UNIVERSIDAD NACIONAL DE JAÉN ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA Y ELÉCTRICA

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO MECÁNICO ELECTRICISTA

DISEÑO DE UN SISTEMA DE GENERACIÓN DE ENERGÍA ELÉCTRICA UTILIZANDO BIOGÁS (METANO) OBTENIDO A PARTIR DE RESIDUOS SÓLIDOS URBANOS EN JAÉN - PERÚ

Autores : Bach. Angel Geancarlo Pérez Calderón

Bach. Kevin Arturo Medina Quiroz

Asesor : Mg. Ing. Henry Oswaldo Pinedo Nava

ACTA DE SUSTENTACIÓN DE TESIS

En la Sala de 1	ocentes	del Local Académico	de la sede Ce	ntral_de
la Universidad Nacional de Jaén ubicado en el distrito de Jaén de la provincia de Jaén, siendo				
las 14.53 del día 19 de Junto del año 2019, se reunieron los docentes:				
Mg. Doris de la Caridad Vasconcellos Vilató (Presidente), M. Sc. Freddi Roland Rodríguez				
Ordoñez (Secretario), M. Sc. Leonardo Damián Sandoval (Vocal), en condición de integrantes				
del Jurado Evaluador del Informe Final del Trabajo de Tesis intitulado: "Diseño de un sistema				
de generación de ene	ergía eléctrica	a utilizando biogás (m	etano) obtenido a parti	r de residuos
sólidos urbanos en Ja	aén - Perú",	cuyos autores son los	Bachilleres en Ingeniería	a Mecánica y
Eléctrica Kevin Arturo	Medina Qui	roz y Angel Geancarlo	o Pérez Calderón y Aseso	or Ing. Henry
Oswaldo Pinedo Nav	/a, con el pro	opósito de proceder a	a la sustentación y defe	nsa de dicha
tesis.				
Lucia de la custantes			Fuel and a scoppé.	Anahan
			Evaluador ACORDÓ: _ ía Mecánica y Eléctrica	
			bteniendo la siguiente	
mención:			J	•
The helds.				
	Nota en e	scala vigesimal]
	Nota en e	scala vigesimal Letras	Mención	
	A STATE OF THE STA	Letras	- Mención Excelente	
	A STATE OF THE STA			
En señal de conformic	Números 18	Letras Dieciocho		ares.
En señal de conformic	Números 18	Letras Dieciocho	Excelente	nres.
En señal de conformic	Números 18	Letras Dieciocho de a la firma de la pres	Excelente	ares.
En señal de conformic	Números 18	Letras Dieciocho de a la firma de la pres	Excelente	nres.
En señal de conformic	Números) 8 dad, se proced	Letras Dieciocho de a la firma de la pres	Excelente sente acta en 03 ejempla	nres.
En señal de conformic	Números) 8 dad, se proced	Letras Dieciocho de a la firma de la pres	Excelente sente acta en 03 ejempla	ares.
En señal de conformic	Números) 8 dad, se proced	Letras Dieciocho de a la firma de la pres	Excelente sente acta en 03 ejempla	ares.
En señal de conformic	Números) 8 dad, se proced	Letras Dieciocho de a la firma de la pres	Excelente sente acta en 03 ejempla	ares.
En señal de conformic	Números) 8 dad, se proced	Letras Dieciocho de a la firma de la pres	Excelente sente acta en 03 ejempla	ares.
En señal de conformio	Números) 8 dad, se proced	Letras Dieciocho de a la firma de la pres	Excelente sente acta en 03 ejempla	ares.
En señal de conformio	Números / 8 dad, se proced	Letras Dieciocho de a la firma de la pres residente Jurado Evalu	Excelente sente acta en 03 ejempla	ares.
Ш.	Números / 8 dad, se proced	Letras Dieciocho de a la firma de la pres residente Jurado Evalu	Excelente sente acta en 03 ejempla ador	ares.

DEDICATORIAS

Este proyecto se lo dedico a Dios quién supo guiarme, darme fuerzas para seguir adelante a pesar de los problemas.

A mi madre Lidia por su apoyo, consejos, comprensión, amor, ayuda en los momentos difíciles, y por ayudarme con los recursos necesarios para estudiar.

A mis hermanas Yessenia y Keily por estar siempre presentes, por su apoyo durante mi formación profesional.

Angel Geancarlo Pérez Calderón

Este proyecto lo dedico a mi madre Cristina por su apoyo, consejos, comprensión, amor, ayuda en los momentos difíciles, y por ayudarme con los recursos necesarios para estudiar, a mi padre Heder por enseñarme a no rendirme en momentos difíciles, a mi hermano Erick por ser un buen compañero de vida, a mi abuelita Victoria por consentirme siempre y a mis hermanas Karlita y Sheyla por estar siempre en las buenas y malas.

Kevin Arturo Medina Quiroz.

AGRADECIMIENTOS

A Dios;

Por darnos la fuerza y el valor para lograr culminar con éxito nuestra carrera profesional.

A nuestros padres;

Por el apoyo incondicional durante toda nuestra formación académica y por confiar siempre en nosotros.

A nuestro asesor;

Ingeniero Henry Oswaldo Pinedo Nava, por el apoyo para poder culminar con éxito con nuestra investigación.

Al ingeniero;

Cecilio Delgado Cubas, gerente de la planta de Reserva Fría de Generación de Eten por brindarnos todas las facilidades durante la visita en la planta.

INDICE

I. INTRODUCCIÓN	15
II. REVISIÓN LITERARIA	17
2.1. Antecedentes del problema	17
2.2. Bases Teóricas	17
2.2.1. Energías renovables	17
2.2.2. Residuos sólidos	18
2.3. Proyección de la Población	18
2.3.1. Generación per cápita	19
2.3.2. Proyección de la Generación per cápita	19
2.4. Biogás en residuos sólidos urbanos	19
2.4.1. Composición	19
2.5. Modelo para estimar la generación de biogás en residuos sólidos urbanos	20
2.5.1. Modelo Scholl Canyon	20
2.6. Generación de energía eléctrica a partir de biogás	21
2.6.1. Centrales térmicas de biomasa.	21
2.6.2. Central termoeléctrica a gas	22
2.6.3. Ciclo termodinámico Joule- Brayton	22
2.7. Componentes principales del sistema generación de energía utilizando biogá	ís
	23
2.7.1. Biogás	23
2.7.2. Filtro de Biogás	23
2.7.3. Turbina a gas	23
2.7.4. Generador eléctrico	25
2.7.5. Transformador eléctrico de Potencia	25
III MATERIALES Y METODOS	26

3.1. Materiales	26
3.1.1. Equipos	26
3.1.2. Software	26
3.1.3. Material de Campo	26
3.1.4. Materiales de gabinete	26
3.2. Diseño de la investigación.	26
3.2.1. Enfoque	26
3.2.2. Población y muestra	26
3.2.3. Variables	27
3.3. Metodología de la investigación	27
3.3.1. Métodos e instrumentos de recolección de datos	27
3.3.2. Población estimada para el 2039 en la ciudad de Jaén	27
3.3.3. Producción estimada de Biogás para el 2039, generada por la población	de
la ciudad de Jaén	35
3.3.4. Calculo de los parámetros del ciclo de combustión simple Joule Brayton	1
requeridos a su vez para poder estimar la generación de energía eléctrica parte del generador eléctrico	-
3.3.5. Selección de equipamiento básico para el sistema de generación de ener	
eléctrica utilizando Biogás obtenido de los residuos sólidos urbanos	•
IV. ANALISIS Y DISCUSIÓN DE RESULTADOS	58
4.1.Crecimiento Poblacional.	
4.2.Generación de Residuos Sólidos Urbanos.	59
4.3.Generación de Residuos Sólidos Orgánicos	60
4.4. Estimación de generación de biogás obtenido de los Residuos Sólidos Orgáni	icos
2019-2039 - Jaén. (Método Scholl Canyon)	61
4.5. Estimación de Generación de metano con una eficiencia de captura del 60 %	
obtenido de los residuos sólidos orgánicos al 2039 - Jaén	62
4.6. Generación de Energía Eléctrica por años (2019 al 2039)	63

4.7. Centrales Termoeléctricas existentes en el Perú y su Inversión	64
4.8. Monto de Inversión estimada para la Planta de Generación Eléctrica utilizando	
Biogás (metano) obtenido a partir de Residuos Sólidos Urbanos en Jaén	65
4.9. Estimación de ingresos anuales por energía ofertada	66
4.10. Discusiones de la investigación	67
V. CONCLUSIONES	69
VI. RECOMENDACIONES	70
VII. REFERANCIAS BIBLIOGRAFICAS	71
VIII. ANEXOS	74

ÍNDICE DE TABLAS

Tabla 1. Composición química del biogás	. 20
Tabla 2. Población de la ciudad de Jaén del año 2000 al 2015	. 27
Tabla 3. Estimación de la población de la ciudad de Jaén del año 2016 al 2039	. 29
Tabla 4. Estimación del Valor de Generación per Cápita	. 31
Tabla 5. Generación de Residuos Sólidos Orgánicos	. 32
Tabla 6. Producción Estimada de Metano	. 34
Tabla 7. Producción Estimada de Biogás para los años 2019-2039	. 35
Tabla 8. Tabla de Interpolación 1	. 39
Tabla 9. Tabla de interpolación 2	. 40
Tabla 10. Tabla de interpolación 3	. 44
Tabla 11. Tabla de interpolación 4	. 45
Tabla 12. Tabla de interpolación 5	. 46
Tabla 13. Tabla de interpolación 6	. 46
Tabla 14. Tabla de interpolación 7	. 47
Tabla 15. Prueba de ensayo y error	. 47
Tabla 16. Potencia Neta obtenida para generar Energía Eléctrica	. 63
Tabla 17. Centrales Termoeléctricas en el Perú	. 64
Tabla 18. Inversión Estimada para el Sistema de Generación de Energía Eléctrica	. 65
Tabla 19. Estimación de los ingresos Anuales por Generación de Energía Eléctrica	. 66

ÍNDICE DE FIGURAS

Figura 1 Ciclo Joule Brayton	22
Figura 2. Ciclo Joule Brayton Simple Abierto	36
Figura 3. Compresor Proceso 1 - 2	38
Figura 4. Nuevo Balance	43
Figura 5. Filtro para Biogás Megomex	54
Figura 6. Turbina con Generador acoplado Mercury 50	56

ÍNDICE DE GRÁFICOS

Gráfico 1. Diagrama T - s	38
Gráfico 2. Diagrama T-S del proceso 1 - 2	. 40
Gráfico 3.Diagrama del proceso 2 – 3	. 41
Gráfico 4. Diagrama T – S del proceso 2- 3	. 41
Gráfico 5. Diagrama para el proceso 3 - 4	. 49
Gráfico 6. Estimación del Crecimiento Poblacional 2019 - 2039	. 58
Gráfico 7. Estimación de Generación de R.S.U (2019 -2039)	. 59
Gráfico 8. Estimación de Residuos Sólidos Orgánicos 2019 – 2039	. 60
Gráfico 9. Estimación de Biogás Obtenido de los Residuos Sólidos Orgánicos (Métodos Companicos de Companicos Companicos de Companicos Companicos de Companicos Companicos de Companicos Com	do
Scholl Canyon)	. 61
Gráfico 10. Estimación del Metano capturado al 60% para los años 2019 – 2039	62

ÍNDICE DE ANEXOS

Anexo 1 Turbina de Gas Mercury 50.	. 74
Anexo 2 Central Termoeléctrica PLANTA ETÉN – RESERVA FRÍA	. 76
Anexo 3 Central Termoeléctrica RECKA (181,3 MW)	. 77
Anexo 4 Central Termoeléctrica HUAYCOLORO.	. 78
Anexo 5 Central de Biomasa LA GRINGA V.	. 79
Anexo 6 Central Termoeléctrica MALACAS.	. 80
Anexo 7 Central Termoeléctrica TABLAZO	. 81
Anexo 8 TABLA A-2 Calores específicos de gas ideal de varios gases comunes	. 82
Anexo 9 TABLA A-17 Propiedades de Gas ideal del Aire.	. 83
Anexo 10 TABLA A-18 -de gas ideal del Nitrógeno N2	. 84
Anexo 11 TABLA A-19 Propiedades de gas ideal del oxígeno, O2	. 85
Anexo 12 TABLA A-20 Propiedades de gas ideal del dióxido de carbono,CO2	. 86
Anexo 13 TABLA A-23 Propiedades de gas ideal del vapor de agua, H2O	. 88
Anexo 14 TABLA A-26 Entalpía de formación, función de Gibbs de formación y	
entropía absoluta a 25°C, 1 atm.	. 90
Anexo 15 Panel Fotográfico Visita a Planta de Reserva Fría de Eten.	. 91
Anexo 16 Botadero Municipal actual de la ciudad de Jaén.	. 93
Anexo 17 Mapa de Ubicación	. 94

LISTA DE ABREVIACIONES

RSU : Residuos Sólidos Urbanos.RSO : Residuos Sólidos Orgánicos.

MW : Mega Watt.kW : KiloWatt.kWh : KiloWatt Hora.

Hz : Hercio.V : Voltaje.kg : Kilogramo

• kg/s : Kilogramo por Segundo.

m³ : Metro Cúbico.
 t : Toneladas

• PIGARS : Programa Integral de Gestión Ambiental de Residuos Sólidos.

RESUMEN

En la actualidad los Residuos Sólidos Urbanos (RSU) que genera la ciudad de Jaén en Perú se recolectan por la Municipalidad Provincial de Jaén desde los hogares y son llevados hasta el botadero para su disposición final o en el peor de los casos arrojados en botaderos informales, generando una contaminación aun mayor para esta ciudad.

En la ciudad de Jaén no existe ningún tipo de clasificación de USW, esta situación incrementa las incertidumbres de los cálculos. Por lo tanto, en el futuro, cuando se implementaría este sistema de clasificación USW, se podrían hacer mejores estimaciones porque sería posible realizar una estimación del volumen específico de USW que se puede utilizar para producir biogás.

Esta investigación tiene como finalidad demostrar que los RSU contienen un gran potencial energético, por lo cual se propone como objetivo general el dimensionamiento electromecánico del sistema fundamental empleado para la generación de energía eléctrica que utiliza biogás (metano) obtenido a partir de RSU en Jaén.

Para poder lograr los objetivos de esta investigación se estimó la generación de Residuos Sólidos Urbanos utilizando el Programa Integral de Gestión Ambiental de Residuos Sólidos (PIGARS) desarrollado por la Municipalidad Provincial de Jaén en el año 2012. Este cálculo asume la existencia de un relleno sanitario donde se depositarán y tratarán adecuadamente los RSU de la ciudad de Jaén cuya proyección de servicio sería de 20 años. Teniendo como base lo antes mencionado, utilizando el modelo matemático Scholl Canyon se calculó la cantidad de RSU para luego calcular el volumen de biogás producido. Por último, se pudo determinar que con el biogás obtenido hipotéticamente para el año 2039 el Sistema de Generación de Energía Eléctrica podrá generar 4.3 Mega Watt, lo cual representa el consumo promedio de 4 300 viviendas en la ciudad de Jaén.

Palabras claves: Residuos Sólidos Urbanos, Relleno Sanitario, Scholl Canyon, Programa Integral de Gestión Ambiental de Residuos Sólidos (PIGARS).

ABSTRACT

At present time the Urban Solid Waste (USW) generated by the Jaen city in Peru are collected by the Municipality from each home at city. The collected waste are transported to the city dump for their proper disposal and in the worst case these waste can be also through away into informal dumps.

In the city of Jaen does not exists any type of classification of USW, this situation increase the uncertainties of the calculations. Therefore, in the future when this USW classification system would be implemented, it could be done better estimations because it would be possible to perform an estimation of the specific USW volume that can be used for producing biogas.

This research chas the main purpose to demonstrate that the USW has high energetic potential, therefore it has been focused into the electromechanical specification of the fundamental machines required for generating the electric energy using as energy source the biogas (methane) obtained from the USW processing.

Most of the information required for estimating the total amount of USW is obtained from the "Programa Integral de Gestión Ambiental de Residuos Sólidos PIGARS" developed by the Municipality of Jaén during the year 2012. These calculations assume the current existence of the city dump with proper treatment of USW collected from the Jaen city, whose operation time is estimated to last 20 years from present year.

Based on cited information and using the Scholl Canyon mathematical model it was estimated the amount of USW and their corresponding amount of biogas volume. As main conclusion from the analysis, it was found that in year 2039 the total electric energy generated from biogas would be 4.3 MW which represent the average consumption of 4 300 houses in the city of Jaén.

Keywords: Urban Solid Waste, Sanitary Landfill, Scholl Canyon, Comprehensive Environmental Management Program for Solid Waste (PIGARS).

I. INTRODUCCIÓN

Un sistema de generación de energía eléctrica tiene como finalidad transformar alguna clase distinta de energía (mecánica, química, solar, térmica, nuclear, entre otras) en energía eléctrica. El principio de funcionamiento de la turbina a gas se basa en el ciclo termodinámico simple abierto Joule Brayton utilizando el biogás (metano) obtenido de los RSU de la ciudad de Jaén, el cual nos ha permitido estimar 4,3 MW de potencia de generación.

Existen muchos más componentes electromecánicos que forman parte de un sistema de generación de energía eléctrica, sin embargo, por los alcances, limitaciones temporales y presupuestales de la presente tesis de investigación de pre-grado, solo nos hemos concentrado en los componentes principales del proceso un filtro inicial de biogas, turbina de gas acoplado a un generador(Factory 50) y un transformador eléctrico trifásico de tres devanados.

La población de la ciudad de Jaén está creciendo a pasos agigantados, según el registro oficial disponible en la actualidad sobre la población en la ciudad de Jaén ("XII Censo de Población, VII de Vivienda y III de Comunidades Indígenas", INEI, 2015) indica que es de 100 450 habitantes en el año 2015.

Por otro lado, un dato alarmante brindado por Organismo de Evaluación y Fiscalización Ambiental señala que la ciudad de Jaén se encuentra dentro de los 92 distritos a nivel nacional con déficit en el tratamiento de sus RSU. Por tanto, con el desarrollo de este proyecto también se contribuirá con las diversas estrategias requeridas para atenuar los efectos de la contaminación ambiental.

