nuevos hábitos de buena alimentación, donde el consumidor está cada vez más interesado en las relaciones entre dieta y salud, preocupándose no solo por la composición de los alimentos, sino también por aquellos efectos beneficiosos o perjudiciales, incluyendo una mayor ingesta de frutas y alimentos listos para el consumo, sin aditivos químicos, la industria de los frutos secos ha crecido en los últimos años, y tiene una gran potencial para ser explotados en todo el mundo.

Los principales productos que se obtienen del fruto del coco: la pulpa, copra (pulpa seca), el aceite extraído de la copra, (rica en ácido láurico), la leche de coco, la fibra, la harina y el agua de coco (de frutos inmaduros), se utilizan en varias aplicaciones como alimentos, piensos, jabones, detergentes y cosméticos. La pulpa se utiliza principalmente como materia prima para la producción de coco rallado, leche de coco y otros derivados. El consumo de agua de coco inmaduro es importante y en parte es debido a la creciente demanda de alimentos naturales y saludables, es muy apreciada por su sabor y frescura. (Santana et al., 2011) citado por (Lucas, 2017).

En el proceso de secado convectivo de las frutas, se utiliza aire caliente, con el fin de eliminar una parte de agua contenida en un producto y para mejorar sus características nutricionales.

La pulpa de coco verde tiene capacidad de formación de espuma y emulsionantes que se pueden utilizar para producción de helado, incluso a valores de pH bajos. La composición de la pulpa de coco, con proteínas, lípidos y carbohidratos, hizo posible la fabricación de un producto con propiedades similares de un verdadero helado. (Lucas, 2017).

El estudio se centró en determinar el modelo cinético de secado de albumen de coco (*Cocos nucífera* L.) empleando como variables de temperaturas de 50, 60 y 70 °C. y velocidad del aire de secado de 2.0, 2.5 y 3.0 m/s. Para la determinación de los parámetros cinéticos como: tiempo critico de secado, calidad de lámina de coco, humedad critica, humedad de equilibrio.

En la presente investigación tiene como objetivo determinar el modelo de la cinética de secado de albumen de coco (*Cocos nucífera* L.) así mismo determinar los parámetros críticos para diseñar un secador y obtener láminas de coco realizando su respectivo su análisis fisicoquímico. Empleando como variables de temperaturas de 50, 60 y 70 °C. y velocidad del aire de secado de 2.0, 2.5 y 3.0 m/s, serán mejores para producir láminas de coco.

Prieto *et al.* (2011), evaluó los procesos de secado de la pulpa de coco verde en secador de armario (CD) y en un secador de lecho fluido (PFB) a temperatura de 60, 70 y 80 °C. La actividad parámetros del agua (Aw), luminosidad (L*), enzima actividad, la humedad y la nitidez se utilizaron para la elección de las mejores condiciones de proceso para la producción de aperitivos. Modelado matemático de las curvas de secado se realizó utilizando Henderson & Pabis, Lewis y modelos de página. Después de 480 minutos a 70 °C, en ambos equipos tuvieron éxitos en la producción de finales de aperitivos como producto. Obteniendo en CD presenta de humedad final de 0.159 ±0,004 (db) y en PFB 0,0400 ± 0,0004 (lb).

Rojas y Chumacero (2019), evaluó la cinética de secado mediante visión computacional. Utilizó un secador de bandejas a una temperatura de 45 °C a una velocidad de 2.5 m/s, la ecuación obtenida para línea recta es y = -0.028x + 4.771 y para la parte logarítmica $y = -1.607 \ln(x) + 9.781$ con coeficientes determinantes $R^2 = 0.999$ y $R^2 = 0.992$ con una humedad crítica de 3.38 g agua/g cúrcuma seca, humedad de equilibrio de 0.33g agua/cúrcuma seca, tiempo crítico de 50 minutos.

T. Madhiyanon *et al.* (2009), empleó una técnica de lecho fluidizado para evaluar la cinética de secado de capa fina de coco picado. Trabajaron los experimentos a temperaturas de secado de 60 -120 °C y con una velocidad de 2.5 m/s. la ecuación obtenida para línea recta es y =

-3120,247x - 7,1283 y para la parte logarítmica y = 0.763614 + 0.001776 con coeficientes determinantes $R^2 = 0.968$ y $R^2 = 0.986$, con una humedad final 3%.

Barrena, (2011), determinó los parámetros necesarios para diseñar un secador de bandeas con flujo de aire caliente, para producir harina de lúcuma, empleando lúcuma en rodajas de espesor 0.3cm. que a temperatura de 50 °C y una velocidad de 3.5 m/s.; con una ecuación lineal que representa mejor los datos y = -0.020x + 1.235 y para el periodo de velocidad decrecientes la ecuación logarítmica que representa los datos $y = 0.716e^{(-0.020x)}$ con coeficientes de determinación $R^2 = 0.92$ y $R^2 = 0.915$ y un tiempo critico de secado de 40 minutos; humedad critica de 0.48 g agua/g lúcuma seca, humedad de equilibrio de 0.04 g agua/g lúcuma seca y velocidad 0.020 g agua/ g lúcuma seca. minuto.

Para efectos de la presente investigación (Geankopolis, 1993) define los métodos empleados para representar el contenido de humedad de las sustancias.

Contenido de humedad en base seca, es la que expresa la humedad de un material como porcentaje del peso de solido seco. Se define como:

Ys = [(masa sólida a secar – masa sólido seco) / masa sólido seco] x 100

Contenido de humedad en equilibrio (Yeq), es la humedad limite a la cual un material dado se puede secar, en condiciones específicas de temperatura y humedad del aire.

Contenido de humedad libre (YI) o humedad residual (Yr), es el líquido que se puede separar a una temperatura y humedad dadas. Este valor llega a incluir tanto la humedad ocluida como la no ocluida (retenida). Si m es el peso del solido húmedo (agua más sólido seco) en kg y $\bf S$ es el peso del solido seco en kg: $\bf Yr = (m-S)/S$

Periodo de velocidad constante, es el tiempo de secado durante el cual la velocidad de eliminación de agua por unidad de superficie es constante o uniforme.

Periodo de velocidad decreciente, es el tiempo de secado durante el cual la velocidad instantánea de secado disminuye en forma continua.

Para reducir el contenido de humedad de diversos materiales, se deben evaluar empíricamente las diferentes condiciones de velocidad y temperatura del aire empleado, y el tiempo necesario para lograr el grado de secado esperado. Las mediciones de velocidad del

secado por lotes se obtienen a partir de datos experimentales y proporcionan mucha información para la operación por lotes y también para continua (Ocón y Tojo, 1980).

La velocidad del aire de secado (W) influye sobre esta operación. A mayor velocidad, menor tiempo de secado; sin embargo, para una muestra dada, a cualquier velocidad del aire manteniendo su temperatura constante, la humedad critica (Yc) y la humedad de equilibrio (Yeq) no variarían (Vernon, 2000).

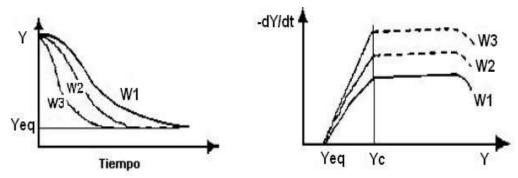


Figura 1. Influencia de la velocidad del aire (W) sobre la operación de secado, a temperatura constante. W3>W2>W1. Fuente: Vernon, 2000.

Un secador de bandejas es un equipo totalmente cerrado y aislado en el cual los sólidos se colocan sobre bandejas perforadas o de malla metálica. La transmisión de calor es directa del aire a los sólidos, utilizando la circulación de grandes volúmenes de aire caliente (Perry y Chilton, 1982). El funcionamiento satisfactorio de los secadores de bandejas depende de mantener una temperatura constante y una velocidad de aire uniforme sobre todo el material que se esté secando. Conviene tener una circulación de aire con velocidades de 1 a 10 m/s para mejorar el coeficiente de transferencia de calor en la superficie y con el propósito de eliminar bolsas de aire estancado (Vernon, 2000).

El secador de bandejas empleado en la ejecución del proyecto, consta de un ventilador con velocidades ajustables que genera una corriente de aire, cuatro resistencias de 1500 W cada una, un soporte para las tres bandejas de malla metálica.

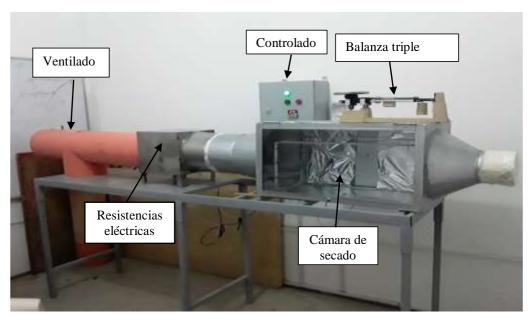


Figura 2. Secador de bandejas

El equipo de secador de bandejas tiene una longitud de 2,50 metros y una altura de 1,20 metros está constituido por las diferentes partes tiene un ventilador centrifuga donde absorbe el aire y lo conduce por un banco de resistencias y el banco de resistencias tiene en su interior resistencias eléctricas de 2 o 3 en paralelo que gira en la velocidad del tiempo, luego por un ducto entra a la cabina y la cabina está dispuesto una estructura metálica con 3 bandejas que son sujetadas a una balanza de triple brazo. El aire que se evacua por la cabina y sale al final de una reducción donde será medido a través de un anemómetro digital la velocidad de aire. Además, las resistencias van instaladas a un controlador de corriente eléctrica y la cabina de secado tiene un termóstato que permite regular y estabilizar la temperatura, se mide en un sensor - controlador.

II. OBJETIVOS

2.1. General

Determinar el modelo de la cinética de secado de albumen de coco (*Cocos nucífera* L.)

2.2. Específicos

- ❖ Evaluar los parámetros de la cinética de secado de albumen de coco mediante aire forzado.
- * Realizar el análisis físico químicos del coco en estado fresco y seco.
- ❖ Determinar los parámetros cinéticos para diseñar un secador para el secado de albumen de coco.

III. MATERIALES Y MÉTODOS

3.1. Materia prima

Pulpa de coco (*Cocos nucífera* L.) con índice de madurez fisiológica intermedia proveniente del distrito de Bellavista, provincia de Jaén, región Cajamarca.

3.2. Materiales y equipos

- Cuchillo
- Espátula
- Crisoles de porcelanas de 30ml
- ❖ Desecador con deshidratante adecuado (silicegel) de 200 gramos.
- Jarras de plástico.
- ❖ Vasos precipitado 100 ml, 50 ml, 25 ml.
- Placas Petri.
- ❖ Fiola 250 ml, 100ml.
- Pipetas
- * Tabla de picar
- Matraz Erlenmeyer
- ❖ Secador por aire forzado (3 bandejas, cap.250 g. c/u).
- Anemómetro digital marca PYLE pma 90/ termómetro para velocidad de aire
- ❖ Balanza triple brazo 2610 x 0.1g marca OHAUS modelo TP2611.
- ❖ Balanza analítica precisa 321 LS de sensibilidad 0.1 mg.
- ❖ Balanza OHAUS PAJ2102 de precisión 0.01 g.
- pH-metro 913 pH meter marca metrohm.
- Equipo de titulación
- ❖ Estufa marca RAYPA, modelo DO 135
- ❖ Mufla marca BLUE M. modelo BF51732C-1
- ❖ Analizador de fibra marca ANKOM, modelo A2001
- **❖** Laptop marca hp modelo probook 450.

3.3. Procedimiento experimental

3.3.1. Selección y acondicionamiento de la materia prima

Los cocos fueron recolectados y seleccionados con un índice de madurez fisiológica intermedia luego se descortezó la capa que envuelve al fruto se realizó un lavado y desinfectado con el fin de eliminar la carga microbiana, luego extraer el agua de su interior del coco, para luego cortar el albumen en láminas y pesar, y se colocó ordenadamente en cada una de las tres bandejas de mallas metálicas de la cabina en el cual se suministró una corriente de aire forzado por un ventilador de velocidades ajustables que permitió fijar cada una de las velocidades de trabajo (2,0; 2,5; y 3,0 m/s) las que se midieron con un anemómetro digital en la boca de la salida del aire después de haber pasado por la cabina de secado. El aire pasa por un ducto a las 4 resistencias eléctricas de 1500 w cada una, donde se calentó hasta las temperaturas de trabajo en la siguiente investigación (50, 60 y 70 °C), donde se permitió medir con un sensor - controlador eléctrico ayudando a regular y estabilizar las temperaturas. El soporte de las bandejas se colgó de una balanza triple brazo ubicada encima de la cabina de secado en condiciones estacionarias, en el cual se pesó el sistema (soporte, bandejas y láminas de coco) cada 5 minutos (P1), desde el inicio de la operación de secado (tiempo 0) hasta el final (300 minutos aproximadamente), en el cual se redujo la humedad de las láminas de coco hasta su humedad de equilibrio.

3.3.2. Obtención de las láminas de coco

Culminado el tiempo de secado se dispuso las láminas de coco seco en placas Petri y luego a un desecador por un tiempo de 15 minutos, las láminas serán colocadas en la estufa para estabilizar el peso por un tiempo de 24 horas con las mismas temperaturas de trabajo (50 °C, 60 °C y 70 °C) para secarlas hasta su peso constante y determinar el peso seco (S).

Se sacó las muestras de la estufa y se realizaron el control de calidad a través de análisis fisicoquímico, fueron envasados en frascos de vidrio y se almacenó en un ambiente fresco y seco.

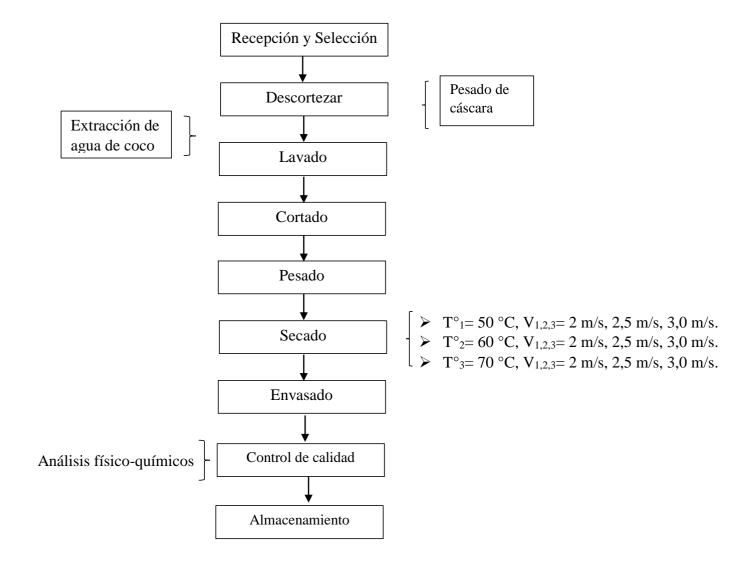


Figura 3. Flujograma para la obtención de las láminas de coco

3.3.3. Cinética de secado de coco

En el estudio se trabajó con tres temperaturas (50 °C, 60°C, 70°C) y con una corriente del aire de secado con diferentes velocidades del aire: 2,0 m/s, 2,5 m/s, 3,0 m/s. Al inicio de cada corrida experimental se verificó la temperatura y la velocidad del aire. En seguida se pesó la estructura del soporte con las tres bandejas de malla metálica (SB). Para cada par temperatura – velocidad del aire, se realizaron por triplicado.

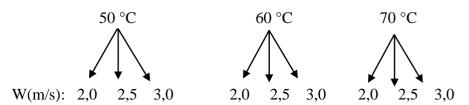


Figura 4. Plan experimental, para cada temperatura se evaluaron tres diferentes velocidades de aire de secado.

Se calculó peso de las láminas de coco cada 5 minutos (t) aplicando la siguiente formula:

$$P_2=P_1-SB \qquad (1)$$

Se calculó la humedad residual de las láminas de coco cada 5 minutos se empleó la siguiente fórmula:

$$Y = (P_2 - S)/S$$
 (2)

Se calculó la variación de la humedad con el tiempo (-Dy/dt) aplicando la siguiente formula:

$$-Dy/dt = (Y_i - Y_{i+1}) / (t_i - t_{i+1}) (3)$$

Se calculó la humedad residual promedio (Ym) se empleó la siguiente fórmula:

$$Y_m = (Y_i + Y_{i+1})/2$$
(4)

Donde:

P2 = peso neto muestra (g).

P1 = peso bandeja + muestra al tiempo t (g).

SB = peso de la bandeja vacía (g)

S = peso seco (g)

 Y_i = humedad residual

 \mathbf{Y}_{i+1} = humedad residual + siguiente humedad residual

 t_i = tiempo en min

 $\mathbf{t_{i+1}}$ = tiempo en min. + siguiente tiempo en min.

3.3.4. Análisis físico - químicos de las láminas de cocos.

Los análisis físico — químicos (proteínas totales, fibra cruda, grasa total o extracto etéreo, extracto libre de nitrógeno, pH, acidez titulable, % humedad y cenizas a la muestra fresca y producto final láminas de coco seco, se realizaron en los laboratorios de nutrición animal y bromatología de alimentos de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas.

> Determinación del pH

Método: Potenciómetro (AOAC 981.12.2005)

Procedimiento: Medición electrométrica de la actividad de los iones hidrógenos presentes en la muestra mediante un aparato medidor de pH previamente calibrado con Buffer pH 4,7 Y 10.

Se pesó 5 gramos de muestra, se trituró en un mortero de porcelana y finalmente se llevó al potenciómetro.

➤ **Determinación de humedad:** Se determinó el porcentaje de humedad en la estufa marca RAYPA, modelo DO – 135, según el método AOAC 925.09, revisada 2016.

Procedimiento: Se realizó el análisis en triplicado, se colocó la capsula destapada y la tapa durante al menos 1 hora en la estufa a la temperatura de secado del producto, empleando pinzas para trasladar la capsula tapada al desecador y dejar enfriar durante 30 a 40 minutos. Se Pesó la capsula con tapa con una aproximación de 0.1 mg. Registró (**w1**), pesar 5 gramos de muestra previamente homogeneizada. Registró (**w2**), colocar la muestra con capsula destapada y la tapa en la estufa a la temperatura y tiempo recomendado 105 °C x 7 horas. Luego se tapó la capsula con la muestra, sacarla de la estufa enfriar en el desecador durante 30 a 45 minutos. Repetir el procedimiento de secado por una hora adicional, hasta que las variaciones entre en dos pesadas sucesivas no excedan de 5 mg (**w3**).

Cálculos y expresiones de resultados

La humedad del producto expresado en porcentaje, es igual a:

%
$$Humedad = \frac{w2 - w3}{w2 - w1}X100$$

Donde:

W1 = masa de la capsula vacía y su tapa, en gramos.

W2 = masa de la capsula tapada con la muestra antes del secado, en gramos.

W3 = masa de la capsula con tapa + muestra desecada, en gramos.

Promediar los valores obtenidos y expresar el resultado con los decimales. Repetitividad: la diferencia de los resultados no debe ser superior al 2% del promedio.

Peso final: g

% Materia seca = 100 - %Humedad

> Determinación de acidez titulable

o **Método:** Titulación (AOAC. 11.042/84.962.12/90)

 Procedimiento: Los ácidos presentes en la muestra son neutralizados con una solución alcalina estandarizada (NaOH) y utilizando un indicador como la fenolftaleína.

Se pesó 10 gramos de muestra, triturada en un mortero de porcelana, se diluyó en una fiola de 250 mL y se enrazó con agua destilada, agitar y filtrar.

Se tomó 25 mL de la solución preparada en matraz Erlenmeyer se agrega agua destilada y luego se añadió tres gotas de fenolftaleína y finalmente se titula hasta llegar el viraje del color. Se hizo tres repeticiones.

➤ Determinación de proteína total: Se realizó mediante el destilador marca selecta, modelo PRO – NITRO A, según la norma AOAC 976.05 – ISO 5983.2002 (revisado 2013).