En conclusión la estimación de la población al año 2039 será de 133 761 habitantes los cuales generaran una cantidad de metano hipotético obtenido de los RSU es de $7812912 \frac{m^3}{año}$, utilizando el modelo Scholl Canyon en el año 2039 y con el desarrollo del ciclo termodinámico Joule Brayton simple abierto, nos permitió estimar que la potencia de generación es de 4,3 MW, teniendo en cuenta aspectos ambientales y geográficos de la zona Jaén teniendo en cuenta los datos obtenidos del desarrollo del ciclo Joule Brayton; lo que nos permitió seleccionar el paquete de generación de energía MERCURY 50 ofertado por la empresa SOLAR TURBINE A CATERPILLAR COMPANY; también seleccionamos un trasformador de potencia eléctrica de 10 MVA con 3 devanados (13,8/22,9/380 kV), con una frecuencia de 60 Hz el cual se deberá mandar a fabricar a medida por no encontrarse en el mercado

además el Sistema de Generación de Energía Eléctrica utilizando Biogás(metano) obtenido a través de RSU, podrá cubrir un aproximado de 4 300 viviendas, teniendo en cuenta la calificación eléctrica para viviendas en zonas urbanas de 1 Kw.

Entre los objetivos de esta investigación tenemos:

Objetivo general

Diseñar el sistema fundamental de generación de energía eléctrica que utiliza biogás (metano) obtenido a partir de residuos sólidos urbanos en Jaén.

Objetivos Específicos

Estimar el crecimiento poblacional y la cantidad de biogás(metano) que se obtendrá en el año 2039 por medio de los residuos sólidos urbanos en Jaén teniendo como fuente principal el PIGARS de la Municipalidad Provincial de Jaén e INEI.

Calcular los parámetros del ciclo termodinámico simple Joule Brayton (presión, temperatura y entalpias) requeridos para poder estimar la generación de energía eléctrica por parte del generador eléctrico.

Seleccionar y especificar el equipamiento fundamental para la generación de energía eléctrica utilizando el biogás(metano) que se podrá producir en el sistema.

II. REVISIÓN LITERARIA

2.1. Antecedentes del problema

La investigación de (Huaylinos Sosa, 2018) : "Determinación de la potencia Eléctrica a partir del biogás obtenido de los residuos sólidos municipales de la provincia de Huancayo, tuvo como objetivo general determinar la potencia eléctrica generada a través de la conversión del biogás obtenido de los residuos sólidos municipales de la provincia de Huancayo"

En el proyecto de investigación de la tesis (Espinoza, 2014): "Beneficios Del Biogás Capturado En Un Relleno Sanitario, Transformado A Energía Eléctrica En El Marco Del Mecanismo De Desarrollo Limpio – MDL, tiene como objetivo principal evaluar, comparar y analizar los beneficios del biogás del relleno sanitario de la Municipalidad Provincial de Huancayo transformado a energía eléctrica y como mecanismo de desarrollo limpio sostenible"

(Petramás, 2018) orienta: "en el año 2012 ha puesto en marcha la primera Planta de Generación de Energía Eléctrica a partir de la basura: Central Térmica de Biomasa Huaycoloro en Lima"

2.2. Bases Teóricas

2.2.1. Energías renovables

Las energías renovables son las que se producen en forma continua y son ilimitadas para la humanidad, como principales energías renovables tenemos la energía solar, hidráulica, eólica y biomasa.(Chonlón, 2016)

Respecto al ámbito nacional debe destacarse que el Perú ha sido tradicionalmente un país cuya generación eléctrica se ha sustentado en fuentes renovables. Esto significa que nuestro desarrollo energético contribuye desde tiempo atrás a la reducción del efecto invernadero que hoy agobia al planeta, con un desarrollo que se sustenta mayoritariamente en fuentes limpias de energía. Hasta el año 2002, la electricidad generada con centrales hidroeléctricas representó el 85% del total de energía generada en el país. (Osinergmin, 2013).

2.2.1.1. Biomasa

(Epec, 2018) define: "es un biocombustible biodegradable de los diferentes productos y residuos de la agricultura, la forestación y sus industrias asociadas, asimismo incluye la fracción orgánica de los desperdicios municipales e industriales"

2.2.2. Residuos sólidos

(Organismo de Evaluación y Fiscalización Ambiental (OEFA), 2014) define a "los residuos sólidos son productos o subproductos en estado sólido o semisólido, desechados por un generador(persona), además se considera que carecen de valor económico y se les conoce coloquialmente como basura"

2.2.2.1. Residuos sólidos urbanos

Se definen como la basura que es recolectada por las municipalidades u otras autoridades locales; están integrados por los diferentes desechos (orgánicos e inorgánicos) que generan los pobladores de un determinado lugar (Huaylinos Sosa, 2018).

2.2.2. Residuos Orgánicos

Pueden ser de originen animal o vegetal, los cuales se descomponen de una manera natural generando gases.(Huaylinos Sosa, 2018)

2.2.2.3. Residuos Inorgánicos

De origen mineral o producidos de manera industrial, los no se degradan con facilidad.

2.3. Proyección de la Población

Para el cálculo de la población se debe aplicar la siguiente formula:

$$PF = Pi x (1 + r)^n$$
, donde:

Pi : Población inicial, población real obtenida del último Censo Nacional

r: Tasa de crecimiento anual inter censal

 $n\,$: Número de años que se desea proyectar a la población, a partir de la población inicial (Pi)

PF: Población final proyectada después de "n" años

De no contar con la Tasa de crecimiento inter censal esta se puede calcular de la siguiente manera:

$$TC = 100 x \left(\sqrt[n]{\frac{población final}{Población inicial}} - 1 \right)$$
, donde:

TC: Tasa de crecimiento

n : Número de años entre población inicial y población final

Fuente: (Ministerio del Ambiente (MINAM), 2015)

2.3.1. Generación per cápita

Es la generación unitaria de residuos sólidos, normalmente se refiere a la generación de residuos sólidos por persona-día.(Ministerio del Ambiente (MINAM), 2015).

2.3.2. Proyección de la Generación per cápita

Para determinar el crecimiento de Generación per cápita, con dificultad se encuentran cifras que nos demuestren con exactitud cómo puede variar esta anualmente. Sim embargo sabemos que con el crecimiento poblacional y el desarrollo continuo de los pueblos los índices aumentan, se recomienda calcular la producción per cápita de cada año con un incremento de 0,5 a 1% anual (Huaylinos Sosa, 2018).Para calcular la proyección de Generación per cápita utilizaremos la siguiente fórmula:

$$Gpf = Gpa(1+r)^n$$
, donde:

Gpf = Generación per cápita futura (kg/hab/dia)

Gpa = Generación per cápita actual (kg/hab/dia)

r = Tasa del incremento de generación en % (de 0,5 a 1 %)

n = Número de años

Fuente: (Huaylinos Sosa, 2018).

2.4. Biogás en residuos sólidos urbanos

(Chonlón, 2016) define: "El biogás, se origina en el proceso de fermentación o digestión anaerobia, es decir en ausencia del oxígeno, a través de la putrefacción de la parte orgánica de los residuos".

2.4.1. Composición

Está compuesto principalmente por el (CH_4) gas metano y (CO_2) dióxido de carbono y de otros gases en mínimas cantidades, tal como muestra la Tabla 2. Los residuos orgánicos comienzan el tratamiento químico de fermentación, emanan una suma de gases, los cuales en su conjunto son llamados biogás. Utilizando los métodos apropiados, el biogás se puede convertir en diferentes tipos de energía, como en formas de calor, energía mecánica, electricidad (Chonlón, 2016).

"El CH4 (metano), este gas puede llegar a tener las mismas características de un combustible fósil, suficientemente eficiente y limpio que puede ser directamente utilizado para fines de satisfacer alguna o en su totalidad las demandas de energía" (Chonlón, 2016).

Tabla 1 Composición química del biogás.

Diogés	Formula	Volumen
Biogás	Química	(%)
Metano	CH_4	60-70
Dióxido de	CO_2	30-40
carbono	co_2	30-40
Hidrógeno	H_2	1,0
Nitrógeno	N_2	0,5
Sulfuro de	H_2S	0,1
hidrógeno	1125	0,1
Oxigeno	O_2	0,1
Monóxido	CO	0,1
de carbono		0,1

Fuente: (Chonlón, 2016)

2.5. Modelo para estimar la generación de biogás en residuos sólidos urbanos2.5.1. Modelo Scholl Canyon

(Huaylinos Sosa, 2018) acondiciona su trabajo de investigación con el modelo: "ampliamente usado y aceptado por ser simple y directo, este modelo se basa en la suposición que hay una fracción constante de material biodegradable en el relleno sanitario por unidad de tiempo", que estimara la producción del metano(CH_4).

"Ecuación de Generación de metano según modelo Scholl Canyon"

$$Q_{CH4i} = k \times L_0 \times mi \times e^{-kti}$$
, donde:

$$Q_{CH4i}$$
 = Metano producido en el año $i, \frac{m^3}{año}$

$$k$$
 = Constante de generación de metano, $\frac{1}{a\tilde{n}o}$

$$L_0$$
 = Potencial de generación de metano, $\left[\frac{m^3 C H_4}{t}\right]$

mi = Masa depositada en el año i, t al año

ti = Años de permanencia de los residuos en el relleno.

e = Logaritmo natural, adimensional.

Aplicaremos la fórmula para obtener la cantidad de metano para el año 2014, para una población de 88 176 habitantes de la ciudad de Jaén en el año 2012 (Municipalidad Provincial de Jaén, 2012).

$$Q_{CH4i} = k \times L_0 \times mi \times e^{-kti}$$
, donde:

 Q_{CH4i} = metano estimado para el año 2014.

 $K = 0.05 \frac{1}{a\tilde{n}o}$, dato establecido por el modelo Scholl Canyon.

 $L_0 = 170 [m^3 CH_4/t]$, dato establecido por el modelo Scholl Canyon.

 $mi = (20\ 275,75\ t*0.73)$, tomando el 73% de todos los residuos sólidos urbanos son orgánicos del PIGRAS Jaén.

mi = 14801,3 t

ti = 1 año, es el tiempo promedio de la basura en un relleno sanitario.

e = Logaritmo natural, adimensional.

$$Q_{CH4-2013} = 0.05 \frac{1}{a\tilde{n}o} \times 170 \frac{m^3 CH4}{t} \times 14801,3 t \times e^{-(0.05)(1)}$$

 $Q_{CH4i-2013}=119\ 675,17\ \frac{m^3CH4}{a\~no}$. La estimación volumétrica del metano para el año 2014 será de 119 675,17 $\frac{m^3CH4}{a\~no}$, se realizó el calculó del año 2014 porque el año todo el 2013 los RSU permanecerán en el relleno sanitario.

2.6. Generación de energía eléctrica a partir de biogás

La generación energía Eléctrica a partir de biogás, se produce por la combustión del metano obtenido de los RSU y el aire, esta combustión genera gases que impulsan a una turbina, la cual esta acoplada a un generador eléctrico (Huaylinos Sosa, 2018).

La empresa (Petramás, 2018) en el año 2012 ha puesto en marcha la primera Planta de Generación de Energía Eléctrica a partir de la basura Central Térmica de Biomasa Huaycoloro en Lima.

(Osinergmin, 2018b) publicó "La Central Térmica de Biomasa Callao utilizará los recursos provenientes de los RSU, tendrá una potencia de 2 MW y producirá 14 500 MWh de energía media anual"

2.6.1. Centrales térmicas de biomasa.

(Huaylinos Sosa, 2018) define: "una central térmica de biomasa es una instalación que aprovecha el gas metano generado por la descomposición de los residuos orgánicos (biogás) como combustible para generar energía eléctrica"

2.6.2. Central termoeléctrica a gas

Una central termoeléctrica a gas, tiene como finalidad generar energía eléctrica utilizando como única fuente de energía el metano; está compuesta por:

- 1. Motor eléctrico accionamiento de turbocompresor, al arranque.
- 2. Turbocompresor de aire para combustión
- 3. Cámara de combustión
- 4. Turbina a biogás.
- 5. Generador eléctrico trifásico.
- 6. Transformador elevador de potencia.

Nuestra investigación se basará fundamentalmente en una central termoeléctrica a gas, debido a sus componentes descritos.

2.6.3. Ciclo termodinámico Joule-Brayton

En la actualidad se utiliza en turbinas de gas para los procesos tanto de la compresión como de la expansión que suceden en maquinarias rotatorias. Las turbinas de gas por lo general funcionan en un ciclo simple abierto Joule Brayton, como se observa en la figura 1 (Cengel & Boles, 2012).

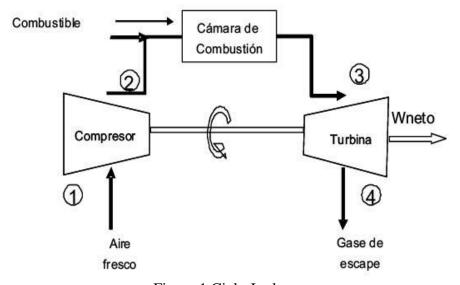


Figura 1 Ciclo Joule

Fuente (Cengel & Boles, 2012)

El presente proyecto utiliza como principal ciclo termodinámico el Joule Brayton y no el Rankin, porque este utiliza como combustible el biogás(metano), lo cual se adecua a nuestro trabajo de investigación. Además, podemos acoplar a futuro más ciclos termodinámicos de generación de energía eléctrica, un claro ejemplo es el ciclo combinado Joule – Rankin, el cual se emplea el gas y el vapor de agua para la generación de energía eléctrica. (Cengel & Boles, 2012)

2.7. Componentes principales del sistema generación de energía utilizando biogás.

2.7.1. Biogás

El biogás, se origina en el proceso de fermentación o digestión anaerobia, es decir en ausencia del oxígeno, a través de la putrefacción de la parte orgánica de los residuos que vienen hacer los RSU. (Chonlón, 2016)

2.7.2. Filtro de Biogás

Es un equipo diseñado específicamente para operar con gases corrosivos como el H2S, estos filtros adsorben de las demás impurezas que genera el biogás antes de su ingreso a la cámara de combustión. (Megomex, 2017)

Las razones por las cuales hay que tratar el biogás es debido a que por sí mismo corroe las tuberías por donde acarrean el combustible, así como los motores para la generación de energía. Los métodos tradicionales de desulfuración implican el uso de filtros de óxido de hierro siendo unos de los métodos más antiguos el uso de limaduras de hierro.

El Sulfuro de Hidrógeno (H₂S) es un componente que encontramos en el gas de digestión y se forma por la transformación de proteínas sulfurosas. Para remover correctamente este componente se pueden utilizar diferentes métodos basados principalmente en técnicas fisicoquímicas y biológicas. Estos métodos físicos reaccionan por el principio de adsorción en donde las partículas de sulfuro de hidrógeno se quedan adheridas a los medios filtrantes. Los métodos químicos funcionan bajo el principio de absorción en donde el H2S reacciona con distintas sustancias químicas y se transforman en azufre elemental o sulfatos los cuales tienen mayor facilidad de remoción. Por último, el método biológico consiste en agregar microorganismos con alto potencial de consumo de azufre.

2.7.3. Turbina a gas

En este proyecto de investigación se empleará una turbina a gas debido al flujo estimado de biogás que se generará para el año 2039, conjuntamente se seleccionara la turbina a gas por su sencillo mantenimiento y el menor uso de aceites lubricantes, además no se encuentran en contacto con los combustibles ni con productos de la combustión y su funcionamiento es con una baja refrigeración lo que permite facilitar enormemente su instalación comparada con los motores alternativos. Además, una de las ventajas de la turbina a gas es que el calor de los gases de escape de la turbina a gas se podrá aprovechar para generar vapor de agua que se utiliza en la industria como energía térmica (Renovetec, 2019b).

2.7.3.1. Admisión de aire:

Consta de una serie de dispositivos, con el fin que el aire entre en la turbina en condiciones adecuadas de presión, temperatura y limpieza.

2.7.3.2. Compresor de aire

Eleva la presión del aire de combustión (una vez filtrado) antes que entre en la cámara de combustión, en una relación que varía según la turbina pero que normalmente está comprendida entre 1:6 y 1:30. Esta compresión se realiza en varias etapas y consume aproximadamente las 2/3 partes del trabajo producido por la turbina, ya que debe empujar el aire a través de cada etapa de álabes por secciones cada vez menores trabajando en contrapresión.

2.7.3.3. Cámara de combustión

Lugar donde se realiza la combustión a presión constante del gas combustible en este estudio el metano junto con el aire. Esta combustión a presión, obliga a que el combustible sea introducido a un nivel de presión adecuado, que oscila entre 10 y 40 bar. Debido a las altas temperaturas que pueden alcanzarse en la combustión y para no reducir demasiado la vida útil de los elementos componentes de la cámara, se trabaja con un exceso de un 300 a 400% más de aire teórico necesario, con lo que se consigue, por un lado, reducir la temperatura de llama adiabática y por otro refrigerar las partes más calientes de la cámara. En una mezcla de gases de combustión la entalpia resultante únicamente se suman las contribuciones de cada componente mezclado (Cengel & Boles, 2012).

 $H = \sum_{i}^{k} N_{i} * h_{i}$, donde

H: entalpia total de gases de escape, kJ

N_i: número de cada elemento

 h_i : entalpia de cada elemento, kJ/kmol

2.7.3.4. Turbina de expansión

En la turbina es donde tiene lugar la conversión de la energía contenida en los gases de combustión que poseen presión y temperatura elevada, a potencia mecánica (en forma de rotación de un eje). Esta potencia se produce cuando los gases calientes provenientes de la cámara de combustión inciden en los álabes de la turbina de expansión, provocando un torque que se puede aprovechar para mover un generador y producir electricidad o provocar un impulso utilizado para mover por ejemplo un avión.

2.7.4. Generador eléctrico

(Cengel & Boles, 2012) define: "es todo dispositivo capaz de transformar la energía mecánica en energía eléctrica, la eficiencia del generador es igual a la relación directamente proporcional a la **salida de potencia eléctrica**(generador) y a la **entrada de potencia mecánica**(turbina a gas)"

La generación de energía eléctrica será trifásica por su uso industrial, además es mejor para el transporte de la energía y para la eficiencia de la energía eléctrica (Renovetec, 2019a).

2.7.5. Transformador eléctrico de Potencia

(Morris & Chapman, 2019) define: "Es una maquina eléctrica que permite elevar la tensión de un circuito de corriente alterna", que permitirá la transmisión de la energía eléctrica a grandes distancias.

El transformador eléctrico que se utilizara en el estudio es trifásico debido a su utilización intensiva de energía eléctrica, su uso industrial, su mínimo impacto ambiental, reducción de mantenimiento, mayor vida útil, bajo nivel de ruido, equipamiento adaptable a las nuevas tecnologías de la red (Promelsa, 2010).

Existen muchos otros componentes que se requieren en una planta de generación de energía eléctrica, que no necesariamente carecen de importancia, pero que por los objetivos principales planteados en este trabajo serán omitidos.

III. MATERIALES Y METODOS.

3.1. Materiales

3.1.1. Equipos

Calculadora

Laptop

Casco

Cámara fotográfica

GPS Garmin

3.1.2. Software

Microsoft Word 2016

Microsoft Excel 2016

Mendeley Desktop

SPSS versión 22

3.1.3. Material de Campo

Lapiceros

Tabla de apuntes

Librera de apuntes

3.1.4. Materiales de gabinete

Libros

Útiles de escritorio

3.2. Diseño de la investigación.

3.2.1. Enfoque

No experimental.

3.2.2. Población y muestra

3.2.2.1. Población de la investigación

La población de esta investigación está representada por la generación de biogás que se obtiene con los residuos sólidos de la provincia de Jaén y sus distritos.

3.2.2.2. Muestra de la investigación

El tamaño de la muestra será la ciudad de Jaén, ya que esta es la que genera mayores RSU en comparación a sus distritos; lo que indica generara mayor biogás para el diseño del sistema de generación de energía eléctrica.

3.2.3. Variables

3.2.3.1. Variable independiente

Estimación del volumen generado de RSU generados por la ciudad de Jaén del año 2019 año 2039.

3.2.3.2. Variable Dependiente

Estimación de la potencia eléctrica generada por el sistema de generación de energía eléctrica.

3.3. Metodología de la investigación

3.3.1. Métodos e instrumentos de recolección de datos.

El estudio se realizó utilizando recolección de datos a través de fuentes confiables como el Instituto Nacional de Estadística e Informática (INEI), Pan Integral de Gestión de Residuos Sólidos (PIGARS JAÉN), Ministerio del Ambiente (MINAM), Organismo Supervisor de la Inversión en Energía y Minería (OSINERGMIN)

3.3.2. Población estimada para el 2039 en la ciudad de Jaén.

Para calcular la población estimada, se tomarán inicialmente los datos de población en la ciudad de Jaén desde el 2000 hasta el 2015 encontradas en el INEI,

Tabla 2. Población de la ciudad de Jaén del año 2000 al 2015.

Año	Población
2000	81 218
2001	82 768
2002	84 273
2003	85 737
2004	87 167
2005	88 569
2006	89 946
2007	91 289
2008	92 593
2009	93 852
2010	95 074
2011	96 243
2012	97 371
2013	98 450
2014	99 476
2015	100 450

Fuente:(INEI, 2015)

La Tabla 2 está constituida por la información obtenida del INEI; luego aplicamos la fórmula del crecimiento poblacional que nos brinda el INEI.

Para el cálculo de la población se debe aplicar la siguiente formula:

Ecuación Nº 1

$$PF = Pi x (1 + r)^n$$

Donde:

Pi : Población inicial, población real obtenida del último Censo
 Nacional

r : Tasa de crecimiento anual inter censal

n: Número de años que se desea proyectar a la población, a partir de la población inicial (Pi)

PF : Población final proyectada después de "n" años

De no contar con la Tasa de crecimiento inter censal esta se puede calcular de la siguiente manera:

Ecuación Nº 2

$$TC = 100 \ x \left(\sqrt[n]{\frac{Población final}{Población inicial}} - 1 \right)$$

Donde:

TC: Tasa de crecimiento

n : Número de años entre población inicial y población final

Fuente: (Ministerio del Ambiente (MINAM), 2015)

Aplicando la siguiente formula anterior obtendremos:

Población inicial (2007): 91289

Población final (2015): 100450

Número de años (n): 8

$$TC = 100 \, x \left(\sqrt[8]{\frac{100 \, 450}{91 \, 289}} - 1 \right)$$

$$TC = 1.2\%$$

Fuente: Elaboración propia.

Luego de calcular la Tasa de Crecimiento Inter censal, aplicaremos la Ecuación N° 1 para calcular el Crecimiento Poblacional en los diferentes años.

Tabla 3. Estimación de la población de la ciudad de Jaén del año 2016 al 2039

Año	Población
2016	101 656
2017	102 876
2018	104 111
2019	105 361
2020	106 626
2021	107 906
2022	109 201
2023	110 512
2024	111 839
2025	113182
2026	114 541
2027	115 916
2028	117 307
2029	118 715
2030	120 140
2031	121 582
2032	123 041
2033	124 518
2034	126 013
2035	127 526
2036	129 057
2037	130 606
2038	132 174
2039	133 761

Fuente: Elaboración propia

Basado en los datos de población brindados por el INEI aplicando la fórmula de Tasa de crecimiento poblacional anual descrito anteriormente.

Luego de la estimación del crecimiento poblacional proyectada, se calculará la Generación de Proyección per cápita de RSU, utilizando el valor Gpa obtenido del PIGARS (Municipalidad Provincial de Jaén, 2012).

Ecuación N°3

$$Gpf = Gpa(1+r)^n$$

Donde:

Gpf = Generación per cápita futura (kg/hab/dia)

Gpa = Generación per cápita actual (kg/hab/dia)

r = Tasa del incremento de generación en % (de 0,5 a 1 %)

n = Número de años.

Fuente: (Ministerio del Ambiente (MINAM), 2015)

Generación de Proyección per cápita de RSU.

Gpa = 0.63 (kg/hab/dia) en el año 2012.

r = 1%

n = 1.

$$Gpf = 0.63(1 + 0.01)^{1}$$

 $Gpf = 0.6363$

Fuente: Elaboración propia.

Aplicando este método se estimará el valor de Generación per cápita (Gpc) hasta el año 2039.

Tabla 4 Estimación del Valor de Generación per Cápita.

AÑO	POBLACIÓN	GENERACÍON PER CÁPITA (kg/habitante/día)
2012	97 371	0,63
2013	98 450	0,64
2014	99 476	0,65
2015	100 450	0,66
2016	101 656	0,67
2017	102 876	0,68
2018	104 111	0,69
2019	105 361	0,70
2020	106 626	0,71
2021	107 906	0,72
2022	109 201	0,73
2023	110 512	0,74
2024	111 839	0,75
2025	113 182	0,76
2026	114 541	0,77
2027	115 916	0,78
2028	117 307	0,79
2029	118 715	0,80
2030	120 140	0,81
2031	121 582	0,82
2032	123 041	0,83
2033	124 518	0,84
2034	126 013	0,85
2035	127 526	0,86
2036	129 057	0,87
2037	130 606	0,88
2038	132 174	0,89
2039	133 761	0,90

Fuente: Elaboración propia.

Esta tabla muestra la estimación de Gpa proyectado para 20 años.

Una vez obtenida la cantidad de población estimada calcularemos la Generación de residuos sólidos orgánicos, estos representan el 73,3 % del total de los RSU.

Tabla 5. Generación de Residuos Sólidos Orgánicos

ESTIMACIÓN DE GENERACIÓN DE RESIDUOS SOLIDOS ORGÁNICOS AL 2039 EN LA CIUDAD DE JAÉN.

AÑO	POBLACIÓN	RESIDUOS SÓLIDOS URBANOS (GENERAL EN TONELADA/AÑO)	GENERACIÓN DE RESIDUOS SOLIDOS ORGÁNICOS (TONELADA/AÑO)
2019	105 361	807 672	592 023,58
2020	106 626	829 025	607 675,33
2021	107 906	850 815	623 647,4
2022	109 201	872 934	639 860,63
2023	110 512	895 491	656 394,91
2024	111 839	918 486	673 250,24
2025	113 182	941 919	690 426,63
2026	114 541	965 790	707 924,07
2027	115 916	990 099	725 742,57
2028	117 307	1 014 846	743 882,12
2029	118 715	1 040 031	762 342,73
2030	120 140	1 065 654	781 124,39
2031	121 582	1 091 715	800 227,1
2032	123 041	1 118 324	819 731,5
2033	124 518	1 145 370	839 556,21
2034	126 013	1 172 964	859 782,62
2035	127 526	1 200 996	880 330,07
2036	129 057	1 229 466	901 198,58
2037	130 606	1 258 593	922 548,67
2038	132 174	1 288 158	944 219,82
2039	133 761	1 318 271	966 292,65

Fuente: Elaboración propia.

Para obtener la cantidad de RSU proyectado, se multiplico la generación per cápita por año de la Tabla 4 por el número de habitantes de cada año respectivamente.

Calculamos la cantidad de metano que producirá la población estimada con el Modelo Scholl Canyon, para el cual aplicaremos la siguiente formula.

Ecuación de Generación de metano según modelo Scholl Canyon

La cantidad de biogás (metano) generado será calculado utilizando la Ecuación N° 3; se tomará los valores de residuos sólidos generados anualmente y los valores por defecto que utiliza el método Scholl Canyon.

El siguiente resultado nos muestra el cálculo de flujo de metano para los primeros 2 años (2019-2020).

Ecuación N°4

$$Q_{CH4i} = k \times L_0 \times mi \times e^{-kti}$$

Donde:

 Q_{CH4i} = Metano producido en el año $i, m^3/a$ ño

 $K = 0.05^{-1}$

 $L_0 = 170 \ m^3/t$

mi = Masa depositada en el año i, Mg/año

ti = Años de permanencia de los residuos en el relleno.

e = Logaritmo natural, adimensional.

$$Q_{CH4i-2019} = 0.05 \frac{1}{\tilde{A}NO} \times 170 \frac{m^3}{t} \times 592 023,58 \times e^{-(0.05)(1)}$$

$$Q_{CH4i-2019} = 4786778 \frac{m^3}{t}$$

$$Q_{CH4i-2020} = 0.05 \frac{1}{A\tilde{N}O} \times 170 \frac{m^3}{t} \times 607 675,33 \times e^{-(0.05)(1)}$$

$$Q_{CH4i-2020} = 4913 329 \frac{m^3}{t}$$

Estos cálculos son referenciales y tienen un margen de error que no calcularemos por la limitación temporal.

Siguiendo el cálculo respectivo para los demás años tenemos como resultado lo siguiente:

Tabla 6. *Producción Estimada de Metano*

AÑO	GENERACIÓN DE RESIDUOS SOLIDOS ORGANICOS. (tonelada/año)	PRODUCCIÓN DE METANO m³/año
2019	592 023,58	4 786 778
2020	607 675,33	4 913 329
2021	623 647,4	5 042 470
2022	639 860,63	5 173 562
2023	656 394,91	5 307 249
2024	673 250,24	5 443 532
2025	690 426,63	5 582 411
2026	707 924,07	5 723 885
2027	725 742,57	5 867 956
2028	743 882,12	6 014 622
2029	762 342,73	6 163 885
2030	781 124,39	6 315 743
2031	800 227,1	6 470 197
2032	819 731,5	6 627 899
2033	839 556,21	6 788 190
2034	859 782,62	6 951 730
2035	880 330,07	7 117 865
2036	901 198,58	7 286 597
2037	922 548,67	7 459 222
2038	944 219,82	7 634 443
2039	966 292,65	7 812 912

Fuente: Elaboración propia.

La tabla muestra el desarrollo de la Ecuación 4 aplicada respectivamente para cada año a partir del 2019 al 2039.

3.3.3. Producción estimada de Biogás para el 2039, generada por la población de la ciudad de Jaén.

Tabla 7. Producción Estimada de Biogás para los años 2019-2039

	PRODUCCIÓN DE BIOGÁS		
AÑO	m³/año	m³/hora	
2019	6 222 811,4	710,37	
2020	6 387 327,7	729,15	
2021	6 555 211	748,31	
2022	6 725 630,6	767,77	
2023	6 899 423,7	787,61	
2024	7 076 591, 6	807,83	
2025	7 257 134,3	828,44	
2026	7 441 050,5	849,46	
2027	7 628 342,8	870,82	
2028	7 819 008,6	892,58	
2029	8 013 050,5	914,73	
2030	8 210 465,9	937,27	
2031	8 411 256,1	960,19	
2032	8 616 268,7	983,59	
2033	8 824 647	1 007,38	
2034	9 037 249	1 031,65	
2035	9 253 224,5	1 056,3	
2036	9 472 576,1	1 081,34	
2037	9 696 988,6	1 106,96	
2038	9 924 775,9	1 132,97	
2039	10 156 786	1 159,45	

Fuente: Elaboración propia.

Teniendo en cuenta que el metano representa el 60% del biogás(metano) según la Tabla N° 1; se calculó el biogás al 100%.

3.3.4. Calculo de los parámetros del ciclo de combustión simple Joule Brayton requeridos a su vez para poder estimar la generación de energía eléctrica por parte del generador eléctrico.

3.3.4.1. CICLO BRAYTON

Este ciclo se emplea en la actualidad principalmente en turbinas de gas donde los procesos tanto de comprensión como de expansión suceden en maquinaria rotatoria (compresor y turbina). El ciclo abierto es generalmente el más usado por las turbinas. Se introduce aire fresco en condiciones ambiente dentro del compresor, donde su temperatura y presión se elevan. El aire de alta presión sigue hacia la cámara de combustión, donde el combustible se quema a presión constante. Los gases de alta temperatura que resultan entran a la turbina, donde se expanden hasta la presión atmosférica, produciendo potencia y los gases de escape que sales de la turbina se expulsan hacia afuera, causando que el ciclo se clasifique como un ciclo abierto.

Para nuestra investigación vamos a calcular los parámetros del ciclo Joule Brayton Simple Abierto, entre los parámetros tenemos temperaturas, presiones, entalpias, entropías, trabajos en cada proceso, además de la eficiencia térmica del ciclo Brayton ideal bajo suposiciones de aire estándar frio.

Iniciamos graficando el ciclo Brayton simple abierto y describimos sus procesos.

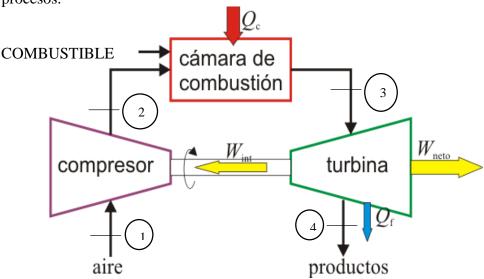


Figura 2. Ciclo Joule Brayton Simple Abierto

En el grafico anterior podemos observar 4 procesos los cuales son:

Procesos 1 – 2: Compresión isoentrópica en un compresor, se genera un aumento de presión y temperatura.

Procesos 2 – 3: Adición de calor a presión constante, mediante la incorporación de combustible y la ignición de la mezcla (aire y combustible).

Procesos 3 – 4: Expansión isoentrópica en una turbina.

Procesos 4 − 1: Rechazo de calor a presión constante.

Para desarrollar el ciclo Joule Simple abierto se considera en el proyecto de investigación los siguientes valores:

La presión y temperatura son los promedios de datos reales de la ciudad de Jaén.

Presión $1 = Presión del ambiente = P_1 = 101 300 Pa$

Temperatura $1 = T_1 = 25 \, ^{\circ}C = 298 \, K$

Estimamos el flujo volumétrico de aire, con el producto de la velocidad del viento en la ciudad de Jaén y el área de la admisión de la turbina, para afectos de cálculo se tendrá un radio de admisión de 0.5 m.

 $\dot{m}_{aire} = velocidad del viento$

* área de admisión de aire de la turbina a gas

Flujo volumetrico_{aire} =
$$\dot{v}_{aire}$$
 = 83,33 $\frac{m}{min} * \pi * (0.5 m)^2$
= 65,44 $\frac{m^3}{min} * \frac{1 min}{60 s} = 1.09 \frac{m^3}{s}$

Flujo masico_{aire} = $\dot{m}_{aire} = \dot{v}_{aire} * Densidad del aire$

$$\dot{m}_{aire} = 1.09 \frac{m^3}{s} * 1,29 \frac{kg}{m^3} = 1,41 \frac{kg}{s}$$

El flujo volumétrico del metano es estimado con el modelo SCHOOL CANYON para el año 2039 en la ciudad de Jaén.

Flujo volumetrico_{CH₄} =
$$\dot{v}_{CH_4}$$
 = 11,59 $\frac{m^3}{min} * \frac{1min}{60 \text{ s}} = 0,19 \frac{m^3}{\text{s}}$

Flujo $masico_{CH_4} = \dot{m}_{CH_4} = \dot{v}_{CH_4} * Densidad \ del \ metano$

$$\dot{m}_{CH_4} = 0.19 \frac{m^3}{s} * 0.66 \frac{kg}{m^3} = 0.13 \frac{kg}{s}$$

En la relación de comprensión, este parámetro se utiliza en el compresor, sus valores varían desde 6 hasta 10, para efectos de cálculo seleccionaremos 6.

Relación de compresión =
$$r_c = 6$$

COMPRESOR 1 – 2.

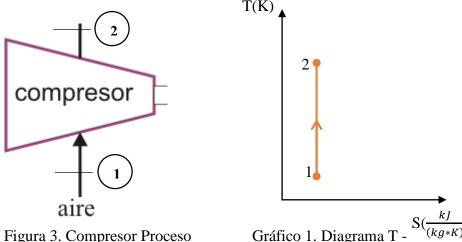


Figura 3. Compresor Proceso

Procederemos a calcular los parámetros (temperatura, presión y entalpias) para el Proceso 1 - 2 del ciclo Joule abierto.

La primera ecuación en este proceso, del cual se estimará la presión en el punto 2.

$$\frac{P_2}{P_1} = r_c = 6$$

$$P_2 = 6 * P_1 = 6 * 101300 Pa = 607800 Pa$$

Utilizaremos las TABLA A- 17 Propiedades de gas ideal del aire del libro (Cengel & Boles, 2012), donde calcularemos la entalpia en el proceso 1.

$$T_1 = 298 K$$
, $h_1 = 298,18 \frac{kJ}{kg}$

Para estimar la temperatura y la entalpia en el proceso 2, utilizaremos Pr (Presión reducida) que está en función de la temperatura.