Procedimiento:

Digestión: Se realizó la muestra en duplicado. Pesar 0.1 mg alrededor de 1 gramos de muestra homogenizada, el papel filtro libre de nitrógeno, luego agregar 1 tableta o 5 gramos de catalizador. Colocar la muestra y catalizador en tubo de digestión. Agregar 10 a 12 ml H₂SO₄ concentrado p. a. + 3 ml de Na₂O₂30%. Colocar los tubos en el sistema de digestión (bloques digestor). Tapar los tubos con el colector de humus. Adicionar a la bomba de vacío 10 ml de agua + 20 gramos de Na₂CO₃. Adicionar a la unidad Scrubber 600 ml de agua a cada botellón (2 unidades) + 150 gramos de Na₂CO₃. Ponerlo en funcionamiento el sistema de bomba de vacío y unidad Scrubber (sistema de extracción de humus)

Realizar el proceso de digestión en 3 pasos:

Paso 1: 125 °C 30 Extraer humedad

Paso 2: 300 °C 30 controlar humus blancos

Paso 3: 400 °C 60 – 90 mineralización del amoniaco

El proceso de digestión termina cuando el contenido del tubo sea un líquido transparente nítido con coloración azul claro, verde o amarillo, dependiendo del catalizador. No deben quedar restos negros adheridos a las paredes del tubo de gestión. Antes de retirar la muestra del digestor, dejar enfriar 30 – 60 minutos, con la extracción de humus conectado. Para luego dejar enfriar a temperatura ambiente.

Destilación Automática: Se añadió 25 ml de agua destilada en cada tubo. Se añadió el agua despacio agitando constantemente sin dejar solidificar la muestra. Se colocó en el tubo con la muestra en el equipo de destilación. Se programó una dosificación de 50 a 75 ml de NaOH, (dependiendo de la cantidad de nitrógeno de la muestra, la cantidad dosificada de NaOH será correcta cuando la muestra este totalmente de color azul).

Se dosificó al colector 55 ml de indicador ácido bórico, que contiene (40 gr de ácido bórico más 10 ml de indicador mixto N°4.8 0 5; por litro de solución), (el indicador mixto contiene 0.2% de verde de bromocresol más 0.2% rojo de metilo). El cual servirá para recibir el destilado (borato de amonio). El indicador ácido bórico debe estar entre un rango de

absorbancia de 0.630 – 0.670 nm, si es superior o inferior a estos parámetros, se tendrá problemas en la titulación.

Una vez realizado todos los parámetros establecidos anteriormente, se procedió con la destilación automática. La destilación terminó cuando ya no pasó más amónico al colector aproximadamente de 5-7 minutos por luego ser titulada.

Titulación: El borato de amonio recibido en el colector o matraces Erlenmeyer, fue titulada con Hcl de normalidad conocida o con H₂SO₄. El ácido reacciona con el borato de amonio y un pequeño exceso provocara un cambio de pH y el consiguiente viraje (color rosado).

NITRÓGENO (mg) = 14 x Volumen HCL (ml) x Normalidad Hcl A partir del nitrógeno jeldahl se calculó el porcentaje de proteína de la muestra mediante la siguiente expresión.

% Proteina total =
$$\frac{P_2}{P_0} X 100 X F$$

Donde:

 P_2 = es nitrógeno en (mg).

 P_0 = peso de la muestra en (mg).

F = factor proteico.

$$\%$$
 Nitrógeno =
$$\frac{ml\ HCLx\ Normalidad\ x\ Meq.\ de\ N2\ x\ 100}{Gramos\ de\ muestra}$$

Para obtener la cantidad de proteína bruta se multiplico por el factor proteico dependiendo de la muestra.

% Proteina bruta = % Nitrógeno x factor proteico

➤ Determinación de cenizas: Se efectuó mediante la mufla marca BLUE – M, modelo BF51732C-1 según la norma 942-05, 20th Edition 2016 Ash of animal feed.

Procedimiento: Se realizó el análisis en duplicado. Colocar la capsula limpia en la estufa a 105 °C, llevarlo la capsula a un desecador para que se

enfrié a temperatura ambiente y pesar, siempre empleando pinzas de metal para prevenir la absorción de humedad. Pesar al 0.1 mg en una capsula previamente seca, pesada y tarada (w0) 2 gramos de muestra homogeneizada (w1). Pre calcinar previamente la muestra para evitar la inflamación en una placa calefactora, luego colocar en la mufla e incinerar a 550 °C por 8 horas, hasta cenizas blancas o grisáceas. Pre enfriar en la mufla apagada y si no se logra cenizas blancas o grisáceas, humedecerlas con agua destilada, secar en baño de agua y someter nuevamente a incineración. Retirar las muestras de la mufla a un desecador dejar enfriar y se pesó. (w2).

La cantidad de cenizas totales del producto expresado en porcentaje, es igual a:

% Cenizas Totales =
$$\frac{w2 - w0}{w1 - w0}$$
X100

Donde:

W2 = masa en gramos de la capsula con las cenizas.

W1 = masa en gramos de la capsula con la muestra.

W0 = masa en gramos de la capsula vacía.

➤ Determinación de fibra cruda: Se determinó en el analizador de fibra marca ANKOM, modelo A2001 según la norma AOAC 978.10 (Van Soest).

Procedimiento: Se pesó 1 gramos de muestra exenta de grasa (**W**), en el crisol de vidrio (secado y tarado), se realizó el análisis por triplicado. Se agregó 150 ml de H₂SO₄ a 0.255 N, hirviente o precalentado, 3 – 5 gotas antiespumante y perlas de vidrio por muestra. Se dejó hervir por un periodo de 30 minutos, desde el inicio de ebullición. Luego filtrar o drenar la solución de hidróxido de sodio con agua destilada caliente (hacer un lavado de 3 repeticiones, hasta que cese la reacción alcalina. Se realizó un último lavado con agua des ionizada fría destilada a enfriar los crisoles. Lavar 3 veces el contenido del filtro con 25 ml de acetona, agitar cada muestra por aire comprimido. Se retiró los crisoles del extractor de fibras, llevarlos a una estufa a 105 ±2 °C, durante 3 horas hasta obtener un peso

constante. Para luego llevarlo a un desecador con deshidratante adecuado, hasta obtener temperatura ambiente. Este proceso representa el contendido de fibra cruda más cenizas ($\mathbf{F1}$). Se llevó los crisoles a un horno mufla y se incinera a 550 °C \pm 20 °C, por un periodo de 5 a 7 horas. Luego se retiró los crisoles contenido de cenizas, para ser puesto en un desecador con deshidratante adecuado, hasta obtener temperatura ambiente en las muestras. Este peso representa la cantidad de cenizas en la muestra ($\mathbf{F2}$), cantidad de la muestra que se une depende de la naturaleza de ella y el equipo a utilizar.

La cantidad de fibra cruda del producto expresado en porcentaje, es igual a:

% Fibra cruda =
$$\frac{F1 - F2}{W}X$$
 100

Donde:

F1 = es el peso del vaso con el residuo de fibra extraída del extractor y sometida a estufa.

F2 = es el peso del crisol + cenizas, después de haber sido incinerado.

W = es la cantidad de muestra utilizada en el análisis correspondiente.

➤ Determinación de extracto etéreo: Se realizó el análisis mediante la estufa marca SELECTA modelo Conterm 200210, según la norma AOAC 920.39, online, 20 th Edition 2016.

Procedimiento: se secó en una estufa a 103 ± 2 °C los vasos de aluminio a utilizar por un periodo de 30 minutos para luego llevarlo a un desecador, hasta enfriara a temperatura ambiente, y luego pesar. (**P1**)

Se pesó 3 gramos de la muestra preparada en el cartucho de celulosa o papel filtro (tarado). (**P**)

Se Pesó en balanza de precisión con exactitud de 0.0001 mg. (Los cartuchos se deben manipular con guantes o pinzas para evitar interferir en los datos de grasa. Si se utiliza papel filtro empaquetarlo para luego ser transportado al cartucho de celulosa). Se colocó los cartuchos contenido la muestra en el extractor de grasa adherido al soporte de cartuchos. Adicionar 50 a 60 ml de hexano o éter de petróleo a cada muestra (vaso de

aluminio) y ponerlo en el equipo para empezar el proceso. Fijar el programa adecuado, y encender el equipo de refrigeración, para dar inicio al proceso de determinación de grasa total.

El proceso de extracción dura aproximadamente 3 horas, tiempo en el cual el solvente calentando a 120 °C, va pasando por la muestra para extraer la grasa, el solvente con la grasa extraída queda depositada en el vaso de aluminio. Transcurrido el tiempo de extracción sacar los vasos del equipo e introducir a una estufa a 103 ± 2 °C, por un periodo de 2 a 3 horas, con la finalidad de eliminar algún residuo del solvente utilizado. Retirar los vasos de la estufa, se llevó a un desecador con desecante (silicagel), hasta enfriara a temperatura ambiente y luego pesarlo. (**P2**)

La cantidad de grasa del producto expresado en porcentaje, es igual a:

%Grasa E. E =
$$\frac{P1 - P2}{P}$$
X 100

Donde:

P1 = es el peso del vaso con el extracto etéreo o residuos de grasa de la muestra.

P2 = peso del vaso vacío.

 \mathbf{P} = es el peso de la muestra empleada

➤ Determinación de extracto libre de nitrógeno: Se determinó por cálculo las características químicas, según la norma AOAC 923.03.

Determinación por calculo:

$$E.L.N = 100 - \%humedad - \%grasa o extracto etéreo - \%cenizas - \%fibra cruda - \%proteina$$

3.3.5. Diseño estadístico

Se empleó el diseño estadístico completamente al Azar (DCA) con arreglos factorial de 3AX3B con 9 tratamientos y 3 repeticiones, las variables estudiadas se muestran en la tabla 1.

- Variables independientes.
 - Temperatura del aire de secado: 50, 60, 70 °C.
 - Velocidad del aire del secado: 2.0, 2.5, 3.0 m/s.

> Variables dependientes.

- Tiempo critico de secado
- Calidad de lámina de coco
- Humedad critica
- Humedad de equilibrio

Tabla 1

Descripción de los nueve tratamientos y sus variables.

N° Tratamientos	Factores	Temperatura	Velocidad				
1	A1B1	50 °C	2.0 m/s				
2	A1B2	50 °C	2.5 m/s				
3	A1B3	50 °C	3.0 m/s				
4	A2B1	60 °C	2.0 m/s				
5	A2B2	60 °C	2.5 m/s				
6	A2B3	60 °C	3.0 m/s				
7	A3B1	70 °C	2.0 m/s				
8	A3B2	70 °C	2.5 m/s				
9	A3B3	70 °C	3.0 m/s				
A1 = Temperatura	50 °C						
A2 = Temperatura	A2 = Temperatura 60 °C						
A3 = Temperatura 70 °C							
B1 = Velocidad 2.0 m/s							
B2 = Velocidad 2.5 m/s							

3.3.6. Análisis Estadística

B3 = Velocidad 3.0 m/s

Se realizó el ANOVA de los datos de la regresión lineal y regresión logarítmica o exponencial de cada tratamiento, usando el software estadístico IBM SPSS Statistics 25.

IV. RESULTADOS

4.1. Características del albumen de coco.

Los análisis del coco fresco se reportan en la tabla 2.

Tabla 2. Análisis fisicoquímico del coco fresco.

Acidez (%)	pН	% Cenizas	%Fibra	% Extracto	%Proteína	% Humedad	Humedad en
			cruda	etéreo	total		base húmeda
0.13	6.33	1.76	31.06	56.55	9.04	53%	0.53

4.2. Cinética de secado de coco

Los resultados de secado de láminas de coco a 50 °C y velocidades de 2.0, 2.5, 3.0 m/s. se muestra la figura 6 (datos experimentales en Anexos 4, 5 y 6); en el cual se determinó que humedad crítica (Yc) es de 0,74 g agua/g coco seco, humedad de equilibrio (Yeq) 0,05 g agua/g coco seco; los datos obtenidos no se modificaron después de haber alternado las velocidades constantes de trabajo y haber mantenido una temperatura constante.

Se manifiesta una variación en el tiempo critico (Tc) de secado donde las tres velocidades de (2.0, 2.5 y 3.0 m/s) son diferentes, demostrando que a medida que aumenta la velocidad de secado tiempo cítrico aumenta.

Tabla 3 $Datos\ experimentales\ del\ secado\ de\ coco\ a\ 50\ ^\circ C\ y\ una\ velocidad\ de\ 2.5\ m/s.$

	T	P1	P2=P1-SB	Yr=(P2-S)/S		
		Peso	Peso coco	Humedad	dY/dt (g	Ym (g
	Tiempo	estructura	al tiempo t	residual (g	agua/g	agua/g
N°	(min)	+ coco al	(g)	agua/g coco	coco seco	coco
		tiempo t		seco)	min)	seco)
		(g)				
0	0	1432.50	400.50	1.32	0.032	1.241
1	5	1404.80	372.80	1.16	0.021	1.108
2	10	1386.50	354.50	1.06	0.018	1.010
3	15	1370.80	338.80	0.96	0.016	0.924
4	20	1357.10	325.10	0.88	0.014	0.850
5	25	1345.20	313.20	0.82	0.014	0.781
6	30	1333.30	301.30	0.75	0.012	0.718
7	35	1323.30	291.30	0.69	0.011	0.662
8	40	1314.10	282.10	0.64	0.010	0.611
9	45	1305.60	273.60	0.59	0.010	0.560
10	50	1296.60	264.60	0.53	0.007	0.517
11	55	1290.70	258.70	0.50	0.008	0.480
12	60	1283.80	251.80	0.46	0.006	0.444
13	65	1278.40	246.40	0.43	0.007	0.411
14	70	1272.30	240.30	0.39	0.004	0.382
15	75	1268.50	236.50	0.37	0.007	0.354
16	80	1262.60	230.60	0.34	0.003	0.329
17	85	1259.90	227.90	0.32	0.005	0.309
18	90	1255.60	223.60	0.30	0.004	0.287
19	95	1252.30	220.30	0.28	0.003	0.270
20	100	1249.70	217.70	0.26	0.005	0.251
21	105	1245.80	213.80	0.24	0.002	0.233
22	110	1243.70	211.70	0.23	0.004	0.218
23	115	1240.60	208.60	0.21	0.002	0.206

24	120	1239.30	207.30	0.20	0.004	0.192
25	125	1236.10	204.10	0.18	0.002	0.178
26	130	1234.30	202.30	0.17	0.002	0.168
27	135	1232.70	200.70	0.16	0.001	0.160
28	140	1231.50	199.50	0.16	0.002	0.152
29	145	1230.00	198.00	0.15	0.001	0.144
30	150	1228.80	196.80	0.14	0.001	0.137
31	155	1227.60	195.60	0.13	0.001	0.131
32	160	1226.50	194.50	0.13	0.001	0.125
33	165	1225.60	193.60	0.12	0.002	0.118
34	170	1224.10	192.10	0.11	0.001	0.111
35	175	1223.20	191.20	0.11	0.001	0.106
36	180	1222.40	190.40	0.10	0.001	0.102
37	185	1221.70	189.70	0.10	0.001	0.098
38	190	1221.20	189.20	0.10	0.001	0.095
39	195	1220.60	188.60	0.09	0.001	0.091
40	200	1219.80	187.80	0.09	0.000	0.088
41	205	1219.50	187.50	0.09	0.000	0.086
42	210	1219.20	187.20	0.09	0.002	0.081
43	215	1217.90	185.90	0.08	0.001	0.076
44	220	1217.30	185.30	0.07	0.000	0.073
45	225	1217.00	185.00	0.07	0.000	0.071
46	230	1216.60	184.60	0.07	0.000	0.070
47	235	1216.50	184.50	0.07	0.000	0.068
48	240	1216.10	184.10	0.07	0.001	0.065
49	245	1215.40	183.40	0.06	0.001	0.061
50	250	1214.80	182.80	0.06	0.000	0.060
51	255	1214.80	182.80	0.06	0.000	0.059
52	260	1214.50	182.50	0.06	0.000	0.057
53	265	1214.10	182.10	0.06	0.000	0.055
54	270	1214.00	182.00	0.06	0.001	0.054
55	275	1213.50	181.50	0.05	0.000	0.052
56	280	1213.40	181.40	0.05	0.000	0.051

57	285	1213.10	181.10	0.05	0.001	0.048
58	290	1212.60	180.60	0.05	0.000	0.047
59	295	1212.60	180.60	0.05	0.000	0.047
60	300	1212.60	180.60	0.05	0.009	0.023

SB = 1032 S = 172.50

Se presenta las curvas en una sola figura para observar la diferencia entre ellas, humedad crítica y la humedad de equilibrio se mantienen constante a diferencia del tiempo critico que aumenta al incrementarse la velocidad de secado.

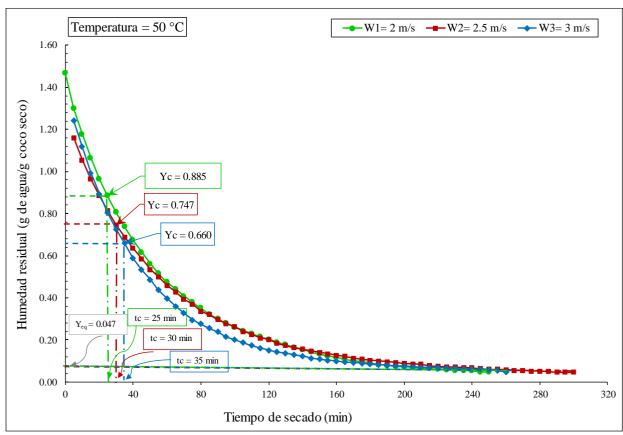


Figura 5. Humedad residual en función del tiempo (T = 50 °C, velocidades de 2.0, 2.5, y 3.0 m/s).

Los resultados de secado de láminas de coco a 60 °C y velocidades de 2.0, 2.5 y 3.0 m/s como se muestra en la figura 6, se aprecia la misma tendencia que en la anterior figura 5 a excepción a la humedad critica que es de 0,62 g agua/g coco seco.

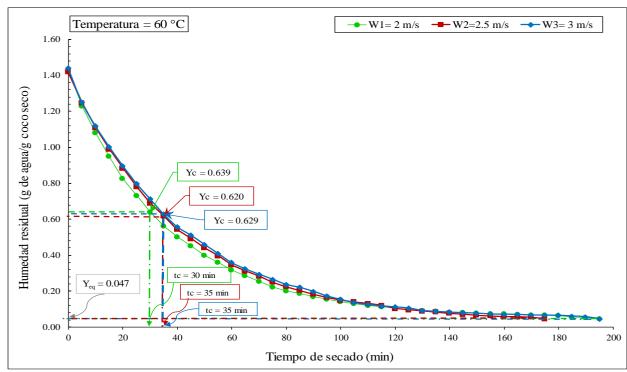


Figura 6. Humedad residual en función del tiempo (T = 60 °C, velocidades de 2.0, 2.5, y 3.0 m/s).

Los resultados de secado de láminas de coco a 70 °C y velocidad de 2.0, 2.5 y 3.0 m/s como se muestra en la figura 7, se aprecia la misma tendencia que en las figuras anteriores 5 y 6 a excepción a la humedad critica es de 0,56 g agua/ g coco.

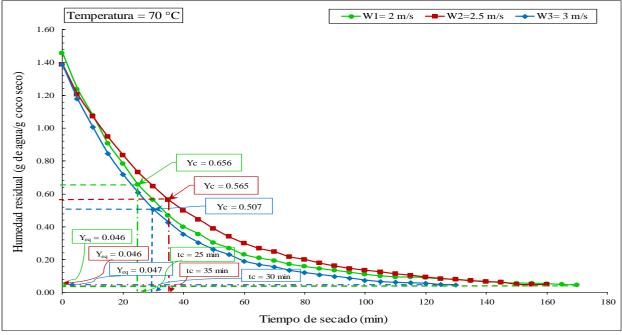


Figura 7. Humedad residual en función del tiempo (T = 70 °C, velocidades de 2.0, 2.5, y 3.0 m/s).