De la TABLA A- 17 Propiedades de gas ideal del aire del libro (Cengel & Boles, 2012), de la tabla obtenemos el Pr_1 con la temperatura $T_1 = 298 \, K$.

Entonces

$$Pr_1 = 1.35$$

Reemplazamos los valores (Pr_1, P_1, P_2) en la siguiente ecuación, para obtener Pr_2

$$\frac{Pr_2}{Pr_1} = \frac{P_2}{P_1}$$

$$Pr_2 = \frac{P_2}{P_1} * Pr_1 = \frac{607\ 800\ Pa}{101\ 300\ Pa} * 1,35 = 8,1$$

Con el valor de Pr_2 obtendremos la temperatura en el proceso 2 realizando una interpolación simple de la TABLA A- 17 Propiedades de gas ideal del aire. (Ver anexo I)

Tabla 8. Tabla de Interpolación 1

T (K)	Pr	$\frac{500 - 490}{2} = \frac{8,41 - 7,82}{2}$
490	7,82	$500 - T_2 = 8,41 - 8,1$
T_2	$Pr_2 = 8,1$	$T_2 = 494,75 K$
500	8,41	

Fuente: (Cengel & Boles, 2012)

La tabla de interpolación es un fragmento de la TABLA A- 17.

Calculamos la entalpia en el proceso 2 realizando una interpolación simple de la TABLA A-17 con la temperatura ya calculada en el paso anterior.

Tabla 9. Tabla de interpolación 2

T (K)	$h\left(\frac{kJ}{kg}\right)$	
490	492,74	
494,75	h_2	$h_2 = 497,62 \frac{k}{k}$
500	503,02	

Fuente: (Cengel & Boles, 2012)

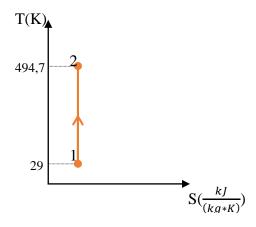


Gráfico 2. Diagrama T-S del proceso 1 - 2

El diagrama de temperatura(T) y Entropías(S) del proceso 1-2 ha quedado de la siguiente manera.

La potencia del compresor está dada por la formula

$$\dot{W}_C = \dot{m}_{aire} (h_2 - h_1)$$
, donde

 $\dot{W_C}$: Potencia del compresor, kW

$$h_2, h_1$$
: entalpias, $\frac{kJ}{kg}$

$$\dot{m}_{aire} = flujo \ masico \ de \ aire, \frac{kg}{s}$$

La potencia del compresor será

$$\dot{W_C} = 1.41 \frac{kg}{s} \left(497,62 \frac{kJ}{kg} - 298,18 \frac{kJ}{kg} \right)$$

$$\dot{W_C} = 281,21 \; kW$$

IGNICIÓN 2 – 3.

El proceso de combustión se realiza un análisis en la cámara de combustión, en la que ingresa aire y combustible a una temperatura (T_2) en este debido proceso obtendremos las temperaturas y entalpias en el proceso 3.

Gráfico 3. Diagrama del proceso

2 - 3

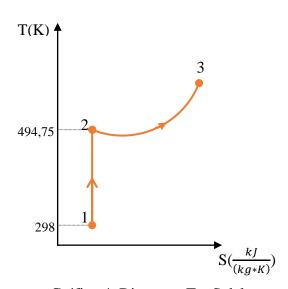


Gráfico 4. Diagrama T – S del

proceso 2-3

Al iniciar el analisis de la combustion se balanceará la ecuación estequiometria porcentual asumiendo que el Biogás(Metano) su composición volumétrica es 100 % metano siguiente:

$$CH_4 + a(O_2 + 3,76N_2) = bCO_2 + cH_2O + dN_2 + eO_2$$

Donde:

 CH_4 : Metano

 $O_2 + 3.76N_2$: Aire (oxigeno más nitrógeno)

CO₂ : Dióxido de carbono

 H_2O : Agua

Los compuestos de los reactantes serán iguales a compuestos en los productos, con un exceso de aire.

$$C_{REACTANTES} = C_{PRODUCTOS}$$
 $1 = b$
 $H_{REACTANTES} = H_{PRODUCTOS}$
 $4 = 2c$
 $c = 2$
 $O_{REACTANTES} = O_{PRODUCTOS}$
 $2a = 2b + c + 2e$
 $2a = 2 + 2 + e$
 $a = \frac{4 + 2e}{2}$
 $a = 2 + 1$
 $a = 3$
 $N_{REACTANTES} = N_{PRODUCTOS}$
 $a * 3,76 = d$
 $d = a * 3,76$
 $d = 3 * 3,76$
 $d = 11.28$

La ecuación correctamente balanceada es:

$$1CH_4 + 3(O_2 + 3,76N_2) = 1CO_2 + 2H_2O + 11,28N_2 + O_2$$

Una vez balanceada la ecuación, calcularemos la temperatura de flama adiabática T_3 que resulta de un proceso de combustión completa que ocurre sin cualquier trabajo, transferencia de calor o cambios en cinética o energía potencial.

El nuevo balance considerando que el proceso es adiabático:

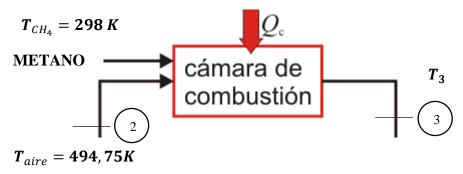


Figura 4. Nuevo Balance

La ecuación del balance de energía de productos con reactantes es la siguiente, asumiendo que el proceso es adiabático:

$$\sum_{PRODUCTOS} N(h_i - h_{ref} + h_f) = \sum_{REACTANTES} N(h_i - h_{ref} + h_f)$$

Donde:

h_i : Entalpia del componente específico

 h_{ref} : Entalpia de condición de referencia del componente específico, 298 K.

 h_f : Entalpia de formación del componente específico

N : Número específico de cada componente

Los Reactantes(metano) se encuentran a una temperatura de 298 K y los Reactantes(aire) se encuentra a una temperatura de 494,75 K

$$N(h_i - h_{ref} + h_f)_{CO_2} + N(h_i - h_{ref} + h_f)_{H_2O}$$

$$+ N(h_i - h_{ref} + h_f)_{N_2} + N(h_i - h_{ref} + h_f)_{O_2}$$

$$= N(h_i - h_{ref} + h_f)_{CH_4} + N(h_i - h_{ref} + h_f)_{O_2}$$

$$+ N(h_i - h_{ref} + h_f)_{N_2}$$

$$1(h_i - h_{ref} + h_f)_{CO_2} + 2(h_i - h_{ref} + h_f)_{H_2O}$$

$$+ 11,28(h_i - h_{ref} + h_f)_{N_2} + 1(h_i - h_{ref} + h_f)_{O_2}$$

$$= 1(h_i - h_{ref} + h_f)_{CH_4} + 2(h_i - h_{ref} + h_f)_{O_2}$$

$$+ 7,52(h_i - h_{ref} + h_f)_{N_2}$$

Los datos empleados para los componentes las obtendremos del libro de (Cengel & Boles, 2012):

TABLA A-18 Propiedades de gas ideal del nitrógeno, N₂

TABLA A-19 Propiedades de gas ideal del oxígeno, O_2

TABLA A-20 Propiedades de gas ideal del dióxido de carbono, CO₂

TABLA A-22 Propiedades de gas ideal del vapor de agua, H_2O

TABLA A-26 Entalpía de formación, función de Gibbs de formación y entropía absoluta a 25°C, 1 atm.

Los productos:

$$h_{ref_{CO_2}} = 9364 \frac{kJ}{kmol}$$

$$h_{f_{CO_2}} = -393520 \frac{kJ}{kmol}$$

$$h_{ref_{H_2O}} = 9904 \frac{kJ}{kmol}$$

$$h_{f_{H_2O}} = -241820 \frac{kJ}{kmol}$$

$$h_{ref_{N_2}} = 8669 \frac{kJ}{kmol}$$

$$h_{f_{N_2}} = 0 \frac{kJ}{kmol}$$

$$h_{ref_{O_2}} = 8682 \frac{kJ}{kmol}$$

$$h_{f_{O_2}} = 0 \frac{kJ}{kmol}$$

Los reactantes:

$$h_{ref_{CH_4}} = h_{i_{CH_4}}$$
 $h_{f_{CH_4}}^o = -74,85 \frac{kJ}{kmol}$

Calculamos la entalpia del Oxígeno (O_2) realizando una interpolación simple de la TABLA A-19 con la temperatura de 494,75 K

Tabla 10. Tabla de interpolación 3

T (K)	$h\left(\frac{kJ}{kmol}\right)$
490	14 460
494,75	$h_{i_{O_2}}$
500	14 770

Fuente: (Cengel & Boles, 2012)

$$h_{io_{2}} = 14 607,25 \frac{kJ}{kmol}$$
 $h_{refo_{2}} = 8 682 \frac{kJ}{kmol}$
 $h_{fo_{2}}^{o} = 0 \frac{kJ}{kmol}$

Calculamos la entalpia del nitrógeno (N_2) realizando una interpolación simple de la TABLA A-18 con la temperatura de 539,86 K

Tabla 11. Tabla de interpolación 4

T (K)	$h\left(\frac{kJ}{kmol}\right)$
490	14 285
494,75	$h_{i_{N_2}}$
500	14 581

Fuente: (Cengel & Boles, 2012)

$$\begin{split} h_{i_{N_2}} &= 14\ 425,6\ \frac{kJ}{kmol} \\ h_{ref_{N_2}} &= 8\ 669\frac{kJ}{kmol} \\ h^o_{f_{N_2}} &= 0\frac{kJ}{kmol} \\ 1\left(h_{i_{CO_2}} - 9\ 364\ \frac{kJ}{kmol} + -393\ 520\ \frac{kJ}{kmol}\right) + 2\left(h_{i_{H_2O}} - 9\ 904\ \frac{kJ}{kmol} + -241\ 820\frac{kJ}{kmol}\right) + 11,28\left(h_{i_{N_2}} - 8\ 669\ \frac{kJ}{kmol} + 0\frac{kJ}{kmol}\right) + \\ 1\left(h_{i_{O_2}} - 8\ 682\ \frac{kJ}{kmol} + 0\frac{kJ}{kmol}\right) = 1\left(h_{i_{CH_4}} - h_{ref_{CH_4}} + -74\ 850\frac{kJ}{kmol}\right) + 3\left(14\ 607,25\ \frac{kJ}{kmol} - 8\ 682\frac{kJ}{kmol} + 0\frac{kJ}{kmol}\right) + \\ 11,28\left(14\ 425,6\ \frac{kJ}{kmol} - 8\ 669\frac{kJ}{kmol} + 0\frac{kJ}{kmol}\right) \\ h_{i_{CO_2}} + 2h_{i_{H_2O}} + 11,28h_{i_{N_2}} + h_{i_{O_2}} - 1\ 012\ 800 = 7\ 859,45 \\ h_{i_{CO_2}} + 2h_{i_{H_2O}} + 11,28h_{i_{N_2}} + h_{i_{O_2}} = 1\ 020\ 659,45\frac{kJ}{kmol} \end{split}$$

Para resolver la ecuación y obtener la temperatura a la que están los reactantes después de la combustión, será con el método de ensayo y error

$$\frac{1\ 020\ 659,45}{1+2+11,28+1} = 66\ 797,08 \frac{kJ}{kmol}$$

$$66\ 797,08 \frac{kJ}{kmol} \begin{cases} h_{i_{CO_2}} \to T_{CO_2} = \\ h_{i_{H_2O}} \to T_{H_2O} = \\ h_{i_{N_2}} \to T_{N_2} = \\ h_{i_{O_2}} \to T_{O_2} = \end{cases}$$

Calcular la temperatura del Dióxido de Carbono de la TABLA A-20 Propiedades de gas ideal del dióxido de carbono, CO_2 , interpolando.

Tabla 12. Tabla de interpolación 5

T (K)	$h\left(\frac{kJ}{kmol}\right)$	$T_{CO_2} = 1426,39K$
1 420	66 427	
T_{CO_2}	66 797,08	
1 440	67 586	

Fuente: (Cengel & Boles, 2012)

Calcular la temperatura del vapor de agua de la TABLA A-23 Propiedades de gas ideal del vapor de agua, H_2O , interpolando.

Tabla 13. Tabla de interpolación 6

$$T (K) h \left(\frac{kJ}{kmol}\right)$$

$$1680 66 614$$

$$T_{co_2} 66 797,08$$

$$1700 67 589$$

$$T_{H_2O} = 1 683,76 K$$

Fuente: (Cengel & Boles, 2012)

Calcular la temperatura del Nitrógeno de la TABLA A-18 Propiedades de gas ideal del nitrógeno, N_2 , interpolando.

Tabla 14. Tabla de interpolación 7

T (K)	$h\left(\frac{kJ}{kmol}\right)$	$T_{N_2} = 2\ 055,13\ K$
2 050	66 612	
T_{CO_2}	66 797,08	
2 100	68 417	

Fuente: (Cengel & Boles, 2012)

Por ensayo de prueba y error, se encuentra la temperatura de los productos es $T_3 = 1926 \, K$

La técnica de ensayo y error, muy útil en la resolución de este problema, consiste en llevar a cabo los siguientes pasos:

- Elegir un valor posible
- Imponer a ese valor las condiciones dadas en el problema
- Probar si se ha alcanzado el objetivo esperado el cual es la sumatoria de 1 020 659,45 $\frac{kJ}{kmol}$.

Si el resultado no es el esperado se repite todo el proceso con otro valor, y así sucesivamente, hasta alcanzar el objetivo deseado. Cuando se trabaja con esta estrategia conviene contrastar cada ensayo para ver si el resultado nos acerca o nos aleja más del objetivo buscado. Para obtener la temperatura de los gases de escape.

Tabla 15 Prueba de ensayo y error

T(K)	Entalpia(kJ/kmol)								
1(11)	C02	1*CO2	H2O	2*H2O	N2	11.28*N2	O2	1*02	SUMATORIA
1900	94793	94793	77517	155034	61220	690561.6	64116	64116	1004504.6
1920	95995	95995	78527	157054	61936	698638.08	64868	64868	1016555.08
1940	97197	97197	79540	159080	62654	706737.12	65620	65620	1028634.12
1960	98401	98401	80555	161110	63381	714937.68	66374	66374	1040822.68
1980	99606	99606	81573	163146	64090	722935.2	67127	67127	1052814.2
2000	1E+05	100804	82593	165186	64810	731056.8	67881	67881	1064927.8

Fuente elaboración propia

Los datos obtenidos son de las TABLAS A -18 - 20 - 23 del libro Termodinámica Séptima edición (Cengel & Boles, 2012) con interpolación simple.

$$h, {}^{kJ}/_{kmol}$$
 CO_2 : 96 355,6

$$H_2O$$
 : 78 830,9

$$N_2$$
 : 62 151,4

$$O_2$$
 : 65 093,6

La entalpia 3

$$\begin{split} h_3 &= h_{i_{CO_2}} + 2h_{i_{H_2O}} + 11,28h_{i_{N_2}} + h_{i_{O_2}}h_3 = 1 * \\ 96 \ 355,6 \ \frac{kJ}{kmol*44,01\frac{kg}{kmol}} + 2 * 78 \ 830,9 \ \frac{kJ}{kmol*18,02\frac{kg}{kmol}} + 11,28 * \\ 62 \ 151,4 \ \frac{kJ}{kmol*28,01\frac{kg}{kmol}} + \ 65 \ 093,6 \ \frac{kJ}{kmol*31,99\frac{kg}{kmol}} \\ h_3 &= 38 \ 002,68 \ \frac{kJ}{kg} \end{split}$$

El calor de entrada del sistema Joule Brayton está dado por

$$\dot{Q_E} = (\dot{m}_{aire} + \dot{m}_{CH_4}) * (h_3 - h_2), \text{ donde}$$

 $\dot{Q_E}$: Potencia de entrada, kW

$$h_3, h_2$$
: entalpias, $\frac{kJ}{kg}$

$$\dot{m}_{aire}$$
, \dot{m}_{CH_4} : Flujos masicos, $\frac{kg}{s}$

La potencia del compresor será

$$\dot{Q}_E = \left(1,41\frac{kg}{s} + 0,13\frac{kg}{s}\right) * \left(38\,002,68\,\frac{kJ}{kg} - 497,62\,\frac{kJ}{kg}\right)$$

$$\dot{Q}_E = 57757,79 \, kW$$

EXPANSIÓN 3 – 4:

Expansión isoentrópica en una turbina de la mezcla de los gases ideales de escape: dióxido de carbono, vapor de agua y nitrógeno entrar a la turbina adiabática a una presión de 810 400 Pa, con una temperatura de 1926 K, la presión de salida de la turbina es $P_1 = P_4 = 101\ 300\ Pa$.

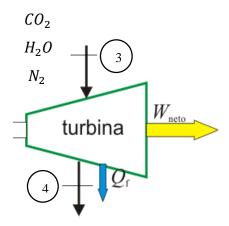


Gráfico 5. Diagrama para el proceso 3 - 4

Los gases se moldearán como gases ideales con calores específicos constantes.

Al calcular el calor específico serán con la ecuación de la TABLA A-2 Calores específicos de gas ideal de varios gases comunes

$$C_P = a + bT + cT^2 + dT^3$$
, formula de la TABLA A-2

 $C_p = \text{Capacidad calorifica a presión constante}, \frac{kJ}{kmol*K}$

 $C_v = \text{Capacidad calorífica a volumen constante}, \frac{kJ}{kmol*K}$

 $R = \text{constante de gases}, \frac{kJ}{kmol*K}$

T = Temperatura en K

$$C_p = C_v + R$$

Los calores específicos a presión constante y a volumen constante son:

En el dióxido de carbono

$$C_{p} = a + bT + cT^{2} + dT^{3}$$

$$a = 22,26$$

$$b = 5,981 * 10^{-2}$$

$$c = -3,501 * 10^{-5}$$

$$d = 7,469 * 10^{-9}$$

$$T = 1926 K$$

$$R = 0,1 889 \frac{kJ}{kg*K} * 44,01 \frac{kg}{k*mol} = 8,31 \frac{kJ}{kmol*K}$$

$$C_{p} = 60,95 \frac{kJ}{kmol*K} - 8,31 \frac{kJ}{kmol*K}$$

$$= 52,64 \frac{kJ}{kmol*K}$$

$$C_{p}, \frac{kJ}{kmol*K}$$

$$C_{$$

Entonces, los calores específicos a presión constante y a volumen constante de la mezcla resultan

29,27

 0_2 : 37,59

$$C_{P} = 1 * C_{PCO_{2}} + 2 * C_{PH_{2}O} + 11,28 * C_{PN_{2}} + 1 * C_{PO_{2}}$$

$$C_{P} = 1 * 60,95 \frac{kJ}{Kmol} * K + 2 * 49,4 \frac{kJ}{kmol} * K + 11,28$$

$$* 35,32 \frac{kJ}{kmol} * K + 1 * 37,59 \frac{kJ}{kmol} * K$$

$$C_{P} = 595,75 \frac{kJ}{kmol * K}$$

$$C_{v} = 1 * C_{v_{CO_{2}}} + 2 * C_{v_{H_{2}O}} + 11,28 * C_{v_{N_{2}}} + 1 * C_{v_{O_{2}}}$$

$$C_{v} = 1 * 52,64 \frac{kJ}{kmol * K} + 2 * 41,09 \frac{kJ}{kmol * K} + 11,28$$

$$* 27,01 \frac{kJ}{kmol * K} + 1 * 29,27 \frac{kJ}{kmol * K}$$

$$C_{v} = 468,76 \frac{kJ}{kmol * K}$$

La constante de gases aparentes de la mezcla y la relación de calores específicos son

$$R = C_P - C_v = 595,75 \frac{kJ}{kmol * K} - 468,76 \frac{kJ}{kmol * K}$$

$$R = 126,99 \frac{kJ}{kmol * K}$$

$$k = \frac{C_P}{C_v} = \frac{595,75 \frac{kJ}{kmol * K}}{468,76 \frac{kJ}{kmol * K}} = 1,27$$

La temperatura de gases aparente de la mezcla y la relación de calores específicos son

$$T_4 = T_3 * \left(\frac{P_4}{P_3}\right)^{\frac{(k-1)}{k}} = 1926 K * \left(\frac{101\ 300\ Pa}{607\ 800\ Pa}\right)^{\frac{(1,27-1)}{1,27}}$$
$$= 1316,58\ K$$

Al observar que la turbina es adiabática y por lo tanto no hay transferencia de calor, la producción de trabajo se determina como.

$$W_{TURBINA} = h_3 - h_4 = C_P(T_3 - T_4)$$

= 595,75 $\frac{kJ}{kmol * K}$ * (1926 K - 1316,58 K)

 $W_{TURBINA}$

$$= 363\ 061,97 \frac{kJ}{kmol*(44,01+28,01+18,02+31,99)*\frac{kg}{kmol}}$$

$$W_{TURBINA} = 2 975,19 \frac{kJ}{kg}$$

La potencia de la turbina será

$$\dot{W}_T = (\dot{m}_{aire} + \dot{m}_{CH_4}) * W_{TURBINA}$$
, donde

 $\dot{W_T}$: Potencia de la turbina, kW

 $W_{TURBINA}$: Trabajo de la turbina, $\frac{kJ}{kg}$

$$\dot{m}_{aire}$$
, \dot{m}_{CH_4} : Flujos masicos, $\frac{kg}{s}$

La potencia del compresor será

$$\dot{W_T} = \left(1,41\frac{kg}{s} + 0,13\frac{kg}{s}\right) * \left(2.975,19\frac{kJ}{kg}\right)$$

$$\dot{W_T} = 4581,79 \, kW$$

El calor de salida del sistema Joule Brayton está dado por

$$\dot{Q}_S = (\dot{m}_{aire} + \dot{m}_{CH_4}) * (h_4 - h_1), donde$$

 $\dot{Q_S}$: Potencia de salida, kW

$$h_4, h_1$$
: entalpias, $\frac{kJ}{kg}$

$$\dot{m}_{aire}$$
, \dot{m}_{CH_4} : Flujos masicos, $\frac{kg}{s}$

La entalpia $4(h_4)$ a una temperatura de 1 316,58 K

$$\begin{cases} h_{i_{CO_2}} = 60\ 470,38 \frac{kJ}{kmol} \\ h_{i_{H_2O}} = 49\ 553,1 \frac{kJ}{kmol} \\ h_{i_{N_2}} = 40\ 736,21 \frac{kJ}{kmol} \\ h_{i_{O_2}} = 42\ 629,88 \frac{kJ}{kmol} \\ h_4 = h_{i_{CO_2}} + 2h_{i_{H_2O}} + 11,28h_{i_{N_2}} + h_{i_{O_2}} \end{cases}$$

$$h_{4} = 1 * 60 470,38 \frac{kJ}{kmol} + 2$$

$$* 49 553,1 \frac{kJ}{kmol} + 11,28$$

$$* 40 736,21 \frac{kJ}{kmol} + 28,01 \frac{kg}{kmol}$$

$$+ 42 629,88 \frac{kJ}{kmol} + 31,99 \frac{kg}{kmol}$$

$$h_4 = 24\,581,06\frac{kJ}{kg}$$

La potencia del compresor será

$$\dot{Q}_S = \left(1,41\frac{kg}{s} + 0,13\frac{kg}{s}\right) * \left(24\ 605,56\ \frac{kJ}{kg} - 298,18\ \frac{kJ}{kg}\right)$$

$$\dot{Q}_S = 37\ 433,37kW$$

La eficiencia térmica se determina

$$n_{t\acute{e}rmica} = 1 - \frac{\dot{Q_S}}{\dot{Q_E}} = 1 - \frac{37395,64 \text{ kW}}{57757,79 \text{ kW}} = 0.35$$

El trabajo neto del sistema es

$$\dot{W}_N = \dot{W}_T - \dot{W}_C$$
 $\dot{W}_N = 4581,79 \ kW - 281,21 \ kW = 4300,58 \ kW$

Este resultado nos indica que la Potencia Neta será de 4.3 MW. El margen de error no está estimado en la presente investigación y los datos son referenciales.

3.3.5. Selección de equipamiento básico para el sistema de generación de energía eléctrica utilizando Biogás obtenido de los residuos sólidos urbanos.

3.3.5.1. Filtro de biogás

FILTRO DE BIOGAS MOGEMEX

Para este trabajo de investigación se utilizará este tipo de filtro para poder purificar el biogás y poder obtener metano puro.

Este filtro tiene una eficiencia promedio de remoción de sulfuro de hidrógeno del 97% con un valor mínimo de remoción de 90% y un valor máximo de remoción de 99,6%, el biogás que se hace pasar por los filtros tiene una eficiencia promedio de remoción de sulfuro de hidrógeno de 96% con un valor máximo 99,6% y un valor mínimo de remoción de 87,7%. (PRUEBA CON UN REACTIVO TESTIGO CONOCIDO de Cloruro de fierro). (Megomex, 2017)

Figura 5. Filtro para Biogás Megomex

Fuente: (Megomex, 2017)

3.3.5.2. Turbina a gas

De acuerdo a los cálculos obtenidos seleccionaremos la siguiente turbina:

Turbina De Gas Mercury TM 50. (Anexo A)

Características:

- Potencia de Salida 4,6 MW
- Combustible: Gas Natural, Gas Residual, Gas Digestor.
- Industrial de eje único.
- Compresor Axial de 10 etapas:
 - o Álabes directores de entrada variable y estatores.
 - o Relación de Compresión de 9,9:1
 - o Flujo de Aire de entrada: 173.9 kg/s
 - o Carcasa dividida verticalmente.
- Cámara de combustión tipo anular.
 - Sistema de Combustión de Pre mezcla ultra pobre.
 - o 8 inyectores de combustible.
 - Sistema de quemado de combustible sencillo.
 - o Transductores de vibración con sensores de proximidad.
- Turbina:
 - o 2 etapas de reacción.
 - Rotación en sentido horario.
- Cojinetes:
 - 2 radiales: Cojinetes de rodillos con amortiguamiento viscoso.
 - 1 de empuje/radial: cojinete de bolas de carrera interior dividido, con amortiguamiento viscoso.
- Caja de Reducción principal.
 - Epiciclo: 1 500 1 800 rpm (50 ó 60 Hz)

Fuente:(Solar Turbines, 2019)

3.3.5.3. Generador Eléctrico

En este caso el generador se encuentra acoplado a la turbina el cual tiene las siguientes características:

- De 4 polos, trifásico, 6 cables, conexión de estrella, síncrono con excitatriz de imán permanente.
- Cojinete de manguito.
- Monitoreo de vibración: transductores de velocidad.
- Elevación de Temperatura clase F.
- Elevación de Temperatura clase B.
- Aislamiento NEMA clase F con elevación de temperatura F.
- Voltajes nominales de servicio continuo:
 - o 3 300, 6 600, 11 000 (50 Hz)
 - o 4 160, 6 900, 12 470, 13 800 V (60 Hz)

Recuperator

Compressor

Turbine

Figura 6. Turbina con Generador acoplado Mercury 50

Fuente:(ScienceDirect, 2018)

3.3.5.4. Transformador Eléctrico de Potencia.

Para seleccionar el Transformador Eléctrico de Potencia tendremos en cuenta el voltaje de salida del Generador, potencia del generador en kVA, la frecuencia de la corriente eléctrica en Hz, altitud de la zona donde será instalado.

Asumiendo que la potencia requerida aumentara con el tiempo y para ahorrar los costos de fabricación seleccionaremos un transformador con las siguientes características:

TRANSFORMADOR DE POTENCIA DE 10 MVA 60/22,9/13,8-10kV

N°	Descripción	Unid.	Especificado					
A	Datos Generales							
A.1	Número de devanados		3					
A.2	Altitud de Instalación	msnm	729					
В	DATOS NOMINALES Y CA	DATOS NOMINALES Y CARACTERÍSTICAS						
B.1	Frecuencia Nominal	Hz	60					
B.2	Potencia Nominal ONAN	MVA	5/2.5/3					
B.3	Potencia nominal ONAF	MVA	6,25/3,125/3,75					
B.4	Tipo de Enfriamiento		ONAN/ ONAF					
B.5	Relación de Trasformación en vacío AT/MT/BT	kV	13,8/22,9/0,38 KV					
B.6	Grupo de Conexión		YnYn0D5					
C	CARACTERÍSTICAS	DE TENS	SIÓN					
C.1	Devanado AT	kV	60					
C.2	Devanado MT	kV	22,9					
C.3	Devanado BT	kV	13,8-0,38					
C.4	Tensión máxima de	operacion	ies					
C.5	Devanado AT	kV	72,5					
C.6	Devanado MT	kV	24					
C.7	Devanado BT	kV	17,5					
	Evanta, Elaboración muento							

Fuente: Elaboración propia.

IV. ANALISIS Y DISCUSIÓN DE RESULTADOS

4.1. Crecimiento Poblacional.

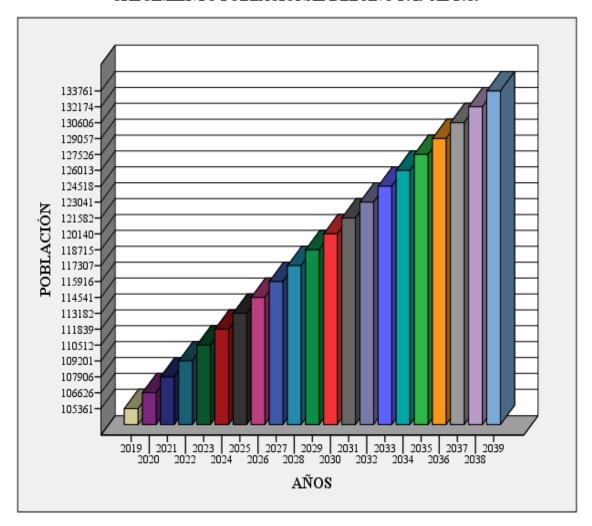


Gráfico 6. Estimación del Crecimiento Poblacional 2019 - 2039

Fuente: Elaboración propia.

En el grafico 6 se muestra la estimación del creciente poblacional desde los años 2019 a 2039, lo cual nos sirve para poder estimar la cantidad de basura que será generada para cada año proyectado respectivamente.

4.2. Generación de Residuos Sólidos Urbanos.

ESTIMACIÓN DE RSU DEL AÑO 2019 AL 2039

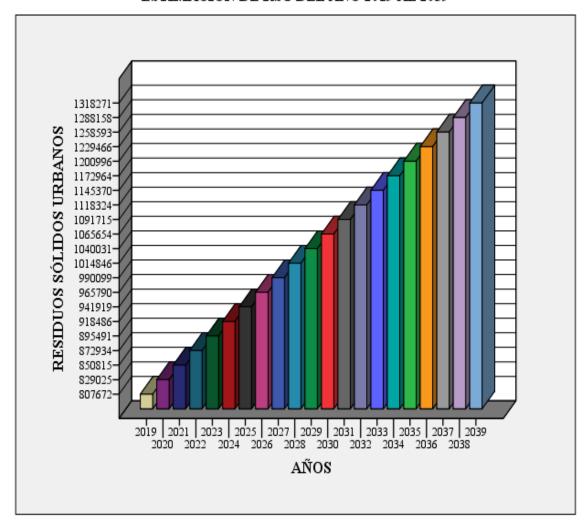


Gráfico 7. Estimación de Generación de R.S.U (2019 -2039)

Fuente: Elaboración propia.

El Grafico 7 muestra la generación de RSU en $\frac{toneladas}{año}$ proyectados para los años 2019 -2039.

4.3. Generación de Residuos Sólidos Orgánicos.

ESTIMACIÓN DE RESIDUOS SÓLIDOS ORGÁNICOS DEL AÑO 2019 AL 2039 EN LA CIUDAD DE JAÉN

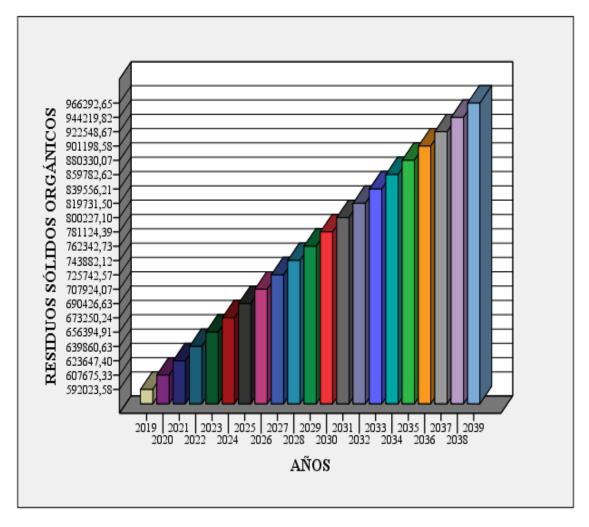


Gráfico 8. Estimación de Residuos Sólidos Orgánicos 2019 – 2039

Fuente: Elaboración propia.

El Grafico 8 nos muestra la cantidad de residuos sólidos orgánicos $\frac{toneladas}{año}$ generados en los años 2019 -2039, estos representan el 73,3% de los RSU.

4.4. Estimación de generación de biogás obtenido de los Residuos Sólidos Orgánicos 2019-2039 - Jaén. (Método Scholl Canyon).

BIOGÁS(METANO) OBTENDIO DE LOS RESIDUOS SÓLIDOS ORGÁNICOS PARA LOS AÑOS 2019 - 2039 EN LA CIUDAD DE JAÉN (METODO SCHOLL CANYON)

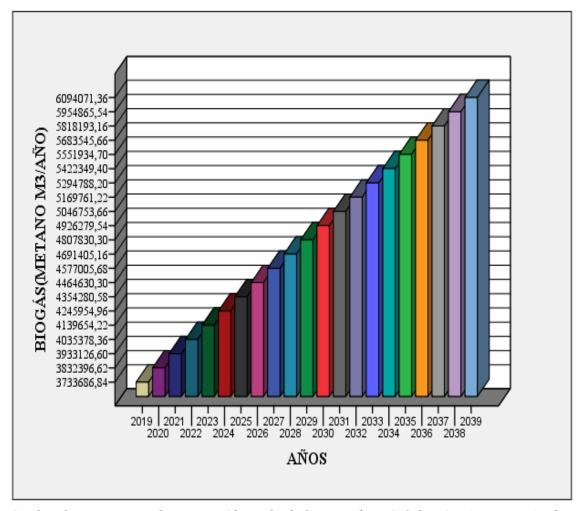


Gráfico 9. Estimación de Biogás Obtenido de los Residuos Sólidos Orgánicos (Método Scholl Canyon)

Fuente: Elaboración propia.

Grafico 9 nos muestra la cantidad de Biogás(metano) que será obtenido de los Residuos Sólidos

Orgánicos $\frac{m^3}{a\tilde{n}o}$; para estimar estos resultados se utilizó el modelo Scholl Canyon.

4.5. Estimación de Generación de metano con una eficiencia de captura del 60% obtenido de los residuos sólidos orgánicos al 2039 - Jaén.

METANO CAPTURADO AL 60 % EN LOS AÑOS 2019 - 2039 DE LA CIUDAD DE JAÉN

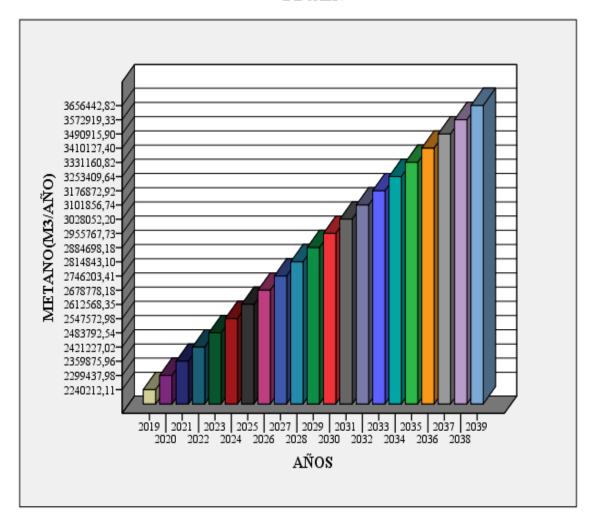


Gráfico 10. Estimación del Metano capturado al 60% para los años 2019 – 2039. Fuente: Elaboración propia.

El Grafico 10 nos muestra la cantidad de Metano obtenido de los Residuos Sólidos Urbanos $\frac{m^3}{a\tilde{n}a}$ con una eficiencia de captura del 60 % utilizando el método Scholl Canyon.