En las figuras 8, 9 y 10 se muestra la velocidad de secado (dy/dt) vs humedad residual promedio (Ym) para las temperaturas de trabajo, percátese que los parámetros cinéticos como tiempo cítrico, humedad de equilibrio concuerdan con los de las Figuras 5, 6 y 7.

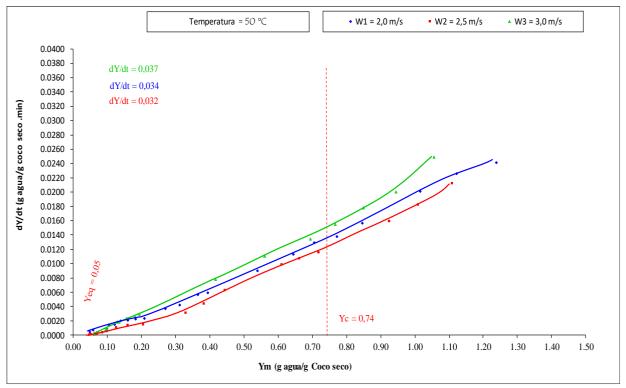


Figura 8. Variación de humedad con el tiempo en función de la humedad residual promedio $(T = 50 \, ^{\circ}\text{C}, \text{ velocidades } 2.0, 2.5 \, \text{y} \, 3.0 \, \text{m/s}).$

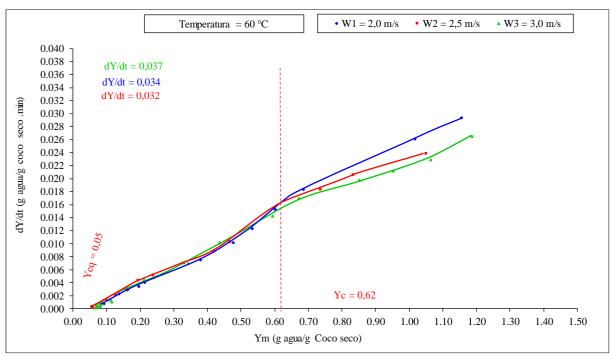
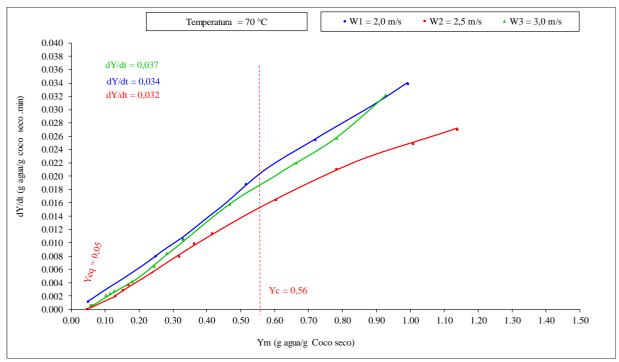



Figura 9. Variación de humedad con el tiempo en función de la humedad residual promedio $(T = 60 \, ^{\circ}\text{C}, \text{ velocidades } 2.0, 2.5 \, \text{y} \, 3.0 \, \text{m/s}).$

 $\overline{Figura~10}$. Variación de humedad con el tiempo en función de la humedad residual promedio (T = 70 °C, velocidades 2.0, 2.5 y 3.0 m/s).

Teniendo en cuenta la afinidad del color de las láminas de coco en estado natural con el de las láminas de coco seco obtenidas experimentalmente, se debe trabajar con una temperatura de 50 °C y velocidad 2.5 m/s. bajo estas condiciones el tiempo critico 30 minutos (Figura 9), humedad critica (Yc) de 0.74 g agua/ g coco seco, la humedad de equilibrio (Yeq) de 0.05 g agua/ g coco seco.

4.3. Modelo matemático de la cinética de secado de coco

Los resultados experimentales de la determinación de la cinética de secado de láminas de coco fueron procesados en el software estadístico SPSS 25.0.

En la Tabla 4. Se muestra las ecuaciones, las que representan el modelo matemático de la cinética de secado de coco para cada una de las temperaturas y velocidades experimentalmente realizadas.

Tabla 4.

Ecuaciones correspondientes a la parte recta y a la parte curva de cada una de las gráficas experimentales analizadas con el software SPSS y sus parámetros cinéticos (Anexos).

Temperatura del aire (°C)	Velocidad del aire (m/s)	Ecuación de la parte recta	\mathbb{R}^2	Tiempo crítico (min)	Humedad crítica (g agua/g coco seco)	Ecuación de la parte logarítmica	\mathbb{R}^2	Humedad de equilibrio (g agua/g coco seco)
	2,0	y = -0.023x + 1.435	0,993	25		$y = 1,001e^{(-0,013x)}$	0,995	
50	2,5	y = -0.016x + 1.225	0,996	30	0,74	$y = 0.735 e^{(-0.010x)}$	0,987	0,05
	3,0	y = -0.022x + 1.362	0,987	35		$y = 0.627e^{(-0.010x)}$	0,975	
	2,0	y = -0.026x + 1.371	0,991	30		$y = 0.711e^{(-0.015x)}$	0,979	
60	2,5	y = -0.023x + 1.361	0,992	35	0,62	$y = 0.991e^{(-0.018x)}$	0,995	0,05
	3,0	y = -0.022x + 1.374	0,991	35		$y = 0.823e^{(-0.015x)}$	0,979	
	2,0	y = -0.032x + 1.416	0,995	25		$y = 0.683e^{(-0.017x)}$	0,986	
70	2,5	y = -0.023x + 1.328	0,992	35	0,56	$y = 0.987e^{(-0.020x)}$	0,998	0,05
	3,0	y = -0.029x +1.330	0,992	30		$y = 0.826e^{(-0.023x)}$	0,994	

4.4. Análisis físico químicos de las láminas de coco seco

En la tabla 5, se muestra los resultados de los análisis fisicoquímicos realizados a las láminas de coco seco.

Tabla 5 Análisis físico-químicos de las láminas de coco secos.

Temperatura	Velocidad (m/s)	% Proteínas total	% Extracto	% Fibra	% Cenizas	Acidez	pН	(%) Humedad	Extracto libre
(°C)			etéreo	cruda		(%)			de nitrógeno
	2.0	9.90	46.40	26.34	2.17	0.126	6.43	1.77	13.42
50	2.5	8.82	47.96	31.81	2.14	0.133	6.35	2.18	7.09
	3.0	9.25	50.99	28.98	2.06	0.123	6.41	2.66	6.06
	2.0	9.47	46.87	30.906	2.33	0.146	6.23	1.49	8.93
60	2.5	9.90	38.07	28.271	2.36	0.126	6.32	1.88	19.52
	3.0	9.68	55.80	27.853	2.16	0.146	6.25	1.34	3.17
	2.0	9.04	42.33	32.84	2.53	0.160	6.18	2.42	10.84
70	2.5	9.47	49.41	29.18	2.29	0.133	6.28	1.41	8.24
	3.0	9.68	49.11	30.09	2.48	0.153	6.25	2.02	6.62

Análisis mediante estadística descriptiva – caja y bigotes

En la Tabla 6 se muestra los resultados de los análisis fisicoquímicos en la cual se analizaron mediante estadística descriptiva con caja y bigotes o bloxplot para cada muestra de las láminas de coco. Se muestra las figuras 11, 12, 13 y 14 (anexo 4).

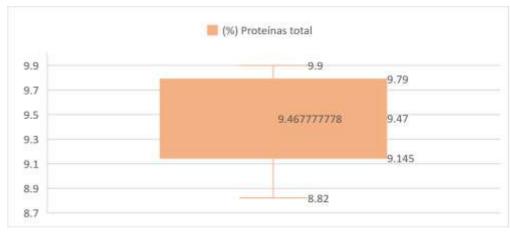


Figura 11. Diagrama de caja y bigotes para proteínas total.

Los resultados del porcentaje de proteínas total obtenidos un promedio de 9.46, con rango de 1.08 máximo: 9.9 y mínimo 8.82, con una desviación estándar de 0.373.

Figura 12. Diagrama de caja y bigotes para extracto etéreo.

Los resultados del porcentaje de extracto etéreo obteniendo un promedio 47.437, con un rango de 17.73 máximo: 55.8 y mínimo 38.07, con una desviación estándar de 5.0589.

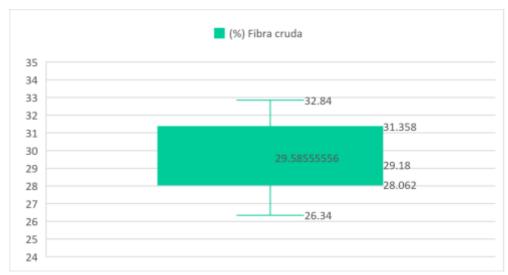


Figura 13. Diagrama de caja y bigotes para fibra cruda.

Los resultados del porcentaje de fibra cruda obteniendo un promedio 29.585, con un rango de 6.5 máximo: 32.84 y mínimo: 26.34, con una desviación estándar de 2.0412.

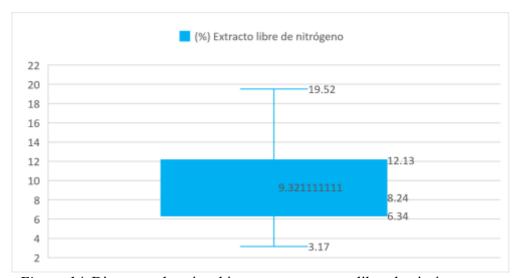


Figura 14. Diagrama de caja y bigotes para extracto libre de nitrógeno.

Los resultados del porcentaje de extracto libre de nitrógeno obteniendo un promedio 9.321, con un rango de 16.35 máximo: 19.52 y mínimo: 3.17, con una desviación estándar de 4.811.

V. DISCUSIONES

Según la tabla 4, se obtuvo que el mejor modelo de cinética de secado se obtiene trabajando a una temperatura de 50°C y velocidad. 2.5m/s constante la ecuación lineal que representa mejor los datos y = -0.016x + 1.225 y para el periodo de velocidad decrecientes la ecuación logarítmica que representa los datos $y = 0.735 e^{(-0.010x)}$ con coeficientes de determinación $R^2 = 0.996$ y $R^2 = 0.987$ respectivamente; similar a lo encontrado por (Barrena, 2011), que evaluó la cinética de secado utilizando rodajas de lúcuma de espesor 0.3cm. que a temperatura de 50 °C y una velocidad de 3.5 m/s con una ecuación lineal que representa mejor los datos y = -0.020x + 1.235 y para el periodo de velocidad decrecientes la ecuación logarítmica que representa los datos $y = 0.716e^{(-0.020x)}$ con coeficientes de determinación $R^2 = 0.92$ y $R^2 = 0.915$; según (Rojas y Chumacero, 2019), evaluó la cinética de secado mediante visión computacional, utilizó un secador de bandejas a una temperatura de 45 °C a una velocidad de 2.5 m/s, la ecuación obtenida para línea recta es y = -0.028x + 4.771 y para la parte logarítmica $y = -1.607 \ln(x) + 9.781$ con coeficientes determinantes R^2 = 0.999 y R^2 = 0.992; Según (T. Madhiyanon *et al.*, 2009), en el cual empleó la cinética de secado de capa fina de coco picado que ha temperatura de 60 – 120 °C y una velocidad de 2.5 m/s. la ecuación obtenida para línea recta es y =-3120,247x - 7,1283 y para la parte logarítmica y = 0.763614 + 0.001776 con coeficientes determinantes $R^2 = 0.968 \text{ y } R^2 = 0.986.$

El mejor resultado para los parámetros cinéticos se obtiene trabajando a una temperatura de 50 °C y velocidad de 2,5 m/s.; similar a lo encontrado con (Barrena, 2011), que a temperatura de 50 °C y una velocidad de 3.5 m/s obteniendo un tiempo critico de secado de 40 minutos; humedad critica de 0.48 g agua/g lúcuma seca, humedad de equilibrio de 0.04 g agua/g lúcuma seca y velocidad 0.020 g agua/ g lúcuma seca. minuto; Según (Rojas y Chumacero, 2019), evaluó la cinética de secado mediante visión computacional utilizó un secador de bandejas a una temperatura de 45 °C a una velocidad de 2.5 m/s obteniendo una humedad crítica de 3.38 g agua/g cúrcuma seca, humedad de equilibrio de 0.33g agua/ cúrcuma seca, tiempo crítico de 50 minutos.

A una temperatura de 50 °C y velocidad de 2.5 m/s. se obtuvo una humedad final de 2.18%, se considera que esta dentro del rango de los resultados obtenidos por (Prieto et~al.,2011), oscilan entre 0.149 \pm 0.004 (db) a condiciones de 480 minutos a 70 °C; similar a lo encontrado por (T. Madhiyanon et~al., 2009) trabajando con una temperatura de 60 -120 °C y una velocidad de 2.5 m/s. obteniendo una humedad final de 3%.

El tiempo crítico de secado más bajo fue de 25 minutos al trabajar con aire a 50°C y 70°C con velocidades de aire de 2.5 y 2m/s respectivamente; y el tiempo crítico más alto fue de 35 minutos al trabajar con aire de 50°C y velocidad de aire de 3m/s, aire de 50°C y velocidades de aire de 2.5 y 3m/s y finalmente con aire de 70°C y velocidad de aire 2.5m/s. por lo que podemos deducir que con secadores convectivos, y reducir el tiempo de secado debe trabajarse a menor temperatura y velocidad de aire 2.5 m/s., teniendo en cuenta que este no afecte su condición alimenticia.

VI. CONCLUSIONES

Se realizó el análisis del modelo matemático de la cinética de secado trabajando a una temperaturas de 50, 60 y 70 °C con velocidades de 2.0, 2.5 y 3.0 m/s , en la cual se obtuvo el mejor tratamiento a 50 °C y a 2.5 m/s , mediante el análisis de regresión constante la ecuación lineal que representa mejor los datos es y = -0.016x + 1.225 y para el periodo de velocidad decreciente la ecuación logarítmica que representa los datos $y = 0.735 e^{(-0.010x)}$ con coeficientes de determinación $R^2 = 0.996$ y $R^2 = 0.987$ respectivamente.

Se determinó la cinética de secado que a una temperatura de 50 °C y a una velocidad de 2.5 m/s., se empleó un tiempo de 300 minutos donde la humedad de equilibrio es de 0.05 g agua/g coco seco, la humedad critica 0.74 g agua/g coco seco y el tiempo critico es de 30 minutos.

El análisis fisicoquímico realizado a la muestra fresca de coco, determinar cómo son: proteína total: 9.04%, fibra cruda: 31. 06%, grasa total o extracto etéreo: 56.55%, cenizas: 1.76%, pH:6.33, acidez: 0.13%, humedad: 53%, analizados y para el producto final a una temperatura de 50°C y 2.5 m/s las láminas de coco obtenidos fueron proteína total: 8.82%, grasa total o extracto etéreo: 47.96, fibra cruda: 31.81%, cenizas: 2.14%, acidez: 0.133, pH:6.35, extra de nitrógeno: 7.09%.

Para diseñar un secador de bandejas se debe tener en cuenta los parámetros cinéticos como son: tiempo critico de secado, humedad crítica, humedad de equilibrio, calidad de lámina de coco.

VII. RECOMENDACIONES

- 1. Implementar el secador de bandejas con un software de tiempo, temperatura y peso que registre los datos a una computadora directamente y de esta manera el control de parámetros de cinética de secado sea más eficientes.
- 2. Es deseable que otros tesistas investigue sobre la cinética de secado de diferentes materias primas ya que en nuestra localidad hay bastante producción y poderle dar valor agregado (láminas coco tipo snack). Con el objeto que se incrementar nuevos productos en el mercado.
- 3. Cuando se desea realizar la cinética de secado de coco es recomendable utilizar un blanqueador para evitar el pardeamiento enzimático.
- 4. Antes de realizar el trabajo de investigación de laboratorio se debe revisar los manuales de los equipos.
- 5. El coco se debe secar en estado madurez fisiológica intermedia.
- 6. Se debe determinar el rendimiento y los costos de producción de coco deshidratado.

VIII. REFERENCIAS BIBLIOGRÁFICAS

- Barrena, M. (2011). *Modelamiento de la cinética de secado de lúcuma (Pouteria lúcuma)* (tesis doctoral). Universidad Nacional de Trujillo. http://dspace.unitru.edu.pe/handle/unitru/8185
- Geankopolis, C. (1993). Transport Processes and Unit Operations (third ed.). Prentice-Hall.
- Minagri. (2018). *Plan Nacional de cultivos (Campaña Agrícola 2018 -2019*). https://agroarequipa.gob.pe/images/agricola/plan%20nacional%20de%20cultivos%202018-2019%20aprobacion.compressed.pdf
- Lucas, J. (2017). Optimización del proceso de secado por aspersión para la obtención de polvo de coco (Cocos nuíifera L.) fortificado con compuestos fisiológicamente activos (Tesis doctoral). Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/62833
- Ocón, J., y Tojo, G. (1980). *Problemas de ingeniería química* (5ta. Reimpresión ed., Vol. Tomo II). Aguilar S.A.
- Perry, J., y Chilton, C. (1982). *Manual del Ingeniero Quimico*. (2. Edición, Ed.) Editorial MacGraw-Hill.
- Prieto, Iguti, y Nitz. (2011). Drying evaluation of Green coconut pulp for obtaining a snack like product. *Procedia Food Science*, 1, 1618 1627. https://doi.org/10.1016/j.profoo.2011.09.239
- Rojas, E., y Chumacero, J. (2019). Cinetica de secado de la Cúrcuma Longa (Curcuma longa L.) Evaluado mediante visión computacional (Tesis pregrado). Universidad Nacional de Jaén. http://repositorio.unj.edu.pe/handle/UNJ/200
- T. Madhiyanon, A. Phila, y S. Soponronnarit. (2009). Models of fluidized bed drying for thin-layer chopped coconut. *Applied Thermal Engineering*, 29, 2849-2854. doi:https://doi.org/10.1016/j.applthermaleng.2009.02.003
- Vernon, J. (2000). Laboratorio de Operaciones Unitarias. Unidad Itzapalapa.
- Zaragoza, J. (2013). Propuesta Tecnológicas post cosecha para aprovechamiento integral del coco (Tesis pregrado). Universidad Nacional de la Amazonia Peruana. http://repositorio.unapiquitos.edu.pe/bitstream/handle/UNAP/3009/T%20664%20Z46.pdf?sequence=1&isAllowed=y

IX. DEDICATORIA

A Dios por bendecirme, por haberme dado inteligencia y salud para poder lograr los objetivos trazados en mi crecimiento profesional.

A mis padres Fidel Sánchez Cieza y Rosa Lila Perales Goicochea, por brindarme su apoyo incondicional, su paciencia y su sacrificio durante todos estos años que me han permitido alcanzar mi objetivo anhelado.

A mis hermanos: Jarlin Sánchez, Richard Sánchez por sus consejos y apoyo incondicional para cumplir mis metas.

A mi amigo Ronal Puelles Adriano (Q.P.D.D.G.), que ahora comparte con Dios la vida eterna, y que de seguro que él también hubiera logrado esta meta.

X. AGRADECIMIENTO

A Dios por guiarme en mi camino, por darme la inteligencia sobre todo la salud para cumplir una meta anhelada en mi crecimiento profesional.

A la universidad Nacional de Jaén por permitirme realizar mis estudios universitarios, brindarme la facilidad de laboratorio para la ejecución de la presente investigación.

A la Escuela Profesional de Ingeniería de Industrias Alimentarias, en honor a todos los docentes, quienes han sido nuestra guía durante mi formación académica.

Gracias a mi padre Fidel Sánchez y a mi madre Rosa Lila Perales, por ser apoyo fundamental para poder culminar una de mis metas trazadas en mi vida, por confiar y creer en mis proyectos, por sus consejos, valores que siempre me han inculcados.

A toda mi familia. Quienes me apoyaron a través de sus consejos y su motivación diaria de una forma incondicional para culminar una meta más en mi vida.

A mi asesor al Mg. Polito Michael Huayama Sopla, por haberme inculcado y guiado con sus ideas valiosas durante todo el proceso de asesoramiento de la tesis.