62

4.6. Generación de Energía Eléctrica por años (2019 al 2039).

El siguiente cuadro nos muestra la Potencia Neta que se obtendrá en la turbina para generar energía eléctrica en los diferentes años proyectados.

Tabla 16.
Potencia Neta obtenida para generar Energía Eléctrica.

AÑO	FLUJO MASICO DEL METANO (kg/s)	POTENCIA NETA(Kw)
2019	0,08	4 146,28
2020	0,08	4 152,43
2021	0,08	4 158,70
2022	0,08	4 165,07
2023	0,09	4 171,56
2024	0,09	4 178,18
2025	0,09	4 184,93
2026	0,09	4 191,80
2027	0,10	4 198,79
2028	0,10	4 205,92
2029	0,10	4 213,17
2030	0,10	4 220,54
2031	0,11	4 228,04
2032	0,11	4 235,70
2033	0,11	4 243,49
2034	0,11	4 251,43
2035	0,12	4 259,50
2036	0,12	4 267,69
2037	0,12	4 276,08
2038	0,12	4 284,59
2039	0,13	4 300,58

Fuente: Elaboración propia.

4.7. Centrales Termoeléctricas existentes en el Perú y su Inversión.

El siguiente cuadro nos muestra cual es el costo de inversión por cada Central Termoeléctrica, también la relación costo generación de cada central.

Tabla 17. Centrales Termoeléctricas en el Perú

CENTRAL TERMOELÉCTRICA	TECNOLOGÍA	INVERSION (dólares)	POTENCIA DE GENERACION (MW)	RELACION DE COSTO POR MW GENERADO (dólares)
	TURBINAS/MOTOR DE			
ETEN	COMBUSTION	\$ 145 000 000,00	184	\$ 788 043,48
	INTERNA			
	MOTOR DE			
HUAYCOLORO	COMBUSTION	\$ 10 500 000,00	4	\$ 2 625 000,00
	INTERNA			
RECKA	TURBINAS	\$ 102 530 000,00	181,3	\$ 565 526,75
MALACAS	TURBINA	\$ 106 400 000,00	200	\$ 532 000,00
TABLAZO	TURBINA	\$ 22 500 000,00	30	\$ 750 000,00
LA GRINGA	MOTOGENERADOR	\$ 5 100 000,00	3,2	\$ 1 593 750,00

Fuente: (Osinergmin, 2018)

Podemos diferenciar que al utilizar los Motores de Combustión el costo por MW es mayor en comparación con las Centrales que utilizan Turbinas.

4.8. Monto de Inversión estimada para la Planta de Generación Eléctrica utilizando Biogás (metano) obtenido a partir de Residuos Sólidos Urbanos en Jaén.

Teniendo como base la Relación de costo por MEGA WATT (MW) Generado de la Tabla anterior, tomaremos el valor de la Central Tablazo porque utiliza solo Turbina en su Tecnología y genera menos energía lo cual podría estar más cerca a la realidad de nuestra planta en comparación a las demás Centrales, para efectos de estimación esta central presenta una inversión mayor por MW generado.

Tabla 18. Inversión Estimada para el Sistema de Generación de Energía Eléctrica

CENTRAL TERMOELÉCTRICA	TECNOLOGÍA	INVERSION (dólares)	POTENCIA DE GENERACIÓN (MW)
Jaén	TURBINA	\$3 225 000,00	4,3

Fuente: Elaboración propia.

4.9. Estimación de ingresos anuales por energía ofertada.

En la siguiente tabla se estima el ingreso anual que el sistema de generación de energía eléctrica podría llegar a tener anualmente, tomando referencia a la Central de Biomasa LA GRINGA V (*Anexo 5*) que Oferta un total de 14 016 MWh de Energía Anual, con un Precio de energía Ofertado de 9,999 Ctvs.US\$ / kWh; para nuestro sistema hemos utilizado el mismo precio de energía ofertado por la Central de Biomasa LA GRINGA V, con una Energía anual ofertada de 15 000 MWh, teniendo en cuenta que nuestro sistema tendrá 4,3 MW de potencia instalada y la Central de Biomasa LA GRINGA cuenta con 3,2 MW de potencia instalada.

Tabla 19. Estimación de los ingresos Anuales por Generación de Energía Eléctrica

CENTRAL TERMOELÉCTRICA	ENERGIA GENERADA EN MWh	ENERGÍA ANUAL OFERTADA MWh	ENERGÍA ELECTRICA ANUAL OFERTADA EN kWh	PRECIO DE ENERGÍA OFERTADO kWh (dólares)	INGRESOS ANUALES DE GENERACION (dólares)
Jaén	4,3	15 000	15 000 000	\$ 0,09999	\$ 1 499 850,00

Fuente: Elaboración propia.

4.10. Discusiones de la investigación

- Para poder estimar el crecimiento poblacional existen muchos otros métodos como la regresión lineal simple o compuesta, para esta investigación la estimación de la población proyectada desde el año 2016 hasta el año 2039 en la ciudad de Jaén- Perú se ha utilizado las ecuaciones de crecimiento poblacional del INEI que está basado en la regresión lineal simple.
- Los valores estimados de Residuos Sólidos Urbanos por año para la ciudad de Jaén- Perú se obtienen multiplicando la generación de RSU que genera cada habitante (Generación Per cápita) por el número de habitantes, este resultado puede variar de acuerdo a la cantidad de población existente.
- La estimación de Biogás (metano) se realizó con el modelo Scholl Canyon, este modelo ha sido empleado en otras investigaciones ((Huaylinos Sosa, 2018)), por ello se utiliza en el presente trabajo para obtener datos referenciales los cuales pueden variar si se realizara con otros métodos o estudios.
- La generación de energía eléctrica se ha estimado con base en el ciclo termodinámico Joule Brayton Simple abierto que nos permite obtener parámetros (temperatura, entalpias, presiones), en este método hemos obviado pérdidas (térmicas y mecánicas) y hemos considerado un ciclo ideal.
- Para la selección óptima de equipamiento fundamental del sistema de generación eléctrica, hemos buscado en el mercado internacional, tomando los valores estimados en la investigación, existen muchas tecnologías que se pueden utilizar para generar energía con biogás(metano) como motores de combustión interna.
- El costo de inversión estimado asciende a \$ 3 225 000,00 dólares para deducir este monto se promedió los costos de inversión de las centrales térmicas existentes en Perú (ver Tabla 16) donde se pudo determinar que el valor es de \$ 750 000,00 dólares por MW generado el cual se asemeja a nuestro sistema teniendo en cuenta el tipo de tecnología utilizado (turbinas); este valor es referencia lo cual puede variar si se hace un estudio definitivo económico financiero.

- Los ingresos anuales que puede generar el sistema propuesto asciende a \$ 1 499 850,00 dólares de ingreso total bruto. Para poder estimar este resultado se tomó en cuenta Energía Ofertada (14 016 MWh) y un Precio de energía Ofertado de 9,999 Ctvs.US\$ / kWh valores obtenidos de la Central La Gringa V (Anexo 5); haciendo una comparación nuestro sistema genera 1MW mas que esta central por tal motivo asumimos que tendrá una Energía Ofertada de 15 000 MWh y asumirá el mismo Precio de energía ofertado por la Central La Gringa V. Estos resultados son solo estimaciones a grandes rasgos los cuales pueden variar si se determina un precio ideal para la venta de energía de acorde al mercado y la demanda que pueda ser ofertada por el sistema.
- En la visita realizada a la planta térmica de Eten, que se considera la más similar a la planta de generación eléctrica por biogás estudiada en el presente trabajo de tesis, se nos informó que aproximadamente el 35% representa los costos de operación y mantenimiento, por tanto, el resto se puede considerar como utilidad con lo cual el proyecto podría pagarse en 3 años con 4 meses. Este cálculo es por supuesto muy aproximado para referencia, dado que una adecuada evaluación económica financiera no está contemplada en el presente trabajo

V. CONCLUSIONES

- La estimación de la población al año 2039 será de 133 761 habitantes, este resultado se obtuvo utilizando las ecuaciones de crecimiento poblacional del Instituto nacional de Estadista e Informática y pueden variar si se utiliza otro método de cálculo.
- La cantidad de metano estimado obtenido de los RSU es de $7812912 \frac{m^3}{a\bar{n}o}$, utilizando el modelo Scholl Canyon en el año 2039, este valor es referencial y puede variar si existiera una clasificación adecuada de los RSU.
- El desarrollo del ciclo termodinámico Joule Brayton simple abierto, nos permitió
 estimar que la potencia de generación es de 4,3 MW, teniendo en cuenta aspectos
 ambientales y geográficos de la zona Jaén, este valor tiene un margen de error que
 no ha sido calculado por las limitaciones temporales en el desarrollo de la
 investigación.
- La selección de equipamiento optimo se realizó teniendo en cuenta los datos obtenidos del desarrollo del ciclo Joule Brayton; lo que nos permitió seleccionar el paquete de generación de energía MERCURY 50 ofertado por la empresa Solar Turbine A Caterpillar Company; también seleccionamos un trasformador de potencia eléctrica de 10 MVA con 3 devanados (13,8/22,9/380 kV), con una frecuencia de 60 Hz el cual se deberá mandar a fabricar a medida por no encontrarse en el mercado y se considera un transformador de mayor potencia a la generación debido a que en el futuro el crecimiento poblacional aumentara.
- El Sistema de Generación de Energía Eléctrica utilizando Biogás(metano) obtenido a través de RSU, podrá cubrir un aproximado de 4 300 viviendas, teniendo en cuenta la calificación eléctrica para viviendas en zonas urbanas es de 1 kW con referencia a Resolución Directoral. N°015-2004-EM/DGE.
- Para la construcción del sistema de Generación de Energía Eléctrica utilizando Biogás(metano) obtenido a través de RSU, se necesita una inversión aproximada de \$ 3 225 000,00 dólares.
- Los ingresos anuales estimados que generará la planta por concepto de generación de energía eléctrica serán de \$ 1 499 850,00 dólares.
- Respecto a posible periodo de retorno es de 3 años 4 meses, recalcando nuevamente que es un cálculo muy aproximado para referencia.

VI. RECOMENDACIONES

- Este estudio podría ser utilizado como marco de referencia por La municipalidad provincial, gobierno regional o central; estos deben realizar un estudio definitivo de diseño de un vertedero controlado para poder determinar la cantidad de Biogás que puede generar el botadero de Jaén y de esta manera identificar las aplicaciones que se pueden hacer con este combustible.
- Se recomienda a futuros tesistas considerar el uso de motores de combustión interna para determinar la potencia de generación de energía eléctrica, debido a que estos equipos son más comunes y fáciles de encontrar en el mercado.
- Automatizar el sistema con la tecnología idónea, para logra reducir los accidentes, fallos en el sistema y reducir personal.
- Diseñar la protección del transformador de potencia y así mismo los cálculos de la línea de transmisión 22,9 Kv.
- Se recomienda también en futuros trabajos incorporar la evaluación económica financiera, ya sea como parte de un trabajo de investigación en las facultades de ingeniería, o mucho mejor como parte de un trabajo de investigación en una facultad de economía y finanzas.

VII. REFERANCIAS BIBLIOGRAFICAS

- Cengel, Y., & Boles, M. . (2012). Termodinámica. En Mc Graw Hill (Ed.), *Termodinamica* (Séptima Ed). España: Toledo Castellanos, Miguel ángel.
- Chonlón, R. E. (2016). Estudio de factibilidad de producir biogás con residuos orgánicos ganaderos para satisfacer la demanda energética, caserio el Tambo, Motupe 2016 (Universidad Cesar Vallejo). Recuperado de http://repositorio.ucv.edu.pe/handle/UCV/8748
- Epec. (2018). Energía renovable : la biomasa. *Divición de Gestión Ambiental*, 1, 8. Recuperado de https://www.epec.com.ar/docs/educativo/institucional/biomasa.pdf
- Espinoza, L. B. (2014). Beneficios del biogás capturado en un relleno sanitario, transformado a energía electrica en el marco del mecanismo del desarrollo limpio MDL (Universidad Nacional del Centro del Perú). Recuperado de http://repositorio.uncp.edu.pe/handle/UNCP/3724
- Huaylinos Sosa, I. A. (2018). Determinación de la potencia eléctrica a partir del biogás obtenido de los residuos sólidos municipales de la provincia de Huancayo (Universidad Continental). Recuperado de https://repositorio.continental.edu.pe/handle/continental/4601
- INEI. (2015). Población 2000 al 2015. Recuperado 30 de marzo de 2019, de http://proyectos.inei.gob.pe/web/poblacion/
- Megomex. (2017). Motores y Generadores de México. Recuperado 30 de marzo de 2019, de http://mogemex.com/Grupo_MOGEMEX/FILTROS_BIOGAS.html
- Ministerio del Ambiente (MINAM). (2015). Guía metodológica para el desarrollo del Estudio de Caracterización para Residuos Sólidos Municipales (EC-RSM) (1.ª ed.; M. del Ambiente, Ed.). Recuperado de http://redrrss.minam.gob.pe/material/20150302182233.pdf
- Morris & Chapman. (2019). Consenso Científico sobre los campos electromagnéticos de Líneas Eléctricas, Cableado y Electrodomésticos. Recuperado 27 de abril de 2019, de http://www.greenfacts.org/es/lineas-electricas/index.htm
- Municipalidad Provincial de Jaén. (2012). Plan integral de gestión ambiental de residuos sólidos PIGARS Jaén. *Gestion*, 278. Recuperado de http://siar.regioncajamarca.gob.pe/documentos/plan-integral-gestion-ambiental-residuos-solidos-pigars-jaen

- Osinergmin. (2013). Central Termoeléctrica Recka (181,3 MW). Recuperado 5 de abril de 2019, de http://www2.osinerg.gob.pe/EnergiasRenovables/contenido/IntroduccionEnergiasRenovables.html
- Osinergmin. (2018a). *Central de Biomasa La Gringa V*. 1. Recuperado de https://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/Document os/PROYECTOS GFE/Acordeón/Generación/1.5.3.pdf
- Osinergmin. (2018b). Central termoeléctrica de biomasa callao (2,4 mw). 99.

 Recuperado de

 https://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/Document
 os/PROYECTOS GFE/Acordeón/Generación/3.7.2.pdf
- Osinergmin. (2018c). *Central Termoeléctrica Huaycoloro*. 1. Recuperado de https://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/Document os/PROYECTOS GFE/Acordeón/Generación/1.5.1.pdf
- Osinergmin. (2018d). Central Termoeléctrica Malacas (Turbina A Gas TG5-Reserva Fría). Recuperado de https://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/Document os/PROYECTOS GFE/Acordeón/Generación/1.4.6.pdf
- Osinergmin. (2018e). Central termoeléctrica planta éten reserva fría. En *División de Supervisción de Electricidad* (Vol. 1, p. 100). Recuperado de https://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/Document os/PROYECTOS GFE/Acordeón/Generación/1.4.10.pdf
- Osinergmin. (2018f). *Central Termoeléctrica Recka*. Recuperado de https://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/Document os/PROYECTOS GFE/Acordeón/Generación/1.4.11.pdf
- Osinergmin. (2018g). Central Termoeléctrica Tablazo Plano de Ubicación Generador Eléctrico ABB de 30 MW Torre de Enfriamiento de la Planta Transformador ABB de 42 MVA 60/13,8 kV Denominación Central Termoeléctrica Tablazo Empresa Consecionaria Sudamericana De Energía de Piura. Recuperado de https://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/Document os/PROYECTOS GFE/Acordeón/Generación/1.4.7.pdf
- Petramás. (2018). Petramás | Energías renovables en Perú | Cuidando el medio ambiente Perú. Recuperado 7 de mayo de 2019, de http://www.petramas.com/
- Promelsa. (2010). De distribución monofásicos -trifásicos / tipo pedestal / mixtos y

secos encapsulados.

Renovetec. (2019a). Por qué se distribuye corriente trifásica. Recuperado 27 de abril de 2019, de http://energia.renovetec.com/117-por-qué-se-distribuye-corriente-

Renovetec. (2019b). Turbinas de gas. Recuperado 24 de abril de 2019, de http://www.plantasdecogeneracion.com/index.php/turbinas-de-gas

ScienceDirect. (2018). Solar Turbine - an overview (pdf) | ScienceDirect Topics. Recuperado 11 de junio de 2019, de

https://www.sciencedirect.com/topics/engineering/solar-turbine/pdf

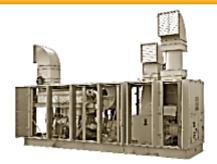
Solar Turbines. (2019). Mercury 50: paquetes de generación de energía | Solar Turbines.

Recuperado 6 de junio de 2019, de

https://www.solarturbines.com/es_MX/products/power-generation-packages/mercury-50.html

VIII. ANEXOS

Anexo 1 Turbina de Gas Mercury 50.


Solar Turbines

A Caterpiller Company

Conjunto generador impulsado por turbina de gas recuperado

MERCURY 50

Generación de potencia

Especificaciones generales

Turbina de gas

- Turbina de gas recuperado Marcury¹⁹50
 Industrial, de eje único
- Compresor axial de 10 etapas
- Alabes directores de entrada variable y
- Relación de compresión: 9.9:1
- Flujo de aire de entrada: 39.2 lb/seg (17.9 kg/seg)
- Carcasa dividida verticalmente
- Cámara de combustión, tipo anular
- Sistema de combustión de premezcla: ultra pobre
- 8 invectores de combustible
- Sistema de quemado de encendido sencillo
- Transductores de vibración con sensor de proximidad
- Turbina
 - 2 etapas, de reacción
- Rotación en sentido horario
- Cojinetes
 - 2 radiales: cojinetes de rodillos con amortiquamiento viscoso
- 1 de empuje/radial: cojinete de bolas de carrera interior dividido, con amortiguamiento viscoso

Recuperador

- Tipo de superficie primaria Caja de reducción principal
- 1500 à 1800 rpm (50 à 60 Hz)
- Monitoreo de vibración: Transductor de aceleración

- De 4 polos, trifásico, 6 cables, conexión de estrella, sincrónico con excitatriz de imán permanente
- Tipo de construcción disponible:
- Abierta a prueba de goteo Coinete de manguito
- Monitoreo de vibración: Transductores de velocidad
- Elevación de temperatura Clase F
- Elevación de temperatura clase B*

- Aislamiento NEMA clase F con elevación de temperatura F
- Voltajes nominales de servicio continuo:
- 3300, 6600, 11,000 (50Hz) 4160, 6900, 12,470, 13,800V(60 Hz)

Turbomaquinaria

- Construcción mecánica
 - Bastidor de base de acero con bandejas colectoras y alineación del generador
- Tuberla de acero inoxidable 316L
- Sistema de arrangue
 - Motor de CA de impulsión directa con Control de VFD
- Certificación eléctrica de la turbomaqui-
- NEC, CSA Clase 1, Grupo D, Div 2
- Sistema de combustible
- Gas natural - Gas residual*
- Gas digestor
- Sistema de aceite lubricante integrado
- Bomba principal de pre/poslubricación, Bomba de lubricación de respaldo
- Enfriador de aire y aceite
- Enfriador de agua/aceite, aceite lubricante*
- Tanque de aceite lubricante integral. - Calentador del tanque de aceite
- lubricante
- Fittro de aceite lubricante Simplex Filtros de aceite lubricante Duplex*
- Eliminador de neblina de aceite
- Arrestallamas en el venteo
- Sistemas de entrada y de escape de aire
- Acero al carbono
- Acero inoxidable*
- Filtros tipo barrera
- Filtros de limpieza automática.
- Silenciadores de entrada y de escape - Enfriador evaporativo de entrada:
- Bobinas enfriadoras de entrada*
- Turbomaquinaria completa
- Sistema de extinción de incendios y supresión de CO2

- · Sistemas de limpieza del compresor
 - En giro
- Tanque de limpieza portátil*
- · Potencia de la turbomaquinaria
- Sistema de cargadon/bateria de 120Vcd*
- Sistema de control de la turbina de gas en el patin Turbotronic® 4
 - Turbina de gas y Sistema de control de combinación
 - Visualización estándar con Registro de eventos discretos, Registrador de banda, Tendencias históricas, pantalla de Mantenimiento
 - Monitoreo de vibración y temperatura
 - Visualización de texto y etiquetas en inglés
- Visualización de texto y etiquetas en español, portugués, alemán, francés
- o chino simplificado*
- Terminales de control/visualización auxiliar y remoto*
- Sincronización automática
- Control de importación de KW
- Control de KVAR/factor de potencia*
- Interfaz de supervisión ControlNet Redundant Media, Ethemet, Data Highway Plus a Modbus RS232C/422/485*
- Interfaz de aplicación de recuperación de calor*
- Aplicaciones de multi-unidades: Control de reparto de carga, paneles de control de importación/exportación o kW/KVAR*
- Gestián del buan estado del equipo InSight System¹⁴
- Impresora/Registradora
- Documentación
- Dibujos
- Libro de datos de control de calidad
- Informes de las pruebas
- Manuales de operación y mantenimiento
- Pruebas en la fabrica de la turbina y la turboma quinaria
- Estáticas
- Dinámicas

Fuente: (Solar Turbines, 2019)

Solar Turbines

Conjunto generador impulsado por turbina de gas recuperado

MERCURY 50
Generación de potencia

Rendimiento nominal*

A Caterpiliar Company

Potencia de salida, kWe 4600 Tasa de calor, kJ/kWe-hr 9350 (BtwkWe-hr) (8865)

Flujo del escape, kg/hr 63 700 (lb/hr) (140,400)

Temperatura de escape,°C 365 (°F) (690)

*SUPUESTOS

Capacidad nominal – ISO a 15°C (59°F), a nivel del mar Sin pérdidas en la entrada o el escace

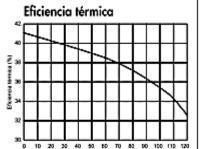
Humedad relativa del 60%

Combustible de gas natural con valor celorifico inferior = a 35 MJ/ nm² (940 a Btu/scf)

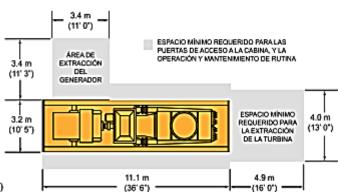
Sin pérdida por accesorios Eficiencia de la turbina: 38.5% (medida en las terminales del generador)

Rendimiento de la aplicación

Vapor (no expuesto al fuego): 6.0 toneladas/ hr (13,125 lb/hr)


Vapor (expuesto al fuego); 1536°C (2800°F); 47.1 toneladas/hr (103,865 lb/hr)

Enfriamiento (absorción): 5140 kw (1460 toneladas de refrigeración)


Tasa de calor

Temperatura ambiente (Deg F)

Espacio para el mantenimiento y el acceso a la cabina

Altura de la turbomaquinaria: 3.7 m (12' 3")

Peso de la turbomaquinaria: 45 700 kg

(100,700 lb)

DSM50PG-0050

Solar Turbines Incorporated P.O. Box 85376 San Diego, CA 92186-5376 EE. UU.

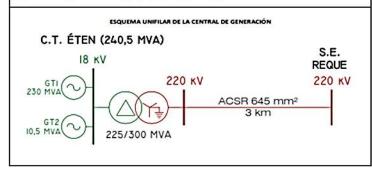
Calculation and Calculation of the Calculation of t

PARA MÁS INFORMACIÓN

Teléfono: (+1) 619-544-5352 Telefax: (+1) 858-694-6715 email: powergen@solarturbines.com Internet: www.solarturbines.com

Fuente: (Solar Turbines, 2019)

Anexo 2 Central Termoeléctrica PLANTA ETÉN – RESERVA FRÍA



CENTRAL TERMOELÉCTRICA PLANTA ÉTEN - RESERVA FRÍA

DENOMINACIÓN	CENTRALTERMOELÉCTI	RICA PLANTA ÉTEN				
EMPRESA CONCESIONARIA	PLANTA DE RESERVA F	RÍA DE GENERACIÓN DE E	ETEN S.A.			
TECNOLOGÍA	Generación Térmica					
UBICACIÓN						
Departamento	Lambayeque					
Provincia	Chiclayo					
Distrito	Puerto Éten					
Altitud	4 msnm					
DATOS TÉCNICOS DE CENTRAL	1 11 11					
Potencia Instalada	240,5 MVA					
Unidades de Generación	Turbina a Gas (Dual)					
Fuente de Energia	Diesel B5 / Gas Natural (GN)					
Operación	Ciclo Abierto (Simple)					
DATOS EQUIPO	Turbina TG1					
Marca	General Electric 7FA.0	15				
Potencia Nominal	181 MW					
Tipo de Combustible	Diesel B5					
Sistema	Dual (GN)					
DATOS GENERADOR	GT1	GT2				
Marca	General Electric	ABB				
Potencia	184 MW	10 MW				
Tensión de Generación	18 kV	18 kV				
Factor de Potencia	0,8	0,8				
DATOS TRANSFORMADOR						
Nivel de Tensión	18 /220 kV					
Potencia	225-300 MVA (ONAN-	ONAF)				
DATOS DE CONTRATO		The services				
Tipo de contrato	Reserva Fria	HITOS				
Firma de Contrato	21.07.2011	EIA	05.06.2013			
Puesta en Operación Comercial (POC)	02.07.2015	Cierre Financiero	12.02.2014			
Precio por Potencia	7 627 US\$/MW mes	Llegada de equipos	19.02.2015			

INFORMACIÓN RELEVANTE

- El proyecto está ubicado en el distrito de Reque, provincia de Chiclayo, departamento de Lambayeque.
 La central es dual (Diesel BS/Gas Natural). Inicialmente opera con combustible Diesel BS, pero está preparada para operar con Gas Natural. La central opera en sistema abierto (simple).
- Cuenta con una Turbina dual de 181 MW de potencia nominal, con un Generador Sincrono de 230 MVA de potencia.
- Cuenta con una chimenea con monitoreo de emisiones, con dos tanques de almacenamiento de combustible líquido (2x7750 m³), para mantener operativa la planta a plena carga durante diez (10) días), un tanque de almacenamiento de agua desmineralizada (500 m²), una planta de tratamiento de agua, un grupo electrógeno Wartsila de 10 MW para el arranque autónomo (black start), un generador ABB de 10,5 MVA, un grupo electrógeno de emergencia, un sistema de control automático y supervisión de turbinas (DCS), un sistema de aire comprimido, un sistema de protección contra incendio, una fosa séptica para aguas sanitarias y fecales y edificaciones varias.
- La interconexión de la Central con el SEIN se da mediante la Línea de Transmisión 220 kV Reque Éten (L-2166) de 3 km. La L-2166 se encuentra operando satisfactoriamente desde el 26.06.2015.
- Con carta COES/D-290-2015 del 01.07.2015, el COES aprobó la integración al SEIN de la L.T. 220 kV Reque – Éten (L-2166) desde las 00:00 horas del 02.07.2015. La línea de transmisión se encuentra operando satisfactoriamente desde el 26.06.2015.
- Con carta COES/D-291-2015 del 01.07.2015, el COES aprueba la Operación Comercial de las unidades GT1 (175 MW) y GT2 (8.47 MW) de la central, desde las 00:00 horas del 02.07.2015.
- La inversión aproximada en el proyecto es de 145 MM US\$.

Plano de Ubicación de la Centra

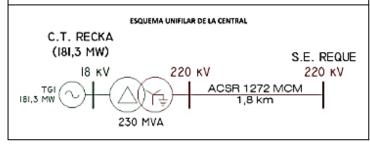
Unidad de generación turbina a gas

Tanques de almacenamiento de agua

Grupo de Emergencia (Black Star)

Tanques de combustible Diesel E

Fuente: (Osinergmin, 2018a)



CENTRAL TERMOELÉCTRICA RECKA (181,3 MW)

DENOMINACIÓN	CENTRAL TERMOELÉCTRICA RECKA
EMPRESA CONCESIONARIA	SOCIEDAD MINERA CERRO VERDE S.A.A.
UBICACIÓN	
Departamento	Lambayeque
Provincia	Chiclayo
Distritos	Reque
Altitud	22 msnm
DATOS TÉCNICOS DE CENTRAL	
Potencia Instalada	181.3 MW
Almacenamiento de Combustible	2 tanques de 6 200 m³ c/u
Almacenamiento de Agua Bruta	2 tanques de 4 200 m³ c/u
Almacenamiento de Agua Desmineralizada	1 tanque de 600 m²
DATOS DE LA TURBINA	
Tipo	Dual
Combustible	Diésel BS/Gas Natural
DATOS TÉCNICOS DE TRANSFORMADOR	
Potencia	230 MVA
Nivel de Tensión	18/220 kV
DATOS DE CONTRATO	
Tipo de Contrato	Autorización
Firma del Contrato	15.08.2014
Puesta en Operación Comercial (POC)	25.09.2015

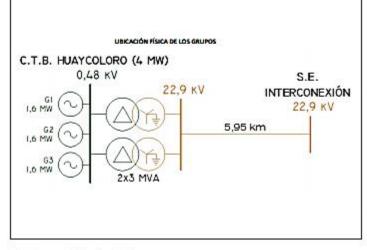
- La C.T. Recka se compone de una turbina en ciclo abierto o simple con su respectivo generador de 181.3 MW, transformador de potencia y equipos auxiliares.
- La turbina es de tipo dual (Diésel B5/Gas Natural), preparado en un futuro para la combustión de Gas Natural.
- También son parte de la central térmica las siguientes instalaciones principales:
- Dos tanques de almacenamiento de combustible con una capacidad de almacenamiento total de 10 dias de operación. La capacidad de cada tanque es de 6 200 m². El cubeto que contiene el conjunto de tanques permite contener por lo menos el 110% de la capacidad del tanque de mayor volumen.
- Bombas de recepción y transferencia de Diésel B5.
- Dos tanques de almacenamiento de agua bruta y Protección Contra Incendios (PCI) con una capacidad de almacenamiento total de 10 días de operación. La capacidad de cada tanque es de 4 200 m³
- Un tanque de agua desmineralizada de 600 m³ de capacidad.
- Planta de tratamiento de agua desmineralizada para inyección a la turbina.
- Cuenta con Estudio de Pre Operatividad aprobado mediante carta COES/D/DP-1300-2014 del 04.09.2014.
- Cuenta con CIRA Nº 015-2013 otorgado el 12.08.2013.
- Cuenta con ElA aprobado con R.D. Nº 382-2014-MEM-DGAAM del 25.07.2014.
- Con R.M. N° 228-2015-MEM/DM del 16.05.2015 el MINEM otorgó autorización indefinida para desarrollar la actividad de generación de energía eléctrica.
- La concesionaria informó que las pruebas de puesta en servicio iniciaron el 28.08.2015.
- Con carta COES/D/DP-1543-2015 del 23.09.2015, el COES aprobó la Puesta en Operación Comercial de la unidad TG1 de la central térmica Recka, desde las 00:00 horas del 25:09:2015, con una potencia efectiva de 181,32 MW.
- El monto de inversión fue de 102,53 MMUS\$ aproximadamente.

Vista panorámica de la central

Baka de evaporación

División de Supervisión de Electricidad Unidad de Supervisión de Inversión en Electricidad - Marzo 2018

Fuente: (Osinergmin, 2018b)



CENTRAL TERMOELÉCTRICA HUAYCOLORO

PETRAMAS S.A.C. Generación Termo Lima Huarochiri Huaycoloro 60 msnm 4,0 MW 3 Grupos Diesel Gas Motor 1	eléctrica - Biomasa			
Lima Huarochiri Huayooloro 60 msnm 4,0 MW 3 Grupos Diesel Gas	eléctrica - Biomasa			
Huarochiri Huaycoloro 60 msnm 4,0 MW 3 Grupos Diesel Gas				
3 Grupos Diesel Gas				
Motor 1				
1,6 MW Caterpillar 0,48 kV	Motor 2 1,6 MW Caterpillar 0,48 kV	Motor 3 1,6 MW Caterpillar 0,48 kV		
2 x 3MVA 0,48/22,9 kV	•			
Contrato RER (Primera Subasta) 31.03.2010 12.11.2011 28.295 MWh				
31.03.2010 12.11.2011				

- El 20.02.2010, Petramás obtuvo la buena pro para suministrar energía eléctrica por 20 años al Estado Peruano por un total de 28 295 MWh por año, dentro del marco de la "Primera Subasta para el Suministro de Energía Eléctrica, con Recursos Energéticos Renovables (RER) al Sistema Eléctrico (SEIN)".
- El proyecto está compuesto por 250 pozos de captación de biogás; un gaseoducto de más de 15 km y una moderna estación de succión y quemado automatizada.
- La central genera energia eléctrica a partir de la basura, emplea el biogás generado en las plataformas
 del relleno sanitario Huaycoloro para la generación eléctrica, para lo cual se ha instalado una moderna
 estación automatizada de limpieza de biogás, una moderna central de Generación de 4,8 MW, una sala
 de control, una subestación de elevación de voltaje de 480V a 22 kV, una red de sub transmisión de 5,5
 Km y una S.E. de recepción (Luz del Sur) para la interconexión con las redes del SEIN.
- La Central Termoeléctrica Huaycoloro ingresó en operación comercial el 12.11.2011 (Carta COES/DP-644-2011), con una potencia efectiva de 2,4 MW; posteriormente, el 29.12.2011, mediante Carta COES/DP-847-2011 se actualizó la potencia efectiva de la C.T a 3,41 MW a partir del D6.012.2011.
- Monto aproximado de la inversión es de 10,5 MM US\$.

Planta de tratamiento de Biogás

Quemador de Biogás

Grupos de Generación 3 x 1,6 MW

Central Termoeléctrica Huaycoloro

Linea de subtrammisión 22,9 kV

División de Supervisión de Electricidad Unidad de Supervisión de Inversión en Electricidad - Marzo 2018

Fuente: (Osinergmin, 2018c)

114

Anexo 5 Central de Biomasa LA GRINGA V.

CENTRAL DE BIOMASA LA GRINGA V (3,2 MW)

DENOMINACIÓN	CENTRAL DE BIOMASA LA GRINGA V
EMPRESA CONCESIONARIA	PETRAMAS S.A.C.
TECNOLOGÍA	Generación con Biogás
UBICACIÓN Departamento Provincia Distrito Altitud	Lima Huarochiri Huayodoro 60 msnm
DATOS TÉCNICOS DE CENTRAL Potencia instalada Número de Unidades de Generación Fuente de Energia	3,2 MW 2 Grupos Electrógenos Residuos Urbanos (Gas de Huaycoloro)
DATOS DEL GRUPO Potencia Nominal Velocidad Tensión de Generación	2x1,6 MW (Caterpillar G3520C) 1 200 RPM 0,48 kV
DATOS DEL TRANSFORMADOR Potencia Nominal Relación de Transformación	3 MVA 0,48/22,9 kV
DATOS DE CONTRATO Tipo de contrato Firma de Contrato Puesta en Operación Comercial (POC) Energia Anual Ofertada Precio de energia Ofertado Barra de Conexión	Contrato RER (Segunda Subasta) 30.09.2011 31.08.2015 14.016 MWh 9.999 Ctvs.US\$ / kWh Subestation Huachton 22.9 kV/60 kV (LDS)

- La C.T.B. La Gringa V se encuentra ubicada en las proximidades de Cajamarquilla, provincia de Huarochiri, departamento de Lima. Contempla la instalación de dos grupos electrógenos de 1,6 MW [c/u] que utilizarán el excedente de biogás de la C.T.B. Huaycoloro.

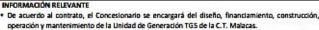
 La Empresa "Petramás S.A.C." está asumiendo las acciones del Concesionario "Energia Limpia"
- propietaria del Proyecto Central Biomasa" La Gringa", asumiendo las obligaciones de la inversión del costo total del proyecto.

 • El proyecto sufrió retrasos por el cambio de motores Jenbacher 420 (1,4 MW) por Caterpillar
- G3520C (1,6 MW); por lo cual solicitó la modificación de la fecha de POC.
- Con carta COES/D/DP-412-2015 del 10.03.2015 el COES aprobó el Estudio de Operatividad de la C.T. La Gringa V.

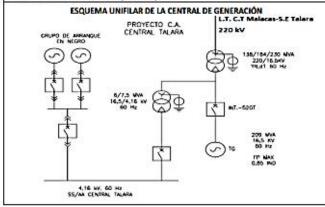
 Con R.D. N° 063-2015-GRL-GRDE-DREM del 25.06.2015, el Gobierno Regional de Lima otorgó la
- concesión definitiva de generación con Recursos Energéticos Renovables.
- Las obras han sido concluidas.
- La concesionaria presento las pruebas en blanco de sus equipos.