Al Licenciado Lenin Quiñones Huatangari, docente de la UNJ, por su colaboración para la realización de la presente de investigación.

Al Mg. Adán Díaz Ruiz, jefe del laboratorio de Taller de tecnología de los alimentos de facultad de Ingeniería de Industrias Alimentarias, por brindarme la facilidad para el uso de los equipos y materiales del laboratorio, para fines de ejecución de la presente investigación.

ANEXOS 1

Imágenes de las operaciones para obtención de láminas de coco

Figura 15. Cocos en estado madurez fisiológica intermedia.

Figura 16. Cortado del endocarpio para extraer el agua de coco y pulpa.

Figura 17. Extracción de albumen (pulpa) de coco.

Figura 18. Láminas de coco

Figura 19. Pesado de las láminas de coco.

Figura 20. Secador junto con la alanza triple brazo.

Figura 21. Láminas de coco después de ser deshidratadas

Figura 22. Láminas de coco envasado

ANEXO 2

Secado de coco en el laboratorio de Deshidratación y Refrigeración de la Universidad Nacional de Jaén.

Figura 23. Colocando las bandejas a la cabina del secador. Para el deshidratado de coco

Figura 24. Láminas de coco para deshidratado.

Figura 25. Láminas de coco deshidratadas en el desecador

Figura 26. Secado de las láminas de coco hasta su peso constante.

Figura 27. Control de peso de las láminas de coco.

Figura 28. Anemómetro digital regulador de velocidad de aire.

ANEXO 3

Imágenes de los análisis físico – químicos de las láminas de coco.



Figura 29. Determinación del pH de las láminas de coco.

Figura 30. Determinación de cenizas

Figura 31. Determinación de acidez titulable de las láminas de coco. 40

Figura 32. Determinación de la humedad por el método de estufa.

LABORATORIO DE NUTRICION ANIMAL Y BROMATOLOGIA DE ALIMENTOS UNIVERSIDAD NACIONAL TORIBIO RODRIGUEZ DE MENDOZA DE AMAZONAS.

DATOS DEL CLIENTE

Solicitante Domicilio legal Contacto

Dirección de entrega

ALEX ACUÑA LEIVA

LABORATORIO DE NUTRICION-UNTRM

DATOS DEL PRODUCTO

Producto

Ensayo realizado en Fecha de recepción

Fecha de Análisis y entrega

Código Procedencia

Custodia dirimencia

HARINA DE COCO

UNIVERSIDAD NACIONAL TORIBIO RODRIGUEZ DE MENDOZA-AMAZONAS

3020-02-03

2020/02/03s1 2020/02/H LNABA-2020086

CHACHAPOYAS

Muestra no sujeta a dirimencia por su perecibidad y/o muestra única

DATOS DE LA MUESTRA - LNABA-2020086

IDENTIFICACIÓN	CODIGO ASIGNADO	CANTIDAD	DESCRIPCIÓN/PRESENTACIÓN	PRECINTO	FV	FP
MUESTRA N° 01 1 T 50°C V= 2 M/S	LNABA 01	250gr	Bolsa de plástico hermética e identificada			21
MUESTRA Nº 02 M2 T°50°C V = 2,5 M/S	LNABA 02	250gr	Bolsa de plástico hermética e identificada	+	7	
MUESTRA N° 03 M3 T°50°C V = 3 M/S	LNABA 03	250gr	Bolsa de plástico hermética e identificada			-
MUESTRA Nº 04 M1 T°60°C V = 2 M/S	Doisa de plastico nermetica e		9	ě	-	
MUESTRA Nº 05 M2 T°60°C V = 2,5 M/S	LNABA 05	250gr	Bolsa de plástico hermética e identificada		3	7
MUESTRA Nº 06 M3 T°60°C V = 3 M/S	LNABA 06	250gr	Bolsa de plástico hermética e identificada	7.1	7.	/-
MUESTRA N° 07 M1 T 70°C V= 2 M/S	LNABA 07	250gr	Bolsa de plástico hermética e identificada	7.0	-/	-
MUESTRA N° 08 M2 T°70°C V = 2,5 M/S	LNABA 08	250gr	Bolsa de plástico hermética e ídentificada	13	1	ន
MUESTRA N° 09 M3 T°70°C V = 3 M/S	LNABA 09	250gr	Bolsa de plástico hermética e identificada	1	40	2:
MUESTRA Nº 10 MUESTRA FRESCA 60°C	LNABA 10	250gr	Bolsa de plástico hermética e identificada	/-	20	2:
MUESTRA Nº 11 FRESCA 60°C	LNABA 11	250gr	Bolsa de plástico hermética e identificada	-	3.5	21

N"	IDENTIFICACIÓN	Hd¹ %	Cza² %	EE3	FC ⁴	PT°	ELN*
1	LNABA 01	1.77	2.17	46.40	26.34	9.90	13.42
2	LNABA 02	2.18	2.14	47.96	31.81	8.82	7.09
3	LNABA 03	2.66	2.06	50.99	28.98	9.25	6.06
4	LNABA 04	1.49	2.33	46.87	30.906	9.47	8.93
5	LNABA 05	1.88	2.36	38.07	28.271	9.90	19.52
6	LNABA 06	1.34	2.16	55.80	27.853	9.68	3.17
7	LNABA 07	2.42	2.53	42.33	32.84	9.04	10.84
8	LNABA 08	1.41	2.29	49.41	29.18	9.47	8.24
9	LNABA 09	2.02	2.48	49.11	30.09	9.68	6.62
10	LNABA 10	2.99	1.82	60.45	25.70	9.04	0.00
11	LNABA 11	1.59	1.76	56.55	31.06	9.04	0.00

Metodologías Utilizadas:
Humedad IAOAC 925.09, Revizada 2016
Ceniza IAOAC 942.05, unline, 20ch Bditton 2016 Ash of animal feed
Pibra Cruda IAOAC 978.00 (Van Sceat)
BB IAOAC 978.00 (Van Sceat)
BB IAOAC 976.05 –150 5983, 2002 (Revizado 2013) Alimentos pa
calculade la contensão de proxeína Método Kjeldahl
BLN IAOAC 923.03, determinación por cálculo

Figura 33. Resultados de los análisis fisicoquímico.

ANEXO 4

Resultado de los análisis fisicoquímicos evaluados mediante estadística descriptiva

Tabla 6. Análisis mediante estadística descriptiva – caja de bigotes.

	% PROTEINAS	% ESTRACTO	% FIBRA	% CENIZAS	ACIDEZ	pН	% HUMEDAD	% EXTRACTO
	TOTAL	ETÉREO	CRUDA					DE NITROGENO
Media	9.467	47.437	29.585	2.28	0.138	6.3	1.907	9.321
Moda	9.9	-	-	-	0.126	6.25	-	-
Desviación estándar	0.373	5.0589	2.0412	0.1604	0.0132	0.084	0.458	4.811
Coeficiente de asimetría	-0.556	-0.3904	0.112	0.304	0.4243	0.3597	0.33367	1.2023
Rango	1.08	17.73	6.5	0.47	0.037	0.25	1.32	16.35
Mínimo	8.82	38.07	26.34	2.06	0.123	6.18	1.34	3.17
Máximo	9.9	55.8	32.84	2.53	0.16	6.43	2.66	19.52

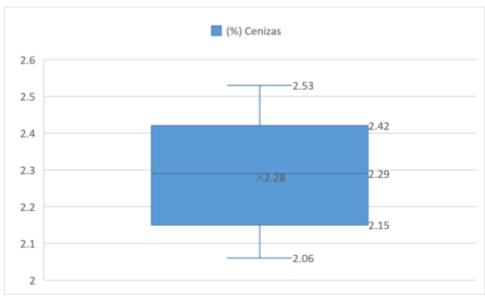


Figura 34. Diagrama de caja y bigotes para % cenizas.

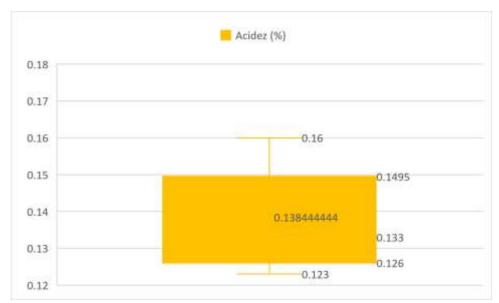


Figura 35. Diagrama de caja y bigotes para % acidez.

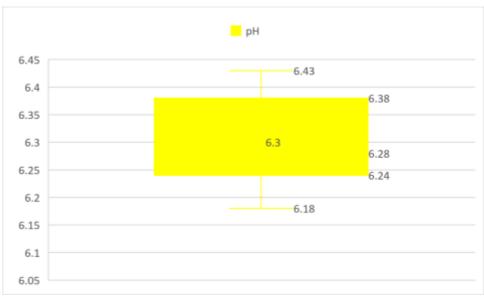


Figura 36. Diagrama de caja y bigotes para pH.

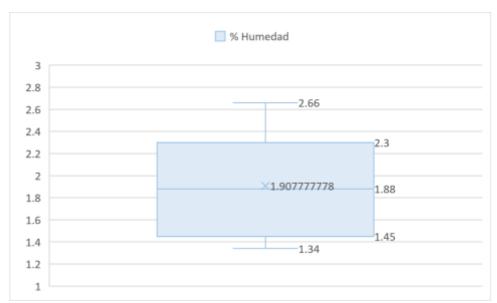


Figura 37. Diagrama de caja y bigotes para % humedad.

ANEXOS 5 Resultados de los experimentales de secado de láminas de coco realizados con aire a T = 50 °C y velocidades de 2,0, 2,5, 3,0 m/s.

Tabla 7.

Datos experimentales de la operación de secado de láminas de coco, en un secador de bandejas con flujo de aire a 50 °C y velocidad de 2,0 m/s

	T	P1	P2 =P1-SB	Yr = (P2-S)/S		
N°	Tiempo	Peso	Peso coco al	Humedad	dY/dt (g	Ym (g
	(min)	estructura +	tiempo t (g)	residual (g	agua/g	agua/ g
		coco al		agua/g coco	coco seco	coco
		tiempo t (g)		seco)	min)	seco)
1	0	1432.80	400.80	1.47	0.034	1.384
2	5	1405.10	373.10	1.30	0.024	1.238
3	10	1385.50	353.50	1.18	0.023	1.122
4	15	1367.20	335.20	1.07	0.020	1.015
5	20	1350.90	318.90	0.96	0.016	0.925
6	25	1337.88	305.88	0.88	0.016	0.846
7	30	1325.20	293.20	0.81	0.014	0.772
8	35	1314.00	282.00	0.74	0.013	0.705
9	40	1303.50	271.50	0.67	0.011	0.644
10	45	1294.30	262.30	0.62	0.011	0.589
11	50	1285.40	253.40	0.56	0.009	0.539
12	55	1278.10	246.10	0.52	0.009	0.495
13	60	1271.20	239.20	0.47	0.006	0.458
14	65	1266.10	234.10	0.44	0.007	0.425
15	70	1260.60	228.60	0.41	0.006	0.394
16	75	1255.80	223.80	0.38	0.006	0.365
17	80	1251.20	219.20	0.35	0.006	0.336
18	85	1246.50	214.50	0.32	0.004	0.311
19	90	1243.10	211.10	0.30	0.004	0.290
20	95	1239.60	207.60	0.28	0.004	0.270
21	100	1236.60	204.60	0.26	0.004	0.252

22 105 1233.70 201.70 0.24 0.003 0.236 23 110 1231.50 199.50 0.23 0.003 0.222 24 115 1229.10 197.10 0.21 0.002 0.209 25 120 1227.20 195.20 0.20 0.003 0.196 26 125 1224.90 192.90 0.19 0.002 0.183 27 130 1223.10 191.10 0.18 0.002 0.171 28 135 1221.10 189.10 0.17 0.002 0.160 29 140 1219.40 187.40 0.15 0.002 0.149 30 145 1217.50 185.50 0.14 0.002 0.138 31 150 1215.90 183.90 0.13 0.002 0.128 32 155 1214.40 182.40 0.12 0.001 0.120 33 160 1213.20 181.20 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
24 115 1229.10 197.10 0.21 0.002 0.209 25 120 1227.20 195.20 0.20 0.003 0.196 26 125 1224.90 192.90 0.19 0.002 0.183 27 130 1223.10 191.10 0.18 0.002 0.171 28 135 1221.10 189.10 0.17 0.002 0.160 29 140 1219.40 187.40 0.15 0.002 0.149 30 145 1217.50 185.50 0.14 0.002 0.138 31 150 1215.90 183.90 0.13 0.002 0.128 32 155 1214.40 182.40 0.12 0.001 0.120 33 160 1213.20 181.20 0.12 0.002 0.112 34 165 1210.70 178.70 0.10 0.001 0.093 35 170 1210.70 178.70 <td>22</td> <td>105</td> <td>1233.70</td> <td>201.70</td> <td>0.24</td> <td>0.003</td> <td>0.236</td>	22	105	1233.70	201.70	0.24	0.003	0.236
25 120 1227.20 195.20 0.20 0.003 0.196 26 125 1224.90 192.90 0.19 0.002 0.183 27 130 1223.10 191.10 0.18 0.002 0.171 28 135 1221.10 189.10 0.17 0.002 0.160 29 140 1219.40 187.40 0.15 0.002 0.149 30 145 1217.50 185.50 0.14 0.002 0.138 31 150 1215.90 183.90 0.13 0.002 0.128 32 155 1214.40 182.40 0.12 0.001 0.120 33 160 1213.20 181.20 0.12 0.002 0.112 34 165 1211.80 179.80 0.11 0.001 0.104 35 170 1210.70 178.70 0.10 0.001 0.093 37 180 1208.80 176.80 <td>23</td> <td>110</td> <td>1231.50</td> <td>199.50</td> <td>0.23</td> <td>0.003</td> <td>0.222</td>	23	110	1231.50	199.50	0.23	0.003	0.222
26 125 1224.90 192.90 0.19 0.002 0.181 27 130 1223.10 191.10 0.18 0.002 0.171 28 135 1221.10 189.10 0.17 0.002 0.160 29 140 1219.40 187.40 0.15 0.002 0.149 30 145 1217.50 185.50 0.14 0.002 0.138 31 150 1215.90 183.90 0.13 0.002 0.128 32 155 1214.40 182.40 0.12 0.001 0.120 33 160 1213.20 181.20 0.12 0.002 0.112 34 165 1211.80 179.80 0.11 0.001 0.091 35 170 1210.70 178.70 0.10 0.001 0.099 36 175 1210.00 178.00 0.10 0.001 0.093 37 180 1208.80 176.80 <td>24</td> <td>115</td> <td>1229.10</td> <td>197.10</td> <td>0.21</td> <td>0.002</td> <td>0.209</td>	24	115	1229.10	197.10	0.21	0.002	0.209
27 130 1223.10 191.10 0.18 0.002 0.171 28 135 1221.10 189.10 0.17 0.002 0.160 29 140 1219.40 187.40 0.15 0.002 0.149 30 145 1217.50 185.50 0.14 0.002 0.138 31 150 1215.90 183.90 0.13 0.002 0.128 32 155 1214.40 182.40 0.12 0.001 0.120 33 160 1213.20 181.20 0.12 0.002 0.112 34 165 1211.80 179.80 0.11 0.001 0.104 35 170 1210.70 178.70 0.10 0.001 0.099 36 175 1210.00 178.00 0.10 0.001 0.093 37 180 1208.80 176.80 0.09 0.001 0.081 38 185 1207.77 175.77 <td>25</td> <td>120</td> <td>1227.20</td> <td>195.20</td> <td>0.20</td> <td>0.003</td> <td>0.196</td>	25	120	1227.20	195.20	0.20	0.003	0.196
28 135 1221.10 189.10 0.17 0.002 0.160 29 140 1219.40 187.40 0.15 0.002 0.149 30 145 1217.50 185.50 0.14 0.002 0.138 31 150 1215.90 183.90 0.13 0.002 0.128 32 155 1214.40 182.40 0.12 0.001 0.120 33 160 1213.20 181.20 0.12 0.002 0.112 34 165 1211.80 179.80 0.11 0.001 0.104 35 170 1210.70 178.70 0.10 0.001 0.099 36 175 1210.00 178.00 0.10 0.001 0.093 37 180 1208.80 176.80 0.09 0.001 0.086 38 185 1207.77 175.77 0.08 0.001 0.081 39 190 1207.20 175.20 <td>26</td> <td>125</td> <td>1224.90</td> <td>192.90</td> <td>0.19</td> <td>0.002</td> <td>0.183</td>	26	125	1224.90	192.90	0.19	0.002	0.183
29 140 1219.40 187.40 0.15 0.002 0.149 30 145 1217.50 185.50 0.14 0.002 0.138 31 150 1215.90 183.90 0.13 0.002 0.128 32 155 1214.40 182.40 0.12 0.001 0.120 33 160 1213.20 181.20 0.12 0.002 0.112 34 165 1211.80 179.80 0.11 0.001 0.104 35 170 1210.70 178.70 0.10 0.001 0.099 36 175 1210.00 178.00 0.10 0.001 0.093 37 180 1208.80 176.80 0.09 0.001 0.086 38 185 1207.77 175.77 0.08 0.001 0.081 39 190 1207.20 175.20 0.08 0.001 0.077 40 195 1206.30 174.30 <td>27</td> <td>130</td> <td>1223.10</td> <td>191.10</td> <td>0.18</td> <td>0.002</td> <td>0.171</td>	27	130	1223.10	191.10	0.18	0.002	0.171
30 145 1217.50 185.50 0.14 0.002 0.138 31 150 1215.90 183.90 0.13 0.002 0.128 32 155 1214.40 182.40 0.12 0.001 0.120 33 160 1213.20 181.20 0.12 0.002 0.112 34 165 1211.80 179.80 0.11 0.001 0.094 35 170 1210.70 178.70 0.10 0.001 0.099 36 175 1210.00 178.00 0.10 0.001 0.099 37 180 1208.80 176.80 0.09 0.001 0.086 38 185 1207.77 175.77 0.08 0.001 0.081 39 190 1207.20 175.20 0.08 0.001 0.077 40 195 1206.30 174.30 0.07 0.000 0.071 42 205 1206.00 174.00 <td>28</td> <td>135</td> <td>1221.10</td> <td>189.10</td> <td>0.17</td> <td>0.002</td> <td>0.160</td>	28	135	1221.10	189.10	0.17	0.002	0.160
31 150 1215.90 183.90 0.13 0.002 0.128 32 155 1214.40 182.40 0.12 0.001 0.120 33 160 1213.20 181.20 0.12 0.002 0.112 34 165 1211.80 179.80 0.11 0.001 0.104 35 170 1210.70 178.70 0.10 0.001 0.099 36 175 1210.00 178.00 0.10 0.001 0.093 37 180 1208.80 176.80 0.09 0.001 0.086 38 185 1207.77 175.77 0.08 0.001 0.081 39 190 1207.20 175.20 0.08 0.001 0.077 40 195 1206.30 174.30 0.07 0.000 0.073 41 200 1206.00 174.00 0.07 0.000 0.071 42 205 1205.60 173.60 <td>29</td> <td>140</td> <td>1219.40</td> <td>187.40</td> <td>0.15</td> <td>0.002</td> <td>0.149</td>	29	140	1219.40	187.40	0.15	0.002	0.149
32 155 1214.40 182.40 0.12 0.001 0.120 33 160 1213.20 181.20 0.12 0.002 0.112 34 165 1211.80 179.80 0.11 0.001 0.104 35 170 1210.70 178.70 0.10 0.001 0.099 36 175 1210.00 178.00 0.10 0.001 0.093 37 180 1208.80 176.80 0.09 0.001 0.086 38 185 1207.77 175.77 0.08 0.001 0.081 39 190 1207.20 175.20 0.08 0.001 0.077 40 195 1206.30 174.30 0.07 0.000 0.073 41 200 1206.00 174.00 0.07 0.000 0.071 42 205 1205.60 173.60 0.07 0.000 0.068 43 210 1205.20 173.20 <td>30</td> <td>145</td> <td>1217.50</td> <td>185.50</td> <td>0.14</td> <td>0.002</td> <td>0.138</td>	30	145	1217.50	185.50	0.14	0.002	0.138
33 160 1213.20 181.20 0.12 0.002 0.112 34 165 1211.80 179.80 0.11 0.001 0.104 35 170 1210.70 178.70 0.10 0.001 0.099 36 175 1210.00 178.00 0.10 0.001 0.093 37 180 1208.80 176.80 0.09 0.001 0.086 38 185 1207.77 175.77 0.08 0.001 0.081 39 190 1207.20 175.20 0.08 0.001 0.077 40 195 1206.30 174.30 0.07 0.000 0.073 41 200 1206.00 174.00 0.07 0.000 0.071 42 205 1205.60 173.60 0.07 0.000 0.068 43 210 1205.20 173.20 0.07 0.001 0.065 44 215 1204.60 172.60 <td>31</td> <td>150</td> <td>1215.90</td> <td>183.90</td> <td>0.13</td> <td>0.002</td> <td>0.128</td>	31	150	1215.90	183.90	0.13	0.002	0.128
34 165 1211.80 179.80 0.11 0.001 0.104 35 170 1210.70 178.70 0.10 0.001 0.099 36 175 1210.00 178.00 0.10 0.001 0.093 37 180 1208.80 176.80 0.09 0.001 0.086 38 185 1207.77 175.77 0.08 0.001 0.081 39 190 1207.20 175.20 0.08 0.001 0.077 40 195 1206.30 174.30 0.07 0.000 0.073 41 200 1206.00 174.00 0.07 0.000 0.071 42 205 1205.60 173.60 0.07 0.000 0.068 43 210 1205.20 173.20 0.07 0.001 0.065 44 215 1204.60 172.60 0.06 0.001 0.062 45 220 1204.10 172.10 <td>32</td> <td>155</td> <td>1214.40</td> <td>182.40</td> <td>0.12</td> <td>0.001</td> <td>0.120</td>	32	155	1214.40	182.40	0.12	0.001	0.120
35 170 1210.70 178.70 0.10 0.001 0.099 36 175 1210.00 178.00 0.10 0.001 0.093 37 180 1208.80 176.80 0.09 0.001 0.086 38 185 1207.77 175.77 0.08 0.001 0.081 39 190 1207.20 175.20 0.08 0.001 0.077 40 195 1206.30 174.30 0.07 0.000 0.073 41 200 1206.00 174.00 0.07 0.000 0.071 42 205 1205.60 173.60 0.07 0.000 0.068 43 210 1205.20 173.20 0.07 0.001 0.065 44 215 1204.60 172.60 0.06 0.001 0.062 45 220 1204.10 172.10 0.06 0.000 0.057 47 230 1203.30 171.30 <td>33</td> <td>160</td> <td>1213.20</td> <td>181.20</td> <td>0.12</td> <td>0.002</td> <td>0.112</td>	33	160	1213.20	181.20	0.12	0.002	0.112
36 175 1210.00 178.00 0.10 0.001 0.093 37 180 1208.80 176.80 0.09 0.001 0.086 38 185 1207.77 175.77 0.08 0.001 0.081 39 190 1207.20 175.20 0.08 0.001 0.077 40 195 1206.30 174.30 0.07 0.000 0.073 41 200 1206.00 174.00 0.07 0.000 0.071 42 205 1205.60 173.60 0.07 0.000 0.068 43 210 1205.20 173.20 0.07 0.001 0.065 44 215 1204.60 172.60 0.06 0.001 0.062 45 220 1204.10 172.10 0.06 0.000 0.057 47 230 1203.30 171.30 0.06 0.000 0.055 48 235 1203.20 171.20 <td>34</td> <td>165</td> <td>1211.80</td> <td>179.80</td> <td>0.11</td> <td>0.001</td> <td>0.104</td>	34	165	1211.80	179.80	0.11	0.001	0.104
37 180 1208.80 176.80 0.09 0.001 0.086 38 185 1207.77 175.77 0.08 0.001 0.081 39 190 1207.20 175.20 0.08 0.001 0.077 40 195 1206.30 174.30 0.07 0.000 0.073 41 200 1206.00 174.00 0.07 0.000 0.071 42 205 1205.60 173.60 0.07 0.000 0.068 43 210 1205.20 173.20 0.07 0.001 0.065 44 215 1204.60 172.60 0.06 0.001 0.062 45 220 1204.10 172.10 0.06 0.000 0.050 46 225 1203.90 171.90 0.06 0.001 0.057 47 230 1203.30 171.30 0.06 0.000 0.055 48 235 1203.20 171.20 <td>35</td> <td>170</td> <td>1210.70</td> <td>178.70</td> <td>0.10</td> <td>0.001</td> <td>0.099</td>	35	170	1210.70	178.70	0.10	0.001	0.099
38 185 1207.77 175.77 0.08 0.001 0.081 39 190 1207.20 175.20 0.08 0.001 0.077 40 195 1206.30 174.30 0.07 0.000 0.073 41 200 1206.00 174.00 0.07 0.000 0.071 42 205 1205.60 173.60 0.07 0.000 0.068 43 210 1205.20 173.20 0.07 0.001 0.065 44 215 1204.60 172.60 0.06 0.001 0.062 45 220 1204.10 172.10 0.06 0.000 0.060 46 225 1203.90 171.90 0.06 0.001 0.057 47 230 1203.30 171.30 0.06 0.000 0.055 48 235 1203.20 171.20 0.05 0.000 0.054 49 240 1202.90 170.90 <td>36</td> <td>175</td> <td>1210.00</td> <td>178.00</td> <td>0.10</td> <td>0.001</td> <td>0.093</td>	36	175	1210.00	178.00	0.10	0.001	0.093
39 190 1207.20 175.20 0.08 0.001 0.077 40 195 1206.30 174.30 0.07 0.000 0.073 41 200 1206.00 174.00 0.07 0.000 0.071 42 205 1205.60 173.60 0.07 0.000 0.068 43 210 1205.20 173.20 0.07 0.001 0.065 44 215 1204.60 172.60 0.06 0.001 0.062 45 220 1204.10 172.10 0.06 0.000 0.060 46 225 1203.90 171.90 0.06 0.001 0.057 47 230 1203.30 171.30 0.06 0.000 0.055 48 235 1203.20 171.20 0.05 0.000 0.054 49 240 1202.90 170.90 0.05 0.001 0.051 50 245 1202.30 170.30 0.05 0.000 0.048	37	180	1208.80	176.80	0.09	0.001	0.086
40 195 1206.30 174.30 0.07 0.000 0.073 41 200 1206.00 174.00 0.07 0.000 0.071 42 205 1205.60 173.60 0.07 0.000 0.068 43 210 1205.20 173.20 0.07 0.001 0.065 44 215 1204.60 172.60 0.06 0.001 0.062 45 220 1204.10 172.10 0.06 0.000 0.060 46 225 1203.90 171.90 0.06 0.001 0.057 47 230 1203.30 171.30 0.06 0.000 0.055 48 235 1203.20 171.20 0.05 0.000 0.054 49 240 1202.90 170.90 0.05 0.001 0.051 50 245 1202.30 170.30 0.05 0.000 0.048	38	185	1207.77	175.77	0.08	0.001	0.081
41 200 1206.00 174.00 0.07 0.000 0.071 42 205 1205.60 173.60 0.07 0.000 0.068 43 210 1205.20 173.20 0.07 0.001 0.065 44 215 1204.60 172.60 0.06 0.001 0.062 45 220 1204.10 172.10 0.06 0.000 0.060 46 225 1203.90 171.90 0.06 0.001 0.057 47 230 1203.30 171.30 0.06 0.000 0.055 48 235 1203.20 171.20 0.05 0.000 0.054 49 240 1202.90 170.90 0.05 0.001 0.051 50 245 1202.30 170.30 0.05 0.000 0.048	39	190	1207.20	175.20	0.08	0.001	0.077
42 205 1205.60 173.60 0.07 0.000 0.068 43 210 1205.20 173.20 0.07 0.001 0.065 44 215 1204.60 172.60 0.06 0.001 0.062 45 220 1204.10 172.10 0.06 0.000 0.060 46 225 1203.90 171.90 0.06 0.001 0.057 47 230 1203.30 171.30 0.06 0.000 0.055 48 235 1203.20 171.20 0.05 0.000 0.054 49 240 1202.90 170.90 0.05 0.001 0.051 50 245 1202.30 170.30 0.05 0.000 0.048	40	195	1206.30	174.30	0.07	0.000	0.073
43 210 1205.20 173.20 0.07 0.001 0.065 44 215 1204.60 172.60 0.06 0.001 0.062 45 220 1204.10 172.10 0.06 0.000 0.060 46 225 1203.90 171.90 0.06 0.001 0.057 47 230 1203.30 171.30 0.06 0.000 0.055 48 235 1203.20 171.20 0.05 0.000 0.054 49 240 1202.90 170.90 0.05 0.001 0.051 50 245 1202.30 170.30 0.05 0.000 0.048	41	200	1206.00	174.00	0.07	0.000	0.071
44 215 1204.60 172.60 0.06 0.001 0.062 45 220 1204.10 172.10 0.06 0.000 0.060 46 225 1203.90 171.90 0.06 0.001 0.057 47 230 1203.30 171.30 0.06 0.000 0.055 48 235 1203.20 171.20 0.05 0.000 0.054 49 240 1202.90 170.90 0.05 0.001 0.051 50 245 1202.30 170.30 0.05 0.000 0.048	42	205	1205.60	173.60	0.07	0.000	0.068
45 220 1204.10 172.10 0.06 0.000 0.060 46 225 1203.90 171.90 0.06 0.001 0.057 47 230 1203.30 171.30 0.06 0.000 0.055 48 235 1203.20 171.20 0.05 0.000 0.054 49 240 1202.90 170.90 0.05 0.001 0.051 50 245 1202.30 170.30 0.05 0.000 0.048	43	210	1205.20	173.20	0.07	0.001	0.065
46 225 1203.90 171.90 0.06 0.001 0.057 47 230 1203.30 171.30 0.06 0.000 0.055 48 235 1203.20 171.20 0.05 0.000 0.054 49 240 1202.90 170.90 0.05 0.001 0.051 50 245 1202.30 170.30 0.05 0.000 0.048	44	215	1204.60	172.60	0.06	0.001	0.062
47 230 1203.30 171.30 0.06 0.000 0.055 48 235 1203.20 171.20 0.05 0.000 0.054 49 240 1202.90 170.90 0.05 0.001 0.051 50 245 1202.30 170.30 0.05 0.000 0.048	45	220	1204.10	172.10	0.06	0.000	0.060
48 235 1203.20 171.20 0.05 0.000 0.054 49 240 1202.90 170.90 0.05 0.001 0.051 50 245 1202.30 170.30 0.05 0.000 0.048	46	225	1203.90	171.90	0.06	0.001	0.057
49 240 1202.90 170.90 0.05 0.001 0.051 50 245 1202.30 170.30 0.05 0.000 0.048	47	230	1203.30	171.30	0.06	0.000	0.055
50 245 1202.30 170.30 0.05 0.000 0.048	48	235	1203.20	171.20	0.05	0.000	0.054
	49	240	1202.90	170.90	0.05	0.001	0.051
51 250 1201.90 169.90 0.05 0.009 0.023	50	245	1202.30	170.30	0.05	0.000	0.048
	51	250	1201.90	169.90	0.05	0.009	0.023

SB = 1032 S = 162.30

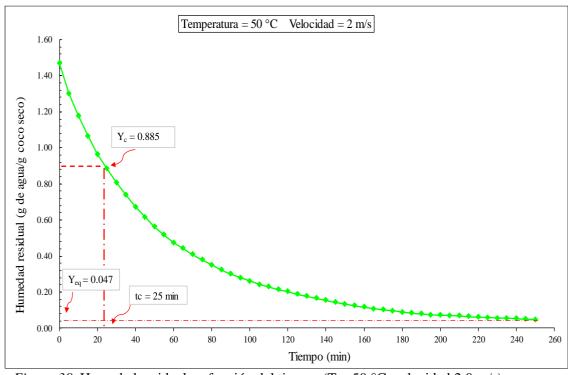


Figura 38. Humedad residual en función del tiempo (T = 50 °C, velocidad 2,0 m/s)

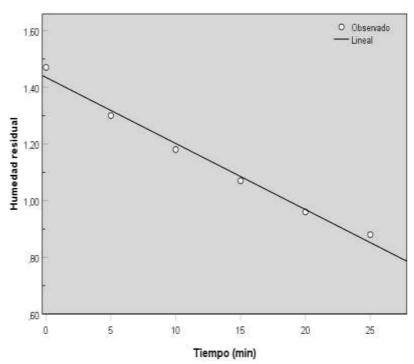
Análisis de regresión lineal con el SPSS (T1 = 50 °C; velocidad = 2.0 m/s

Tabla 8. Resumen modelo de regresión lineal (T = 50 °C, velocidad = 2,0 m/s).

		R cuadrado	Error estándar de la
R	R cuadrado	ajustado	estimación
0.993	0.987	0.984	0.028

La variable independiente es Tiempo (min)

Tabla 9. Análisis de varianza (ANOVA) del modelo de regresión lineal ($T=50\,^{\circ}$ C, velocidad = 2.0 m/s).


	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	0.238	1	0.238	304.136	000
Residuo	0.003	4	0.001		
Total	0.241	5			

La variable independiente es Tiempo (min)

Tabla 10. Coeficientes de la ecuación lineal (T = 50 °C; velocidad = 2.0 m/s).

	Coeficiente no estandarizados		Coeficientes estandarizados	t	Sig.	
	В	Desv.	Beta	_		
		Error				
Tiempo	-0.023	0.001	-0.993	-17.440	0.000	
(min)						
(constante)	1.435	0.020		70.895	0.000	

La ecuación de la línea recta será de la forma, y = -0.023x + 1.435

Figura 39. Representación de los datos experimentales (0) y de la línea recta (-) generada por el SPSS. (T = 50 °C; velocidad = 2.0 m/s).

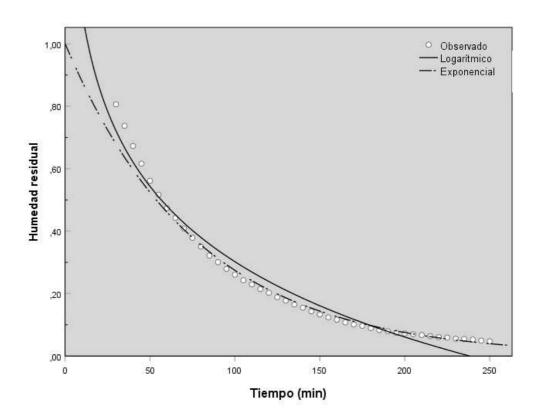
Análisis de regresión logarítmica con el SPSS (T = 50 °C; velocidad = 2.0 m/s)

Tabla 11. Resumen del modelo de regresión logarítmica (T = 50 °C; velocidad = 2.0 m/s)

			Error
R	R cuadrado	R cuadrado	estándar de la
		ajustado	estimación
0.995	0.990	0.990	0.085

La variable independiente es Tiempo (min)

Tabla 12. Análisis de varianza (ANOVA) del modelo de regresión logarítmica (T = 50 °C; velocidad = 2.0 m/s).


	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	31.768	1	31.768	4413.059	0.000
Residuo	0.310	43	0.007		
Total	32.078	44			

La variable independiente es Tiempo (min)

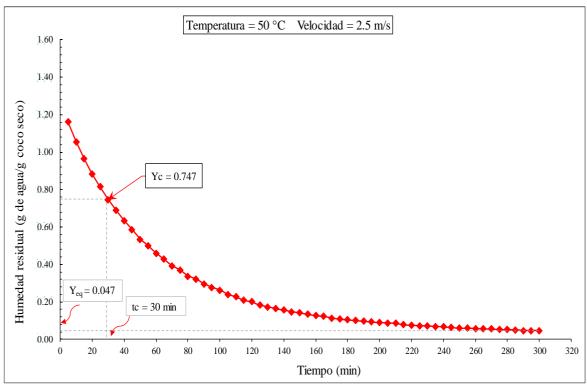
Tabla 13. Coeficientes de la ecuación logarítmica (T = 50 °C; velocidad = 2.0 m/s).

	Coefic	eiente no	Coeficientes		
	estand	arizados	estandarizados	t	Sig.
	В	Desv.	Beta	_	
		Error			
Tiempo	-0.013	0.000	-0.995	-66.431	0.000
(min)					
(constante)	1.001	0.030		33.268	0.000

La ecuación de la curva logarítmica será de la forma: $y = 1.001e^{(-0.013x)}$

Figura 40. Representación de los datos experimentales (0), de la curva logarítmica (-) y de la curva exponencial (-) generada por el SPSS. La curva exponencial es la más representativa. (T= 50 °C; velocidad = 2.0 m/s).

Tabla 14.


Datos experimentales de la operación de secado de láminas de coco, en un secador de bandejas con flujo de aire a 50 °C y velocidad de 2.5 m/s.

	T	P1	P2=P1-SB	Yr=(P2-S)/S		
		Peso	Peso coco	Humedad	dY/dt (g	Ym (g
	Tiempo	estructura	al tiempo t	residual (g	agua/g	agua/g
N°	(min)	+ coco al	(g)	agua/g coco	coco seco	coco
		tiempo t		seco)	min)	seco)
		(g)				
0	0	1432.50	400.50	1.32	0.032	1.241
1	5	1404.80	372.80	1.16	0.021	1.108
2	10	1386.50	354.50	1.06	0.018	1.010
3	15	1370.80	338.80	0.96	0.016	0.924
4	20	1357.10	325.10	0.88	0.014	0.850

5	25	1345.20	313.20	0.82	0.014	0.781
6	30	1333.30	301.30	0.75	0.012	0.718
7	35	1323.30	291.30	0.69	0.011	0.662
8	40	1314.10	282.10	0.64	0.010	0.611
9	45	1305.60	273.60	0.59	0.010	0.560
10	50	1296.60	264.60	0.53	0.007	0.517
11	55	1290.70	258.70	0.50	0.008	0.480
12	60	1283.80	251.80	0.46	0.006	0.444
13	65	1278.40	246.40	0.43	0.007	0.411
14	70	1272.30	240.30	0.39	0.004	0.382
15	75	1268.50	236.50	0.37	0.007	0.354
16	80	1262.60	230.60	0.34	0.003	0.329
17	85	1259.90	227.90	0.32	0.005	0.309
18	90	1255.60	223.60	0.30	0.004	0.287
19	95	1252.30	220.30	0.28	0.003	0.270
20	100	1249.70	217.70	0.26	0.005	0.251
21	105	1245.80	213.80	0.24	0.002	0.233
22	110	1243.70	211.70	0.23	0.004	0.218
23	115	1240.60	208.60	0.21	0.002	0.206
24	120	1239.30	207.30	0.20	0.004	0.192
25	125	1236.10	204.10	0.18	0.002	0.178
26	130	1234.30	202.30	0.17	0.002	0.168
27	135	1232.70	200.70	0.16	0.001	0.160
28	140	1231.50	199.50	0.16	0.002	0.152
29	145	1230.00	198.00	0.15	0.001	0.144
30	150	1228.80	196.80	0.14	0.001	0.137
31	155	1227.60	195.60	0.13	0.001	0.131
32	160	1226.50	194.50	0.13	0.001	0.125
33	165	1225.60	193.60	0.12	0.002	0.118
34	170	1224.10	192.10	0.11	0.001	0.111
35	175	1223.20	191.20	0.11	0.001	0.106
36	180	1222.40	190.40	0.10	0.001	0.102
37	185	1221.70	189.70	0.10	0.001	0.098

38	190	1221.20	189.20	0.10	0.001	0.095
39	195	1220.60	188.60	0.09	0.001	0.091
40	200	1219.80	187.80	0.09	0.000	0.088
41	205	1219.50	187.50	0.09	0.000	0.086
42	210	1219.20	187.20	0.09	0.002	0.081
43	215	1217.90	185.90	0.08	0.001	0.076
44	220	1217.30	185.30	0.07	0.000	0.073
45	225	1217.00	185.00	0.07	0.000	0.071
46	230	1216.60	184.60	0.07	0.000	0.070
47	235	1216.50	184.50	0.07	0.000	0.068
48	240	1216.10	184.10	0.07	0.001	0.065
49	245	1215.40	183.40	0.06	0.001	0.061
50	250	1214.80	182.80	0.06	0.000	0.060
51	255	1214.80	182.80	0.06	0.000	0.059
52	260	1214.50	182.50	0.06	0.000	0.057
53	265	1214.10	182.10	0.06	0.000	0.055
54	270	1214.00	182.00	0.06	0.001	0.054
55	275	1213.50	181.50	0.05	0.000	0.052
56	280	1213.40	181.40	0.05	0.000	0.051
57	285	1213.10	181.10	0.05	0.001	0.048
58	290	1212.60	180.60	0.05	0.000	0.047
59	295	1212.60	180.60	0.05	0.000	0.047
60	300	1212.60	180.60	0.05	0.009	0.023

SB = 1032 S= 172.50

Figura 41. Humedad residual en función del tiempo (T = 50 °C, velocidad 2,5 m/s)

Análisis de regresión lineal con el SPSS (T = 50 $^{\circ}$ C; velocidad = 2.5 m/s).

Tabla 15. Resumen modelo de regresión lineal (T = 50 °C; velocidad = 2.5 m/s).

R	R	R cuadrado	Error estándar de
	cuadrado	ajustado	la estimación
0.996	0.992	0.990	0.015

La variable independiente es Tiempo (min)

Tabla 16. Análisis de varianza (ANOVA) del modelo de regresión lineal (T = 50 °C; velocidad = 2.5 m/s).

	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	0.118	1	0.118	520.996	0.000
Residuo	0.001	4	0.000		
Total	0.119	5			

La variable independiente es Tiempo

Tabla 17. Coeficiente de la ecuación lineal (T = 50 °C; velocidad = 2.5 m/s).

	Coeficiente no estandarizados		Coeficientes estandarizados	t	Sig.
	В	Desv.	Beta	_	
		Error			
Tiempo	-	0.001	-0.996	-22.825	0.000
(min)	0.016				
(constante)	1.225	0.014		87.481	0.000

La ecuación de línea recta será de forma: y = -0.016x +1.225

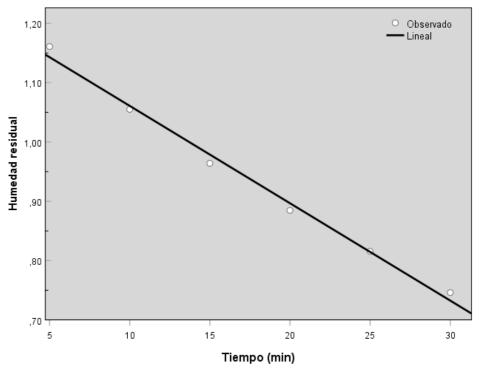


Figura 42. Representación de los datos experimentales (0) y de la línea recta (-) generada por el SPSS. (T = 50 °C; velocidad = 2.5 m/s)

Análisis de regresión exponencial con SPSS (T = 50 °C, velocidad = 2,5 m/s)

Tabla 18. Resumen del modelo de regresión exponencial (T = 50 °C; velocidad = 2.5 m/s)

		R cuadrado	Error
R	R cuadrado	ajustado	estándar de la
			estimación
0.987	0.973	0.973	0.132

La variable independiente es Tiempo (min)

Tabla 19. Análisis de varianza (ANOVA) del modelo de regresión exponencial ($T=50~^{\circ}C$; velocidad=2.5~m/s).

	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	33.098	1	33.098	1899.835	0.000
Residuo	0.906	52	0.017		
Total	34.004	53			

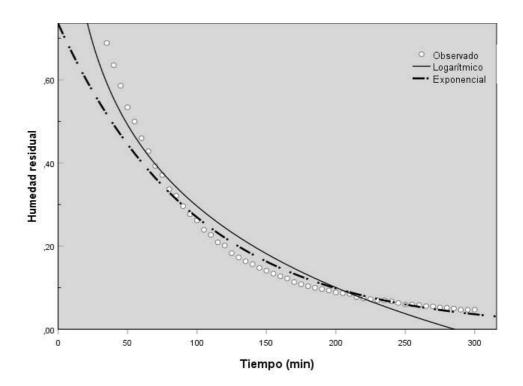

La variable independiente es Tiempo (min)

Tabla 20. Coeficiente de la ecuación exponencial (T = 50 °C; velocidad = 2.5 m/s).

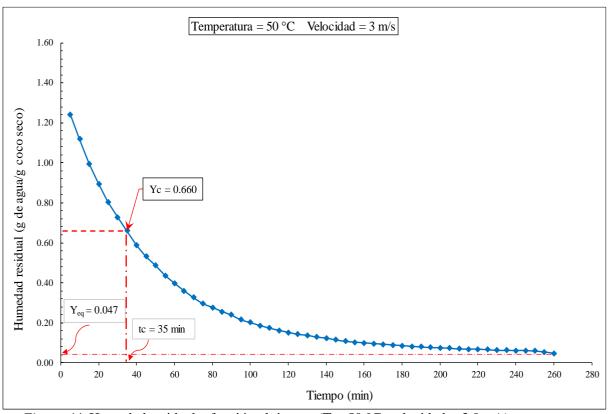
	Coeficiente no estandarizados		Coeficientes		
			estandarizados	t	Sig.
	В	Desv.	Beta	_	
		Error			
Tiempo	-	0.000	-0.987	-43.587	0.000
(min)	0.010				
(constante)	0.735	0.031		23.485	0.000

La variable dependiente es ln (Humedad residual).

La ecuación de la cuerva exponencial será de la forma: $y=0.735~e^{(-0.010x)}$

Figura 43. Representación de los datos experimentales (0), de la curva logarítmica (-) y de la curva exponencial (-) generada por el SPSS. La curva exponencial es la más representativa. (T= 50 °C; velocidad = 2.5 m/s).

Tabla 21.


Datos experimentales de la operación de secado de láminas de coco, en un secador de bandejas con flujo de aire a 50 °C y velocidad de 3,0 m/s.

	T	P1	P2=P1-SB	Yr = (P2-S)/S		
	Tiempo	Peso	Peso coco	Humedad	dY/dt (g	Ym (g
N°	(min)	estructura	al tiempo t	residual (g	agua/g	agua/g
		+ coco al	(g)	agua/g coco	coco	coco
		tiempo t		seco)	seco	seco)
		(g)			min)	
1	0	1432.30	400.30	1.43	0.037	1.335
2	5	1401.40	369.40	1.24	0.025	1.180
3	10	1381.20	349.20	1.12	0.025	1.056
4	15	1360.70	328.70	0.99	0.020	0.944
5	20	1344.20	312.20	0.89	0.018	0.849

6	25	1329.50	297.50	0.80	0.016	0.766
7	30	1316.70	284.70	0.73	0.013	0.693
8	35	1305.60	273.60	0.66	0.014	0.624
9	40	1293.70	261.70	0.59	0.011	0.560
10	45	1284.60	252.60	0.53	0.009	0.510
11	50	1277.10	245.10	0.49	0.010	0.462
12	55	1268.80	236.80	0.44	0.008	0.417
13	60	1262.40	230.40	0.40	0.008	0.379
14	65	1256.20	224.20	0.36	0.007	0.344
15	70	1250.80	218.80	0.33	0.006	0.311
16	75	1245.50	213.50	0.30	0.004	0.286
17	80	1242.40	210.40	0.28	0.004	0.266
18	85	1239.00	207.00	0.26	0.003	0.247
19	90	1236.30	204.30	0.24	0.005	0.227
20	95	1232.30	200.30	0.22	0.003	0.208
21	100	1230.00	198.00	0.20	0.003	0.194
22	105	1227.60	195.60	0.19	0.003	0.180
23	110	1225.50	193.50	0.17	0.002	0.168
24	115	1223.60	191.60	0.16	0.002	0.157
25	120	1221.70	189.70	0.15	0.002	0.146
26	125	1220.30	188.30	0.14	0.001	0.140
27	130	1219.60	187.60	0.14	0.002	0.133
28	135	1218.10	186.10	0.13	0.001	0.126
29	140	1217.20	185.20	0.12	0.002	0.119
30	145	1215.70	183.70	0.11	0.001	0.111
31	150	1214.60	182.60	0.11	0.001	0.106
32	155	1213.90	181.90	0.10	0.001	0.102
33	160	1213.30	181.30	0.10	0.001	0.098
34	165	1212.60	180.60	0.10	0.001	0.094
35	170	1212.10	180.10	0.09	0.001	0.091
36	175	1211.50	179.50	0.09	0.001	0.087
37	180	1210.90	178.90	0.09	0.001	0.084
38	185	1210.40	178.40	0.08	0.000	0.081

39	190	1210.00	178.00	0.08	0.001	0.078
40	195	1209.50	177.50	0.08	0.000	0.076
41	200	1209.30	177.30	0.08	0.000	0.074
42	205	1208.90	176.90	0.07	0.001	0.071
43	210	1208.30	176.30	0.07	0.000	0.069
44	215	1208.10	176.10	0.07	0.000	0.068
45	220	1208.10	176.10	0.07	0.000	0.067
46	225	1207.80	175.80	0.07	0.001	0.065
47	230	1207.30	175.30	0.06	0.000	0.063
48	235	1207.10	175.10	0.06	0.000	0.062
49	240	1206.90	174.90	0.06	0.000	0.061
50	245	1206.80	174.80	0.06	0.000	0.060
51	250	1206.60	174.60	0.06	0.001	0.057
52	255	1205.90	173.90	0.05	0.002	0.051
53	260	1204.60	172.60	0.05	0.009	0.024

SB = 1032 S = 164.85

Figura 44. Humedad residual e función al tiempo (T = 50 °C, velocidad = 3,0 m/s).

Análisis de regresión lineal con el SPSS (T = 50 °C; velocidad = 3.0 m/s).

Tabla 22. Resumen modelo de regresión lineal (T = 50 °C; velocidad = 3.0 m/s).

R	R	R cuadrado	Error estándar	
	cuadrado	ajustado	de la estimación	
0.987	0.973	0.969	0.047	

La variable independiente es Tiempo (min)

Tabla 23. Análisis de varianza (ANOVA) del modelo de regresión lineal (T = 50 °C; velocidad = 3.0 m/s).

	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	0.488	1	0.488	219.187	0.000
Residuo	0.013	6	0.002		
Total	0.501	7			

La variable independiente es Tiempo (min)

Tabla 24. Coeficientes de la ecuación lineal (T = 50 °C; velocidad = 3.0 m/s).

	Coeficiente no estandarizados		Coeficientes estandarizados	t	Sig.
	В	Desv.	Beta	-	
		Error			
Tiempo	-	0.001		-14.805	0.000
(min)	0.022		-0.987		
(constante)	1.362	0.030		44.712	0.000

La ecuación de la línea recta será de a forma: y = -0.022x + 1.362

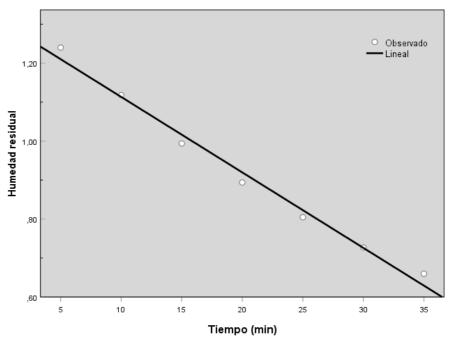


Figura 45. Representación de los datos experimentales (0) y de la línea recta (-) generada por el SPSS. (T = 50 °C; velocidad = 3,0 m/s).

Análisis de regresión logarítmica con el SPSS (T = 50 °C; velocidad = 3.0 m/s).

Tabla 25. Resumen del modelo de regresión exponencial (T = 50 °C; velocidad = 3.0 m/s).

			Error
R	R cuadrado	R cuadrado	estándar de
		ajustado	la estimación
0.975	0.950	0.949	0.159

La variable independiente es Tiempo (min)

Tabla 26. Análisis de varianza (ANOVA) del modelo de regresión logarítmica ($T=50\,^{\circ}C$; $velocidad=3.0\,\text{m/s}$).

	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	20.692	1	20.692	818.170	0.000
Residuo	1.087	43	0.025		

10tai 21.//9 4	Total	21.779	44
----------------	-------	--------	----

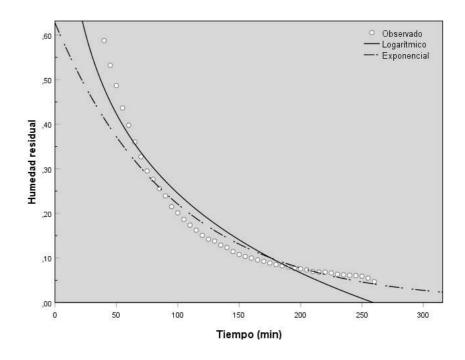

La variable independiente es Tiempo (min)

Tabla 27. Coeficientes de la ecuación logarítmica (T = 50 °C; velocidad = 3,0 m/s).

	Coeficiente no estandarizados		Coeficientes estandarizados	t	Sig.
	В	Desv.	Beta	_	
		Error			
Tiempo	-0.010	0.000	-0.975	-28.604	0.000
(min)					
(constante)	0.627	0.037		16.758	0.000

La variable dependiente en ln (Humedad residual).

La ecuación de la curva logarítmica será de la forma: $y = 0.627e^{(-0.010x)}$

Figura 46. Representación de los datos experimentales (0), de la curva logarítmica (-) y de la curva exponencial (-) generada por el SPSS. La curva exponencial es la más representativa. (T=50 °C; velocidad = 3.0 m/s).

Tabla 28.

Datos experimentales de la operación de secado de láminas de coco, en un secador de bandejas con flujo de aire a 60 °C y velocidad de 2,0 m/s.

	<i>y y</i>		· · · · · · · · · · · · · · · · · · ·			
	T	P1	P2=P1-SB	Yr = (P2-S)/S		
	Tiempo	Peso estructura	Peso coco	Humedad	dY/dt (g	Ym (g
N°	(min)	+ coco al	al tiempo t	residual (g	agua/g coco	agua/g
		tiempo t (g)	(g)	agua/g coco	seco min)	coco
				seco)		seco)
1	0	1432.30	400.30	1.43	0.040	1.328
2	5	1399.40	367.40	1.23	0.029	1.155
3	10	1375.20	343.20	1.08	0.026	1.017
4	15	1353.70	321.70	0.95	0.025	0.889
5	20	1333.20	301.20	0.83	0.019	0.779
6	25	1317.30	285.30	0.73	0.018	0.685
7	30	1302.20	270.20	0.64	0.015	0.601
8	35	1289.60	257.60	0.56	0.012	0.532
9	40	1279.50	247.50	0.50	0.010	0.476
10	45	1271.10	239.10	0.45	0.011	0.424
11	50	1262.40	230.40	0.40	0.008	0.379
12	55	1256.20	224.20	0.36	0.008	0.339
13	60	1249.40	217.40	0.32	0.006	0.303
14	65	1244.20	212.20	0.29	0.007	0.271
15	70	1238.80	206.80	0.25	0.006	0.239
16	75	1233.60	201.60	0.22	0.004	0.213
17	80	1230.30	198.30	0.20	0.003	0.194
18	85	1227.50	195.50	0.19	0.004	0.177
19	90	1224.60	192.60	0.17	0.003	0.161
20	95	1222.20	190.20	0.15	0.002	0.148
21	100	1220.30	188.30	0.14	0.002	0.136

	22	105	1218.40	186.40	0.13	0.002	0.126
	23	110	1216.80	184.80	0.12	0.002	0.117
	24	115	1215.40	183.40	0.11	0.001	0.109
	25	120	1214.30	182.30	0.11	0.002	0.101
	26	125	1212.70	180.70	0.10	0.001	0.095
	27	130	1212.20	180.20	0.09	0.001	0.091
	28	135	1211.60	179.60	0.09	0.001	0.086
	29	140	1210.40	178.40	0.08	0.000	0.081
	30	145	1210.00	178.00	0.08	0.000	0.079
	31	150	1209.70	177.70	0.08	0.001	0.076
	32	155	1209.00	177.00	0.07	0.000	0.073
	33	160	1208.80	176.80	0.07	0.001	0.071
	34	165	1208.30	176.30	0.07	0.000	0.069
	35	170	1208.00	176.00	0.07	0.000	0.067
	36	175	1207.80	175.80	0.07	0.000	0.065
	37	180	1207.40	175.40	0.06	0.002	0.060
	38	185	1206.10	174.10	0.06	0.000	0.055
	39	190	1205.80	173.80	0.05	0.001	0.051
	40	195	1204.60	172.60	0.05	0.009	0.024
_							

SB = 1032 S= 164.85

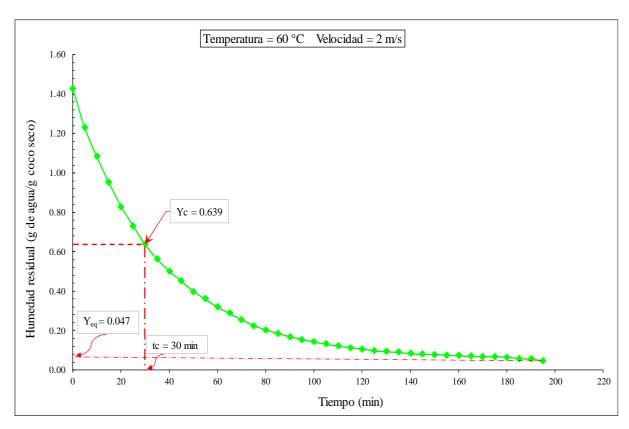


Figura 47. Humedad residual en función del tiempo (T = 60 °C; velocidad = 2.0 m/s).

Análisis de regresión lineal con SPSS (T = 60 °C; velocidad = 2,0 m/s)

Tabla 29. Resumen de modelo de regresión lineal ($T=60~^{\circ}C$; velocidad = 2.0~m/s).

R	R	R cuadrado	Error estándar de
	cuadrado	ajustado	la estimación
0.991	0.983	0.980	0.040

La variable independiente es Tiempo (min)

Tabla 30. Análisis de varianza (ANOVA) del modelo de regresión lineal ($T=60\,^{\circ}C$; velocidad = 2.0 m/s).

	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	0.467	1	0.467	288.352	0.000
Residuo	0.008	5	0.002		
Total	0.475	6			

Tabla 31. Coeficiente de la ecuación lineal (T = 60 °C; velocidad = 2.0 m/s).

	Coeficiente no estandarizados		Coeficientes estandarizados	t	Sig.
	В	Desv.	Beta	-	
		Error			
Tiempo	-	0.002	-0.991	-16.981	0.000
(min)	0.026				
(constante)	1.371	0.027		50.007	0.000

La ecuación de la línea recta será de la forma: y = -0.026x + 1.371

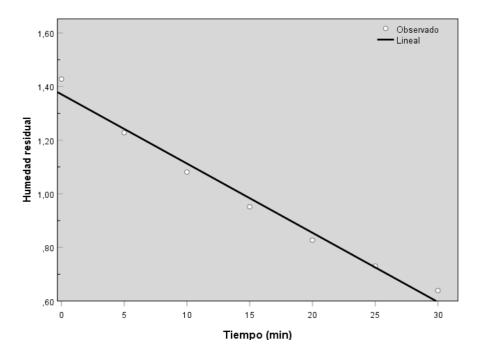


Figura 48. Representación de los datos experimentales (0) y de la línea recta (-) generada por el SPSS. (T = 60 °C; velocidad = 2,0 m/s).

Análisis de regresión exponencial con el SPSS (T = 60 °C; velocidad = 2.0 m/s).

Tabla 32. Resumen del modelo de regresión exponencial (T = 60 °C; velocidad = 2.0 m/s).

			Error
R	R cuadrado	R cuadrado	estándar de
		ajustado	la estimación
0.979	0.959	0.958	0.147

La variable independiente es Tiempo (min)

Tabla 33. Análisis de varianza (ANOVA) del modelo de regresión logarítmica ($T=60\,^{\circ}C$; $velocidad=2.0\,\text{m/s}$).

-	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	15.767	1	15.767	732.479	0.000
Residuo	0.667	31	0.022		
Total	16.434	32			

La variable independiente es Tiempo (min)

Tabla 34. Coeficientes de la ecuación exponencial (T = 60 °C; velocidad = 2,0 m/s).

	Coeficiente no estandarizados		Coeficientes		
			estandarizados	t	Sig.
	В	Desv.	Beta	-	
		Error			
Tiempo	-	0.001	-0.979	-27.064	0.000
(min)	0.015				
(constante)	0.711	0.047		14.977	0.000

La variable dependiente en ln (Humedad residual).

La ecuación de la curva logarítmica será de la forma: $y = 0.711e^{(-0.015x)}$

Figura 49. Representación de los datos experimentales (0), de la curva logarítmica (-) y de la curva exponencial (-) generada por el SPSS. La curva exponencial es la más representativa. (T= 60 °C; velocidad = 2.0 m/s)

Tabla 35.

Datos experimentales de la operación de secado de láminas de coco, en un secador de bandejas con flujo de aire a 60 °C y velocidad de 2,5 m/s.

	T	P1	P2 = P1 - SB	Yr = (P2-S)/S		
N°	Tiempo	Peso estructura	Peso coco al	Humedad	dY/dt (g	Ym (g
	(min)	+ coco al	tiempo t (g)	residual (g	agua/g coco	agua/g
		tiempo t (g)		agua/g coco	seco min)	coco
				seco)		seco)
1	0	1434.30	402.30	1.42	0.035	1.333
2	5	1405.50	373.50	1.25	0.028	1.177
3	10	1382.60	350.60	1.11	0.024	1.049
4	15	1362.80	330.80	0.99	0.021	0.937
5	20	1345.40	313.40	0.88	0.021	0.833
6	25	1328.30	296.30	0.78	0.018	0.736
7	30	1313.10	281.10	0.69	0.014	0.655
8	35	1301.30	269.30	0.62	0.015	0.581
9	40	1288.50	256.50	0.54	0.010	0.517
9	40	1288.30	230.30	0.54	0.010	0.517

10	45	1280.00	248.00	0.49	0.010	0.466
11	50	1271.50	239.50	0.44	0.009	0.418
12	55	1264.20	232.20	0.40	0.010	0.371
13	60	1255.80	223.80	0.35	0.007	0.328
14	65	1250.00	218.00	0.31	0.006	0.297
15	70	1245.30	213.30	0.28	0.006	0.267
16	75	1239.90	207.90	0.25	0.005	0.237
17	80	1235.60	203.60	0.22	0.004	0.214
18	85	1232.20	200.20	0.20	0.004	0.193
19	90	1228.60	196.60	0.18	0.003	0.174
20	95	1225.70	193.70	0.16	0.003	0.157
21	100	1223.20	191.20	0.15	0.002	0.145
22	105	1221.60	189.60	0.14	0.002	0.135
23	110	1220.00	188.00	0.13	0.002	0.126
24	115	1218.30	186.30	0.12	0.004	0.111
25	120	1215.30	183.30	0.10	0.001	0.099
26	125	1214.20	182.20	0.10	0.001	0.092
27	130	1213.00	181.00	0.09	0.001	0.086
28	135	1212.20	180.20	0.08	0.001	0.080
29	140	1211.10	179.10	0.08	0.001	0.075
30	145	1210.30	178.30	0.07	0.001	0.069
31	150	1209.20	177.20	0.07	0.001	0.064
32	155	1208.70	176.70	0.06	0.001	0.060
33	160	1207.90	175.90	0.06	0.000	0.057
34	165	1207.70	175.70	0.06	0.000	0.056
35	170	1207.50	175.50	0.06	0.002	0.051
36	175	1206.10	174.10	0.0470	0.009	0.024

SB = 1032 S= 166.28

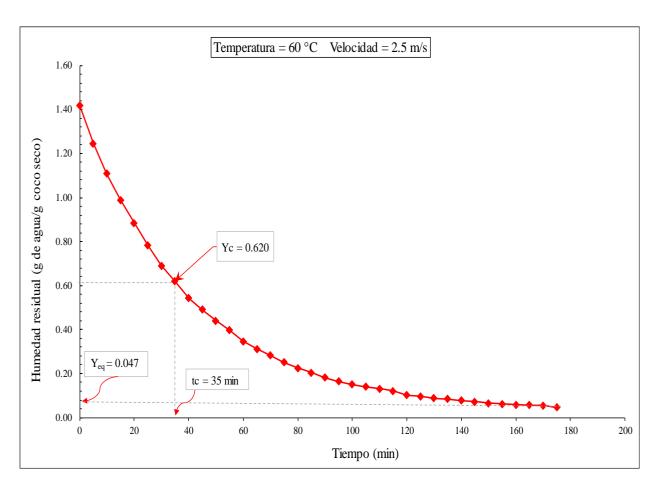


Figura 50. Humedad residual en función del tiempo (T = 60 °C; velocidad = 2.5 m/s).

Análisis de regresión lineal con el SPSS (T = 60 °C; velocidad = 2.5 m/s).

Tabla 36. Resumen modelo de regresión lineal (T = 60 °C; velocidad = 2.5 m/s).

R	R	R cuadrado	Error estándar de
	cuadrado	ajustado	la estimación
0.992	0.984	0.982	0.037

Tabla 37. Análisis de varianza (ANOVA) del modelo de regresión lineal ($T1=60\,^{\circ}C$; $velocidad=2.5\,m/s$).

	Suma de	Gl	media	F	Sig.
	cuadrados	3	cuadrática		
Regresión	0.532	1	0.532	379.310	0.000

Residuo	0.008	6	0.001
Total	0.541	7	

La variable independiente es Tiempo

Tabla 38. Coeficiente de la ecuación lineal (T = 60 °C; velocidad = 2.5 m/s).

Coeficiente no Coeficientes					<i>)</i> .
	estandarizados		estandarizados	t	Sig.
	В	Desv.	Beta	_	
		Error			
Tiempo	-	0.001	-0.992	-19.476	0.000
(min)	0.023				
(constante)	1.361	0.024		56.302	0.000

La ecuación de línea recta será de forma: y = -0.023x + 1.361

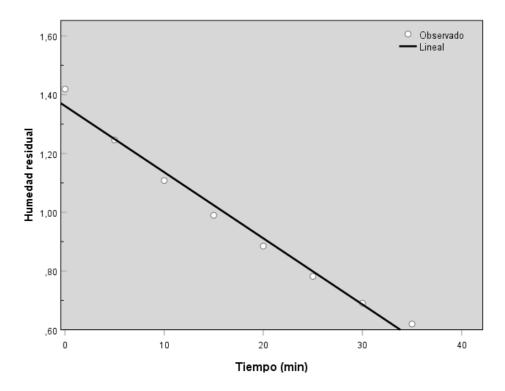


Figura 51. Representación de los datos experimentales (0) y de la línea recta (-) generada por el SPSS. (T = 60 °C; velocidad = 2,5 m/s).

Análisis de regresión exponencial con el SPSS (T = 60 °C; velocidad = 2.5 m/s).

Tabla 39. Resumen del modelo de regresión exponencial (T = 60 °C; velocidad = 2.5 m/s).

			Error
R	R cuadrado	R cuadrado	estándar de
		ajustado	la estimación
0.995	0.989	0.989	0.078

La variable independiente es Tiempo (min)

Tabla 40. Análisis de varianza (ANOVA) del modelo de regresión exponencial ($T=60\,^{\circ}C$; velocidad=2.5m/s).

	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	14.794	1	14.794	2442.04	0.000
Residuo	0.157	26	0.006		
Total	14.952	27			

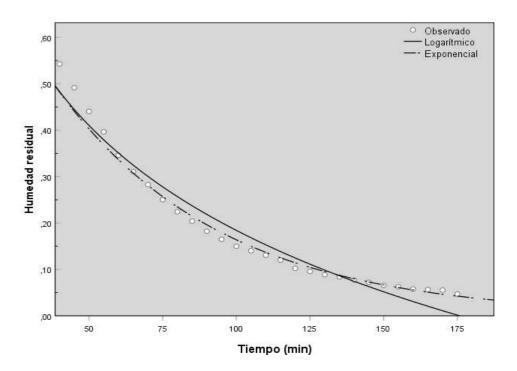

La variable independiente es Tiempo (min)

Tabla 41. Coeficientes de la ecuación exponencial (T = 60 °C; velocidad = 2,5 m/s).

	Coeficiente no		Coeficientes		
	estand	arizados	estandarizados	t	Sig.
•	В	Desv.	Beta	_	
		Error			
Tiempo	-	0.000	-0.995	-49.425	0.000
(min)	0.018				
(constante)	0.991	0.041		23.914	0.000

La variable dependiente en ln (Humedad residual).

La ecuación de la curva exponencial será de la forma: $y = 0.991e^{(-0.018x)}$

Figura 52. Representación de los datos experimentales (0), de la curva logarítmica (-) y de la curva exponencial (-) generada por el SPSS. La curva exponencial es la más representativa. (T= 60 °C; velocidad = 2.5 m/s).

Tabla 42.

Datos experimentales de la operación de secado de láminas de coco, en un secador de bandejas con flujo de aire a 60 °C y velocidad de 3,0 m/s.

	T	P1	P2 = P1 - SB	Yr = (P2-S)/S		
		Peso	Peso coco al	Humedad	dY/dt (g	Ym (g
N°	Tiempo	estructura +	tiempo t (g)	residual (g	agua/g	agua/g
	(min)	coco al		agua/g coco	coco seco	coco
		tiempo t (g)		seco)	min)	seco)
1	0	1432.30	400.30	1.44	0.038	1.346
2	5	1401.30	369.30	1.25	0.026	1.186
3	10	1379.60	347.60	1.12	0.023	1.062
4	15	1360.80	328.80	1.01	0.021	0.952
5	20	1343.40	311.40	0.90	0.020	0.850
6	25	1327.20	295.20	0.80	0.017	0.757
7	30	1313.10	281.10	0.71	0.017	0.672
8	35	1299.20	267.20	0.63	0.014	0.594

9	40	1287.50	255.50	0.56	0.009	0.535
10	45	1279.90	247.90	0.51	0.010	0.486
11	50	1271.50	239.50	0.46	0.010	0.435
12	55	1263.20	231.20	0.41	0.010	0.384
13	60	1254.80	222.80	0.36	0.007	0.341
14	65	1249.10	217.10	0.32	0.006	0.309
15	70	1244.30	212.30	0.29	0.006	0.281
16	75	1239.70	207.70	0.27	0.006	0.252
17	80	1234.90	202.90	0.24	0.003	0.229
18	85	1232.20	200.20	0.22	0.004	0.210
19	90	1228.60	196.60	0.20	0.005	0.186
20	95	1224.40	192.40	0.17	0.004	0.163
21	100	1221.20	189.20	0.15	0.004	0.145
22	105	1218.30	186.30	0.14	0.002	0.131
23	110	1216.60	184.60	0.13	0.002	0.122
24	115	1215.30	183.30	0.12	0.001	0.115
25	120	1214.40	182.40	0.11	0.001	0.109
26	125	1213.30	181.30	0.11	0.003	0.099
27	130	1211.20	179.20	0.09	0.001	0.090
28	135	1210.30	178.30	0.09	0.001	0.085
29	140	1209.60	177.60	0.08	0.001	0.081
30	145	1209.10	177.10	0.08	0.000	0.079
31	150	1208.70	176.70	0.08	0.001	0.075
32	155	1207.90	175.90	0.07	0.000	0.072
33	160	1207.70	175.70	0.07	0.000	0.071
34	165	1207.50	175.50	0.07	0.001	0.069
35	170	1207.00	175.00	0.07	0.000	0.067
36	175	1206.90	174.90	0.07	0.000	0.066
37	180	1206.70	174.70	0.07	0.001	0.063
38	185	1206.10	174.10	0.06	0.001	0.060
39	190	1205.40	173.40	0.06	0.002	0.052
40	195	1203.70	171.70	0.0470	0.009	0.024

SB = 1032 S= 163.99

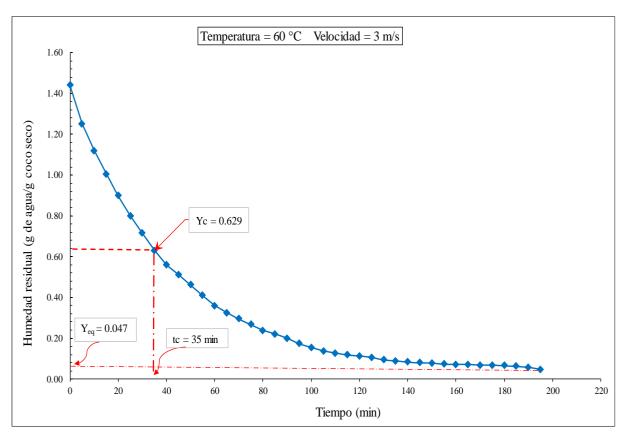


Figura 53. Humedad residual en función del tiempo (T = 60 °C; velocidad = 3.0 m/s).

Análisis de regresión lineal con el SPSS (T = 60 °C; velocidad = 3.0 m/s).

Tabla 43. Resumen modelo de regresión lineal (T = 60 °C; velocidad = 3.0 m/s).

R	R	R cuadrado	Error estándar de
	cuadrado	ajustado	la estimación
0.991	0.982	0.979	0.040

Tabla 44. Análisis de varianza (ANOVA) del modelo de regresión lineal ($T=60\,^{\circ}C$; $velocidad=3.0\,\text{m/s}$).

	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	0.527	1	0.527	324.701	0.000
Residuo	0.010	6	0.002		

Total 0.541 7

La variable independiente es Tiempo (min)

Tabla 45. Coeficiente de la ecuación lineal ($T=60\,^{\circ}C$; velocidad = $3.0\,\text{m/s}$).

	Coeficiente no		Coeficientes		
	estand	arizados	estandarizados	t	Sig.
	В	Desv.	Beta	-	
		Error			
Tiempo	-	0.001	-0.991	-18.019	0.000
(min)	0.022				
(constante)	1.374	0.026		52.808	0.000

La ecuación de la línea recta será de la forma: y = -0.022x + 1.374

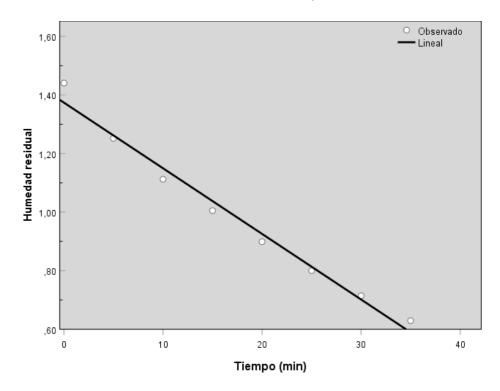


Figura 54. Representación de los datos experimentales (0) y de la línea recta (-) generada por el SPSS. (T = 60 °C; velocidad = 3,0 m/s).

Análisis de regresión exponencial con el SPSS (T = 60 °C; velocidad = 3.0 m/s).

Tabla 46. Resumen del modelo de regresión exponencial (T = 60 °C; velocidad = 3.0 m/s).

			Error
R	R cuadrado	R cuadrado	estándar de
		ajustado	la estimación
0.979	0.959	0.959	0.151

La variable independiente es Tiempo (min)

Tabla 47. Análisis de varianza (ANOVA) del modelo de regresión exponencial ($T=60\,^{\circ}C$; velocidad=3.0 m/s).

	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	15.878	1	15.878	695.531	0.000
Residuo	0.685	30	0.023		
Total	16.563	31			

La variable independiente es Tiempo (min)

Tabla 48. Coeficientes de la ecuación exponencial ($T=60~^{\circ}C$; velocidad = 3,0 m/s).

	Coeficiente no		Coeficientes		
	estandarizados		estandarizados	t	Sig.
	В	Desv.	Beta	_	
		Error			
Tiempo	-	0.001	-0.979	-26.373	0.000
(min)	0.015				
(constante)	0.823	0.060		13.691	0.000

La variable dependiente en ln (Humedad residual).

La ecuación de la curva exponencial será de la forma: $y = 0.823e^{(-0.015x)}$

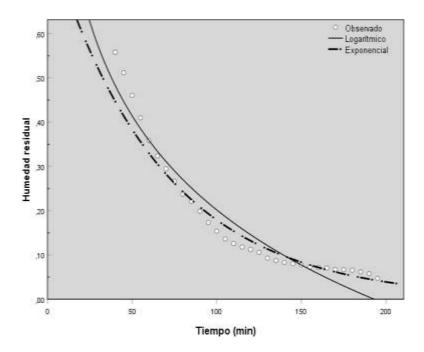


Figura 55. Representación de los datos experimentales (0), de la curva logarítmica (-) y de la curva exponencial (-) generada por el SPSS. La curva exponencial es la más representativa. ($T=60\,^{\circ}C$; velocidad = $3.0\,\text{m/s}$).

Tabla 49.

Datos experimentales de la operación de secado de láminas de coco, en un secador de bandejas con flujo de aire a 70 °C y velocidad de 2,0 m/s.

	J	5 5	,	,		
	T	P1	P2 = P1-SB	Yr = (P2-S)/S		
		Peso	Peso coco al	Humedad	dY/dt (g	Ym (g
N°	Tiempo	estructura	tiempo t (g)	residual (g	agua/g coco	agua/g
	(min)	+ coco al		agua/g coco	seco min)	coco
		tiempo t g)		seco)		seco)
1	0	1432.10	400.10	1.46	0.044	1.348
2	5	1396.50	364.50	1.24	0.032	1.158
3	10	1370.30	338.30	1.08	0.034	0.993
4	15	1342.70	310.70	0.91	0.025	0.846
5	20	1322.30	290.30	0.78	0.025	0.720
6	25	1301.60	269.60	0.66	0.019	0.610
7	30	1286.50	254.50	0.56	0.019	0.516
8	35	1271.20	239.20	0.47	0.014	0.435
9	40	1260.10	228.10	0.40	0.009	0.379
10	45	1252.80	220.80	0.36	0.011	0.330
11	50	1244.20	212.20	0.30	0.007	0.287
12	55	1238.80	206.80	0.27	0.008	0.250
13	60	1232.30	200.30	0.23	0.004	0.220
14	65	1228.80	196.80	0.21	0.003	0.201
15	70	1226.40	194.40	0.19	0.004	0.183
16	75	1222.80	190.80	0.17	0.003	0.165
17	80	1220.50	188.50	0.16	0.003	0.151
18	85	1218.40	186.40	0.14	0.002	0.139
19	90	1216.60	184.60	0.13	0.002	0.128
20	95	1214.80	182.80	0.12	0.003	0.116
21	100	1212.70	180.70	0.11	0.002	0.106

22	105	1211.30	179.30	0.10	0.001	0.098
23	110	1210.20	178.20	0.09	0.000	0.094
24	115	1210.00	178.00	0.09	0.001	0.092
25	120	1209.40	177.40	0.09	0.001	0.086
26	125	1208.30	176.30	0.08	0.001	0.081
27	130	1207.70	175.70	0.08	0.002	0.075
28	135	1206.40	174.40	0.07	0.001	0.069
29	140	1205.80	173.80	0.07	0.002	0.064
30	145	1204.50	172.50	0.06	0.000	0.058
31	150	1204.10	172.10	0.06	0.000	0.057
32	155	1203.90	171.90	0.06	0.000	0.055
33	160	1203.50	171.50	0.05	0.001	0.051
34	165	1202.60	170.60	0.05	0.000	0.047
35	170	1202.40	170.40	0.05	0.009	0.023

SB = 1032 S= 162.80

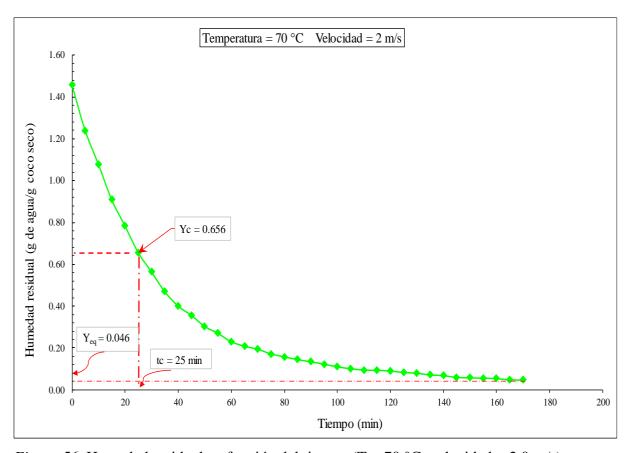


Figura 56. Humedad residual en función del tiempo (T = 70 °C; velocidad = 2.0 m/s).

Análisis de regresión lineal con el SPSS (T = 70 $^{\circ}$ C; velocidad = 2.0 m/s).

Tabla 50. Resumen modelo de regresión lineal (T = 70 °C; velocidad = 2.0 m/s).

R	R cuadrado	R cuadrado	Error estándar de
		ajustado	la estimación
0.995	0.990	0.987	0.034

La variable independiente es Tiempo (min)

Tabla 51. Análisis de varianza (ANOVA) del modelo de regresión lineal ($T=70~^{\circ}C$; velocidad=2.0~m/s).

	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	0.438	1	0.438	382.376	0.000
Residuo	0.005	4	0.001		
Total	0.443	5			

La variable independiente es Tiempo (min)

Tabla 52. Coeficiente de la ecuación lineal (T = 70 °C; velocidad = 2.0 m/s).

	Coeficiente no		Coeficientes		
	estandarizados		estandarizados	t	Sig.
•	В	Desv.	Beta	-	
		Error			
Tiempo	-	0.002	-0.995	-19.554	0.000
(min)	0.032				
(constante)	1.416	0.025		57.779	0.000

La ecuación de la línea recta de la forma: y = -0.032x + 1.416

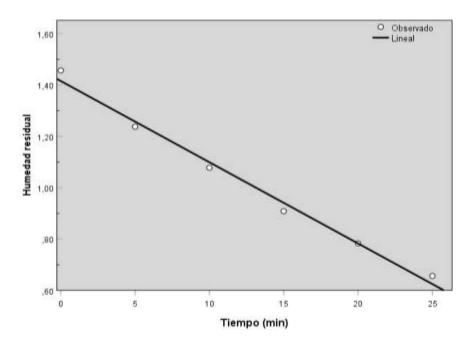


Figura 57. Representación de los datos experimentales (0) y de la línea recta (-) generada por el SPSS. (T = 70 °C; velocidad = 2,0 m/s).

Análisis de regresión exponencial con el SPSS (T = 70 $^{\circ}$ C; velocidad = 2.0 m/s).

Tabla 53. Resumen del modelo de regresión exponencial (T = 70 °C; velocidad = 2.0 m/s).

			Error
R	R cuadrado	R cuadrado	estándar de
		ajustado	la estimación
0.986	0.972	0.971	0.123

La variable independiente es Tiempo (min)

Tabla 54. Análisis de varianza (ANOVA) del modelo de regresión exponencial ($T=70\,^{\circ}C$; velocidad=2.0m/s).

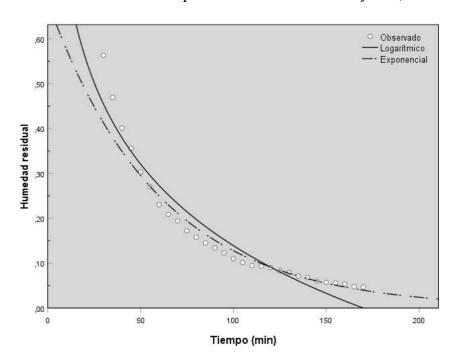

	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	14.275	1	14.275	949.661	0.000
Residuo	0.406	27	0.015		
Total	14.681	28			

Tabla 55. Coeficientes de la ecuación exponencial (T = 70 °C; velocidad = 2,0 m/s).

	Coeficiente no		Coeficientes		
	estandarizados		estandarizados	t	Sig.
	В	Desv.	Beta	_	
		Error			
Tiempo	-	0.001	-0.986	-30.817	0.000
(min)	0.017				
(constante)	0.683	0.040		16.951	0.000

La variable dependiente en ln (Humedad residual).

La ecuación de la curva exponencial será de la forma: $y=0.683e^{(-0.017x)}$

Figura 58. Representación de los datos experimentales (0), de la curva logarítmica (-) y de la curva exponencial (-) generada por el SPSS. La curva exponencial es la más representativa. (T= 70 °C; velocidad = 2.0 m/s).

Tabla 56.

Datos experimentales de la operación de secado de láminas de coco, en un secador de bandejas con flujo de aire a 70 °C y velocidad de 2,5 m/s.

	T	P1	P2 = P1-SB	Yr = (P2-S)/S		
N°	Tiempo	Peso	Peso coco al	Humedad	dY/dt (g	Ym (g
	(min)	estructura +	tiempo t (g)	residual (g	agua/g	agua/g
		coco al		agua/g coco	coco seco	coco seco)
		tiempo t g)		seco)	min)	
1	0	1432.30	400.30	1.39	0.037	1.298
2	5	1401.70	369.70	1.21	0.027	1.139
3	10	1379.10	347.10	1.07	0.025	1.010
4	15	1358.30	326.30	0.95	0.022	0.892
5	20	1339.70	307.70	0.84	0.021	0.784
6	25	1322.10	290.10	0.73	0.017	0.689
7	30	1307.90	275.90	0.65	0.016	0.606
8	35	1294.20	262.20	0.57	0.013	0.533
9	40	1283.30	251.30	0.50	0.011	0.473
10	45	1274.10	242.10	0.45	0.011	0.417
11	50	1264.60	232.60	0.39	0.010	0.364
12	55	1256.40	224.40	0.34	0.008	0.320
13	60	1249.80	217.80	0.30	0.006	0.284
14	65	1244.40	212.40	0.27	0.004	0.258
15	70	1241.10	209.10	0.25	0.006	0.233
16	75	1235.90	203.90	0.22	0.003	0.209
17	80	1233.20	201.20	0.20	0.004	0.190
18	85	1229.50	197.50	0.18	0.004	0.170
19	90	1226.50	194.50	0.16	0.003	0.154
20	95	1224.10	192.10	0.15	0.002	0.141
21	100	1222.20	190.20	0.14	0.002	0.131
22	105	1220.60	188.60	0.13	0.003	0.120
23	110	1218.50	186.50	0.11	0.002	0.109
24	115	1217.10	185.10	0.10	0.002	0.100
25	120	1215.30	183.30	0.09	0.002	0.090

26	125	1213.80	181.80	0.09	0.001	0.082
27	130	1212.70	180.70	0.08	0.001	0.075
28	135	1211.60	179.60	0.07	0.001	0.068
29	140	1210.40	178.40	0.06	0.000	0.064
30	145	1210.00	178.00	0.06	0.003	0.056
31	150	1207.80	175.80	0.05	0.000	0.049
32	155	1207.60	175.60	0.05	0.000	0.048
33	160	1207.60	175.60	0.05	0.010	0.024

SB = 1032 S= 167.53

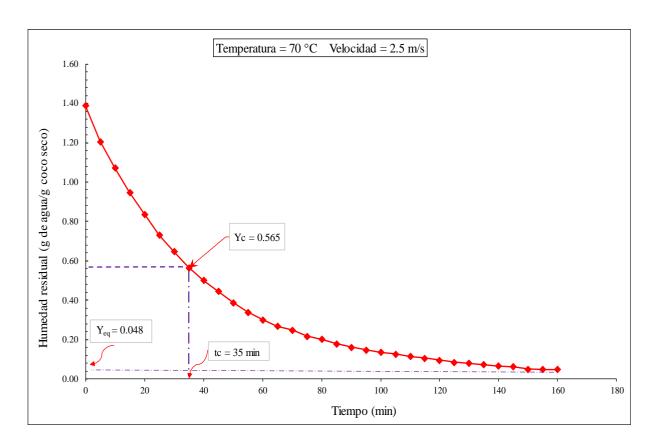


Figura 59. Humedad residual en función del tiempo (T = 70 °C; velocidad = 2.5 m/s).

Análisis de regresión lineal con el SPSS (T = 70 $^{\circ}$ C; velocidad = 2.5 m/s).

Tabla 57. Resumen modelo de regresión lineal (T = 70 °C; velocidad = 2.5 m/s).

R	R cuadrado	R cuadrado	Error estándar de la
		ajustado	estimación
0.992	0.984	0.982	0.039

La variable independiente es Tiempo (min)

Tabla 58. Análisis de varianza (ANOVA) del modelo de regresión lineal ($T=70~^{\circ}C$; velocidad=2.5~m/s).

	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	0.560	1	0.560	373.125	0.000
Residuo	0.009	6	0.002		
Total	0.569	7			

La variable independiente es Tiempo (min)

Tabla 59. Coeficiente de la ecuación lineal (T = 70 °C; velocidad = 2.5 m/s).

	Coeficiente no		Coeficientes		
	estandarizados		estandarizados	t	Sig.
	В	Desv.	Beta	-	
		Error			
Tiempo	-	0.001	-0.992	-19.316	0.000
(min)	0.023				
(constante)	1.328	0.025		53.135	0.000

La ecuación de la línea recta de la forma: y = -0.023x + 1.328

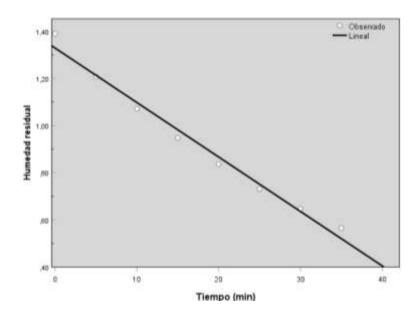


Figura 60. Representación de los datos experimentales (0) y de la línea recta (-) generada por el SPSS. (T = 70 °C; velocidad = 2,5 m/s).

Análisis de regresión exponencial con el SPSS (T = 70 °C; velocidad = 2.5 m/s).

Tabla 60. Resumen del modelo de regresión exponencial ($T=70~^{\circ}C$; velocidad = 2.5 m/s).

			Error
R	R cuadrado	R cuadrado	estándar de la
		ajustado	estimación
0.998	0.996	0.995	0.049

La variable independiente es Tiempo (min)

Tabla 61. Análisis de varianza (ANOVA) del modelo de regresión exponencial ($T = 70 \, ^{\circ}C$; $velocidad = 2.0 \, m/s$).

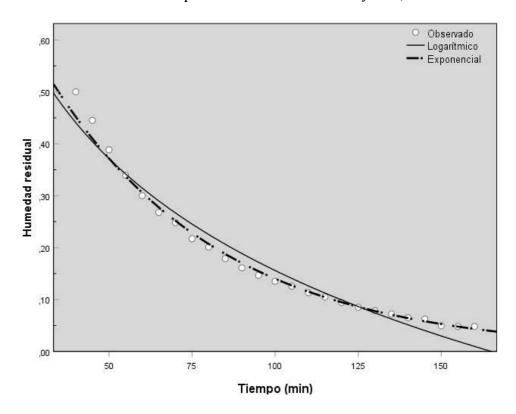

	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	12.389	1	12.389	5184.998	0.000
Residuo	0.055	23	0.002		
Total	12.444	24			

Tabla 62. Coeficientes de la ecuación exponencial ($T=70~^{\circ}C$; velocidad = 2,5 m/s).

-					
	Coeficiente no		Coeficientes		
	estandarizados		estandarizados	t	Sig.
	В	Desv.	Beta	-	
		Error			
Tiempo	-	0.000	-0.998	-72.007	0.000
(min)	0.020				
(constante)	0.987	0.028		34.695	0.000

La variable dependiente en ln (Humedad residual).

La ecuación de la curva exponencial será de la forma: $y = 0.987e^{(-0.020x)}$

Figura 61. Representación de los datos experimentales (0), de la curva logarítmica (-) y de la curva exponencial (-) generada por el SPSS. La curva exponencial es la más representativa. (T= 70 °C; velocidad = 2.5 m/s).

Tabla 63.

Datos experimentales de la operación de secado de láminas de coco, en un secador de bandejas con flujo de aire a 70 °C y velocidad de 3,0 m/s.

	T	P1	P2 = P1-SB	Yr = (P2-S)/S		
N°	Tiempo	Peso	Peso coco al	Humedad	dY/dt (g	Ym (g
	(min)	estructura +	tiempo t (g)	residual (g	agua/g coco	agua/g
		coco al		agua/g coco	seco min)	coco
		tiempo t g)		seco)		seco)
1	0	1433.50	401.50	1.39	0.042	1.283
2	5	1398.50	366.50	1.18	0.034	1.094
3	10	1369.80	337.80	1.01	0.032	0.928
4	15	1342.70	310.70	0.85	0.026	0.783
5	20	1321.10	289.10	0.72	0.022	0.664
6	25	1302.60	270.60	0.61	0.020	0.558
7	30	1285.50	253.50	0.51	0.016	0.468
8	35	1272.20	240.20	0.43	0.014	0.392
9	40	1260.10	228.10	0.36	0.010	0.330
10	45	1251.30	219.30	0.30	0.008	0.283
11	50	1244.20	212.20	0.26	0.006	0.246
12	55	1238.80	206.80	0.23	0.008	0.210
13	60	1232.30	200.30	0.19	0.004	0.180
14	65	1228.80	196.80	0.17	0.003	0.163
15	70	1226.40	194.40	0.16	0.004	0.145
16	75	1222.80	190.80	0.13	0.003	0.128
17	80	1220.50	188.50	0.12	0.002	0.115
18	85	1218.50	186.50	0.11	0.002	0.103
19	90	1216.70	184.70	0.10	0.002	0.093
20	95	1214.90	182.90	0.09	0.002	0.081
21	100	1212.80	180.80	0.07	0.002	0.070
22	105	1211.30	179.30	0.07	0.001	0.064
23	110	1210.50	178.50	0.06	0.001	0.060
24	115	1210.00	178.00	0.06	0.000	0.057
25	120	1209.60	177.60	0.06	0.002	0.052

26	125	1208.30	176.30	0.05	0.000	0.048
27	130	1208.10	176.10	0.05	0.009	0.023

SB = 1032 S= 168.20

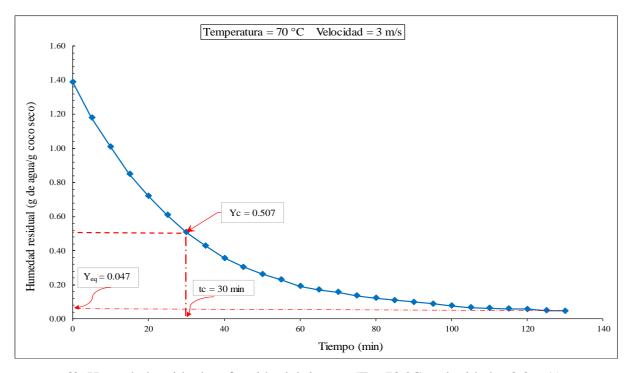


Figura 62. Humedad residual en función del tiempo (T = 70 °C; velocidad = 3.0 m/s).

Análisis de regresión lineal con el SPSS (T = 70 °C; velocidad = 3.0 m/s).

Tabla 64. Resumen modelo de regresión lineal ($T=70~^{\circ}C$; velocidad = 3.0~m/s).

R	R	R cuadrado	Error estándar de
	cuadrado	ajustado	la estimación
0.992	0.984	0.980	0.044

Tabla 65. Análisis de varianza (ANOVA) del modelo de regresión lineal ($T=70~^{\circ}C$; velocidad=3.0~m/s).

	Suma de	Gl	media	F	Sig.
	cuadrados		cuadrática		
Regresión	0.591	1	0.591	302.066	0.000
Residuo	0.010	5	0.002		
Total	0.601	6			

La variable independiente es Tiempo (min)

Tabla 66. Coeficiente de la ecuación lineal ($T=70~^{\circ}C;\ velocidad=3.0~m/s$).

•					
	Coeficiente no		Coeficientes		
	estandarizados		estandarizados	t	Sig.
	В	Desv.	Beta	-	
		Error			
Tiempo	-	0.002	-0.992	-17.380	0.000
(min)	0.029				
(constante)	1.330	0.030		44.104	0.000

La ecuación de la línea recta de la forma: y = -0.029x + 1.330

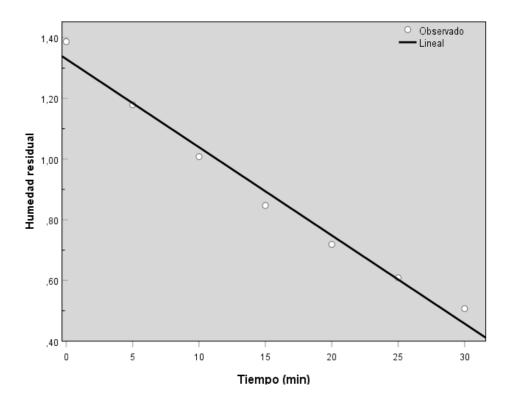


Figura 63. Representación de los datos experimentales (0) y de la línea recta (-) generada por el SPSS. (T = 70 °C; velocidad = 3,0 m/s).

Análisis de regresión exponencial con el SPSS (T = 70 $^{\circ}$ C; velocidad = 3.0 m/s).

Tabla 67. Resumen del modelo de regresión exponencial (T = 70 °C; velocidad = 3.0 m/s).

			Error estándar	
R	R cuadrado	R cuadrado	de la	
		ajustado	estimación	
0.994	0.988	0.987	0.080	

Tabla 68. Análisis de varianza (ANOVA) del modelo de regresión exponencial ($T=70~^{\circ}C$; velocidad=3.0 m/s).

-	Suma de	Gl	media	F	Sig.	
	cuadrados		cuadrática	cuadrática		
Regresión	8.995	1	8.995	1423.136	0.000	
Residuo	0.114	18	0.006			

Total 9.109 19

La variable independiente es Tiempo (min)

Tabla 69. Coeficientes de la ecuación exponencial (T = 70 °C; velocidad = 3.0 m/s).

	Coeficiente no estandarizados		Coeficientes estandarizados	t	Sig.
	В	Desv.	Beta	_	
		Error			
Tiempo	-	0.001	-0.994	-37.724	0.000
(min)	0.023				
(constante)	0.826	0.045		18.558	0.000

La variable dependiente en ln (Humedad residual).

La ecuación de la curva exponencial será de la forma: $y = 0.826e^{(-0.023x)}$

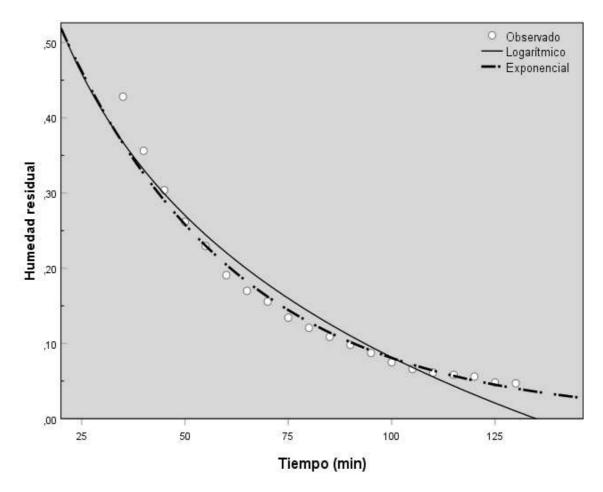


Figura 64. Representación de los datos experimentales (0), de la curva logarítmica (-) y de la curva exponencial (-) generada por el SPSS. La curva exponencial es la más representativa. ($T=70\,^{\circ}\text{C}$; velocidad = 3.0 m/s).