 Con carta COES/D/DP-1411-2013 del 31.08.2013, el COES aprobó la Operación Comercial de la C.T.B. La Gringa V, con una potencia efectiva de 3,2 MW, a partir de las 24:00 horas del 31.08.2015.
- El monto de Inversión aproximado fue de 3,1 MM US\$.

División de Supervisión de Electricidad Unidad de Supervisión de Inversión en Electricidad - Marzo 2018


Fuente: (Osinergmin, 2018d)

Anexo 6 Central Termoeléctrica MALACAS.


CENTRAL TÉRMOELÉCTRICA MALACAS (TURBINA A GAS TG5 - RESERVA FRÍA)

DENOMINACIÓN	C.T. MALACAS (TURBINA A GAS TG5)
EMPRESA CONCESIONARIA	EEPSA
TECNOLOGÍA	Generación Térmica
UBICACIÓN	
Departamento	Piura
Provincia	Talara
Distrito	Pariñas
Altitud	30 msnm
DATOS TÉCNICOS DE PLANTA RVA. FRIA	The state of the s
Potencia Instalada	200 MW
Número de Unidades de Generación	1 Turbina a Gas Dual
Fuente de Energia	Diesel B5 / Gas Natural
Operación	Ciclo Abierto (Simple)
Tanque de combustible	1 x 6 000 m*
Tanque de combustible filtrado	1 x 6 000 m ³
Tanque de Agua desmineralizada	1 x 6 180 m*
DATOS TÉCNICOS DE TURBINA A GAS	Turbina TGS
Potencia Nominal	200 MW
Modo de Operación	Diesei BS
Sistema de Combustible	Dual
Consumo Específico	9,58 MMBTU/MWh
DATOS TÉCNICOS DE GENERADOR	Generador
Potencia	209 MVA
Tensión de Generación	16,5 kV
Factor de Potencia	0,85
DATOS TÉCNICOS DE TRANSFORMADOR	- Standard
Potencia	230 MVA
Nivel de Tensión	16,5/220 kV
DATOS DE CONTRATO	
Tipo de contrato	Contrato de Reserva Fria
Firma de Contrato	08.01.2011
Puesta en Operación Comercial (POC)	13.07.2013 (carta CDES/D/DP-723-2013)
Precio por Potencia	7 815 US\$/MW mes

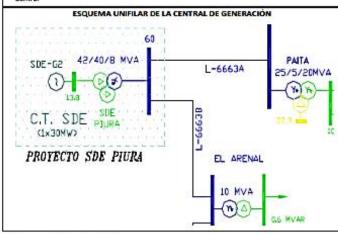
- Actualmente la C.T. Malacas cuenta con tres Turbinas a Gas Natural (TG1, TG2 y TG3, operando en ciclo simple) preparadas para trabajar con combustible G.N. o Diesel B2; además, la C.T. Malacas 2, cuenta con una Turbina ABB a Gas TG4 en ciclo simple.
- La Planta de Reserva Fría, es de ciclo simple y tiene una capacidad de 200 MW, que opera actualmente con combustible Diesel BS, y estará preparada para operar con Gas Natural.
- La potencia instalada pactada es de 20 MW (+)-15%), es decir, entre 230 MW y 170 MW.

 La interconexión del transformador de potencia de la nueva Turbina a Gas TGS con la red eléctrica del SEIN es a través de la S.E. Talara de propiedad de RED ELÉCTRICA DEL PERÚ (REP), que es colindante con la C.T. Malacas.
- Con fecha 29.06.2013 se registró una demanda generada de 189 MW.
 Mediante carta COES/D/DP-723-2013 el COES otorgó la POC para la Turbina a Gas TGS de la C.T. Malacas, a partir de las 00:00 del 13.07.2013.
- El monto de la inversión es de 106,4 MM US\$

División de Supervisión de Electricidad Unidad de Supervisión de Inversión en Electricidad - Marzo 2018

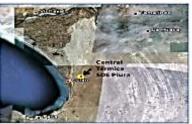
Fuente: (Osinergmin, 2018e)

Anexo 7 Central Termoeléctrica TABLAZO.



CENTRAL TERMOELÉCTRICA TABLAZO

DENOMINACIÓN	CENTRAL TERMOELÉCTRICA TABLAZO				
EMPRESA CONCESIONARIA	SUDAMERICANA DE ENERGÍA DE PIURA				
TECNOLOGÍA	Generación Termoeléctrica				
UBICACIÓN					
Departamento	Plura				
Provincia	Palta				
Distrito	Tablazo				
Altitud	80 msnm				
DATOS TÉCNICOS	Non-contract				
Potencia Instalada	30 MW				
Tipo de Central	Termoeléctrica Ciclo Abierto				
Combustible	Gas Natural				
Número de unidades de Generación	1 Turbina				
Requerimiento de agua	700 m ²				
TURBINA	- W. (2000)				
Modelo de Turbina	SGT-700				
Potencia	30 MW				
Eficienda Térmica	30 %				
GENERADOR	(FEC0-0)				
Potencia Efectiva	30 MW				
Tensión de Generación	13,8 kV				
Factor de Potencia	0,9				
TRANSFORMADOR	The same and				
Nivel de Tensión	13,8/60kV				
Potencia	42 MVA				
DATOS DE CONTRATO	The second control of the second				
Tipo de contrato	Autorización MINEM				
Firma de Contrato	31.12.2011				
Puesta en Operación Comercial (POC)	01.09.2012				


- La Central Termoeléctrica está ubicada en la zona de El Tablazo de Colán, para lo cual se han adquirido 20 000 m² en zona eriaza a 320 metros del km 45 de la carretera Paita – Sullana.
- El gas que sirve de combustible es transportado básicamente desde la estación PN-23 de Olympic
 Perú INC hasta la estación de Medición en el interior de la Central Térmica, en un tramo estimado de 13,5 km.
- La generación eléctrica se da a través de un ciclo abierto. El combustible que ingresa a la turbina es
 quemado en la cámara de combustión de la turbina, entregando los gases de escape su energia a
 las ruedas de los álabes del rotor de la turbina de gas. El rotor de la turbina a su vez impulsa a su
 homólogo de un generador, produciendo energia eléctrica, cuyo voltaje se eleva a la tensión de 60
 kV, que es el voltaje con el que se interconectará al sub sistema de transmisión.
- La S.E. Tablazo tiene una configuración de barra tipo "rt", su construcción incluye 3 bahías en 60 kV y 1 módulo de transformación; así como el espacio para futuras ampliaciones de la subestación.
- La C.T. Tablazo ingresó en operación comercial el 01.09.2012 (Carta COES/D-794-2012).
- El monto aproximado de la inversión fue de 22,5 MM USS.
- La instalación de la central ha permitido el incremento de la conflabilidad del Sistema Eléctrico Centro.

División de Supervisión de Electricidad

Unidad de Supervisión de Inversión en Electricidad - Marzo 2018

Fuente:(Osinergmin, 2018f)

Plano de Ubicación

Generador Eléctrico ASS de 30 MW

Torre de Enfriamiento de la Planta

Transformador ABS de 42 MVA 60/15,8 k

S.E. de Tablaso (Equipos del Patio de Llaves)

Anexo 8 TABLA A-2 Calores específicos de gas ideal de varios gases comunes

TABLA A-2

Calores específicos de gas ideal de varios gases comunes

a) A 300 K

		Constante de gas, R	C _p	C _v	
Gas	Fórmula	kJ/kg · K	kJ/kg · K	kJ/kg ⋅ K	k
Aire	_	0.2870	1.005	0.718	1.400
Argón	Ar	0.2081	0.5203	0.3122	1.667
Butano	C_4H_{10}	0.1433	1.7164	1.5734	1.091
Dióxido de carbono	CO ₂	0.1889	0.846	0.657	1.289
Etano	$C_2\bar{H}_6$	0.2765	1.7662	1.4897	1.186
Etileno	C_2H_4	0.2964	1.5482	1.2518	1.237
Helio	He	2.0769	5.1926	3.1156	1.667
Hidrógeno	H_2	4.1240	14.307	10.183	1.405
Metano	CH₄	0.5182	2.2537	1.7354	1.299
Monóxido de carbono	CO	0.2968	1.040	0.744	1.400
Neón	Ne	0.4119	1.0299	0.6179	1.667
Nitrógeno	N_2	0.2968	1.039	0.743	1.400
Octano	C ₈ H ₁₈	0.0729	1.7113	1.6385	1.044
Oxígeno	02	0.2598	0.918	0.658	1.395
Propano	C ₃ H ₈	0.1885	1.6794	1.4909	1.126
Vapor	H ₂ O	0.4615	1.8723	1.4108	1.327

Nota: La unidad kJ/kg · K es equivalente a kJ/kg · °C.

Fuente: Chemical and Process Thermodynamics 3a. ed., por Kyle, B.G., © 2000. Adaptado con permiso de Pearson Education, Inc., Upper Saddle River, Nueva Jersey.

Anexo 9 TABLA A-17 Propiedades de Gas ideal del Aire.

TABLA A-17

Propiedades de gas ideal del aire (conclusión)

T	h In Minn		U la l'élana		s ^o	T	h		U I-10		5°
K	kJ/kg	P_r	kJ/kg	v_r	kJ/kg · K	K	kJ/kg	P_r	kJ/kg	v_r	kJ/kg + K
1260	1348.55	290.8	986.90	12.435	3.23638	1600	1757.57	791.2	1298.30	5.804	3.52364
1280	1372.24	310.4	1004.76	11.835	3.25510	1620	1782.00	834.1	1316.96	5.574	3.53879
1300	1395.97	330.9	1022.82	11.275	3.27345	1640	1806.46	878.9	1335.72	5.355	3.55381
1320	1419.76	352.5	1040.88	10.747	3.29160	1660	1830.96	925.6	1354.48	5.147	3.56867
1340	1443.60	375.3	1058.94	10.247	3.30959	1680	1855.50	974.2	1373.24	4.949	3.58335
1360	1467.49	399.1	1077.10	9.780	3.32724	1700	1880.1	1025	1392.7	4.761	3.5979
1380	1491.44	424.2	1095.26	9.337	3.34474	1750	1941.6	1161	1439.8	4.328	3.6336
1400	1515.42	450.5	1113.52	8.919	3.36200	1800	2003.3	1310	1487.2	3.994	3.6684
1420	1539.44	478.0	1131.77	8.526	3.37901	1850	2065.3	1475	1534.9	3.601	3.7023
1440	1563.51	506.9	1150.13	8.153	3.39586	1900	2127.4	1655	1582.6	3.295	3.7354
1460	1587.63	537.1	1168.49	7.801	3.41247	1950	2189.7	1852	1630.6	3.022	3.7677
1480	1611.79	568.8	1186.95	7.468	3.42892	2000	2252.1	2068	1678.7	2.776	3.7994
1500	1635.97	601.9	1205.41	7.152	3.44516	2050	2314.6	2303	1726.8	2.555	3.8303
1520	1660.23	636.5	1223.87	6.854	3.46120	2100	2377.7	2559	1775.3	2.356	3.8605
1540	1684.51	672.8	1242.43	6.569	3.47712	2150	2440.3	2837	1823.8	2.175	3.8901
1560	1708.82	710.5	1260.99	6.301	3.49276	2200	2503.2	3138	1872.4	2.012	3.9191
1580	1733.17	750.0	1279.65	6.046	3.50829	2250	2566.4	3464	1921.3	1.864	3.9474

Nota: Las propiedades P_r (presión relativa) y v_r (volumen específico relativo) son cantidades adimensionales utilizadas en el análisis de procesos isentrópicos y no deben confundirse con las propiedades de presión y volumen específico.

Anexo 10 TABLA A-18 -de gas ideal del Nitrógeno N2.

TABLA A-18	
Propiedades de gas ideal del nitrógeno, N ₂ (conclusión)	

T	ħ	ū	₹°	T	h	ū	₹°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	К	kJ/kmol	kJ/kmol	kJ/kmol - K
1000	30,129	21,815	228.057	1760	56,227	41,594	247.396
1020	30,784	22,304	228.706	1780	56,938	42,139	247.798
1040	31,442	22,795	229.344	1800	57,651	42,685	248.195
1060	32,101	23,288	229.973	1820	58,363	43,231	248.589
1080	32,762	23,782	230.591	1840	59,075	43,777	248.979
1100	33,426	24,280	231.199	1860	59,790	44,324	249.365
1120	34,092	24,780	231.799	1880	60,504	44,873	249.748
1140	34,760	25,282	232.391	1900	61,220	45,423	250.128
1160	35,430	25,786	232.973	1920	61,936	45,973	250.502
1180	36,104	26,291	233.549	1940	62,654	46,524	250.874
1200	36,777	26,799	234.115	1960	63,381	47,075	251.242
1220	37,452	27,308	234.673	1980	64,090	47,627	251.607
1240	38,129	27,819	235.223	2000	64,810	48,181	251.969
1260	38,807	28,331	235.766	2050	66,612	49,567	252.858
1280	39,488	28,845	236.302	2100	68,417	50,957	253.726
1300	40,170	29,361	236.831	2150	70,226	52,351	254.578
1320	40,853	29,378	237.353	2200	72,040	53,749	255.412
1340	41,539	30,398	237.867	2250	73,856	55,149	256.227
1360	42,227	30,919	238.376	2300	75,676	56,553	257.027
1380	42,915	31,441	238.878	2350	77,496	57,958	257.810
1400	43,605	31,964	239.375	2400	79,320	59,366	258.580
1420	44,295	32,489	239.865	2450	81,149	60,779	259.332
1440	44,988	33,014	240.350	2500	82,981	62,195	260.073
1460	45,682	33,543	240.827	2550	84,814	63,613	260.799
1480	46,377	34,071	241.301	2600	86,650	65,033	261.512
1500	47,073	34,601	241.768	2650	88,488	66,455	262.213
1520	47,771	35,133	242.228	2700	90,328	67,880	262.902
1540	48,470	35,665	242.685	2750	92,171	69,306	263.577
1560	49,168	36,197	243.137	2800	94,014	70,734	264.241
1580	49,869	36,732	243.585	2850	95,859	72,163	264.895
1600	50,571	37,268	244.028	2900	97,705	73,593	265.538
1620	51,275	37,806	244.464	2950	99,556	75,028	266.170
1640	51,980	38,344	244.896	3000	101,407	76,464	266.793
1660	52,686	38,884	245.324	3050	103,260	77,902	267.404
1680	53,393	39,424	245.747	3100	105,115	79,341	268.007
1700	54,099	39,965	246.166	3150	106,972	80,782	268.601
1720	54,807	40,507	246.580	3200	108,830	82,224	269.186
1740	55,516	41,049	246.990	3250	110,690	83,668	269.763

Fuente: Las tablas A-18 a A-25 fueron adaptadas de Kenneth Wark, Thermodynamics, 4a. ed., Nueva York, McGraw-Hill, 1983, pp. 787-798. Publicadas originalmente en JANAF, Thermochemical Tables, NSRDS-NBS-37, 1971.

Anexo 11 TABLA A-19 Propiedades de gas ideal del oxígeno, O2

TABLA A-19

Propiedades de gas ideal del oxígeno, O2 (conclusión) ħ Ţ ħ s٥ Τ ū ₹° ū kJ/kmol kJ/kmol Κ kJ/kmol kJ/kmol Κ kJ/kmol · K kJ/kmol · K 1760 58.880 1000 31,389 23,075 243.471 44,247 263.861 1020 23,607 244.164 1780 59.624 44,825 264.283 32.088 1040 32,789 24,142 244.844 1800 60,371 45,405 264.701 1060 33,490 24,677 245.513 1820 61,118 45,986 265.113 46,568 1080 34,194 25,214 246.171 1840 61,866 265.521 1100 34,899 25,753 1860 62,616 47,151 265.925 246.818 1120 35,606 26,294 247.454 1880 63,365 47,734 266.326 1140 36,314 26,836 248.081 1900 64.116 48.319 266.722 1920 48,904 1160 37,023 27,379 248.698 64,868 267.115 1180 37,734 27,923 249.307 1940 65,620 49,490 267.505 38,447 1200 28,469 249.906 1960 66,374 50,078 267.891 39,162 29,018 1980 67,127 1220 250.497 50,665 268.275 39,877 29,568 2000 1240 251.079 67,881 51,253 268.655 40,594 30,118 2050 69,772 52,727 1260 251.653 269.588 1280 41,312 30,670 252.219 2100 71,668 54,208 270.504 1300 42,033 31,224 252,776 2150 73,573 55,697 271.399 1320 42,753 31,778 253.325 2200 75,484 57,192 272.278 1340 43,475 32,334 253.868 2250 77,397 58,690 273.136 1360 44,198 32,891 254.404 2300 79,316 60,193 273.891 1380 44,923 33,449 254.932 2350 81,243 61,704 274.809 1400 45,648 34,008 2400 83,174 63,219 255.454 275.625 46,374 34,567 2450 85,112 64,742 1420 255.968 276.424 1440 47,102 35,129 256.475 2500 87,057 66,271 277.207 1460 89,004 67,802 47,831 35,692 256.978 2550 277.979 1480 48,561 36,256 2600 90,956 69,339 257.474 278.738 1500 49,292 36,821 257.965 2650 92,916 70,883 279,485 1520 50,024 37,387 258.450 2700 94,881 72,433 280.219 37,952 73,987 1540 50,756 258.928 2750 96,852 280.942 51,490 75,546 1560 38,520 259.402 2800 98,826 281.654 1580 52,224 39,088 259.870 2850 100,808 282.357 77,112 52,961 102,793 78,682 1600 39,658 260.333 2900 283.048 1620 53,696 40,227 260.791 2950 104,785 80,258 283.728 1640 54,434 40,799 261.242 3000 106,780 81,837 284.399 1660 55,172 41,370 261.690 3050 108,778 83,419 285.060 1680 55,912 41,944 262.132 3100 110,784 85,009 285.713 1700 56,652 42,517 262.571 3150 112,795 86,601 286.355 286.989 43,093 3200 114,809 1720 57,394 263.005 88,203 1740 58,136 43,669 263.435 3250 116,827 89,804 287.614

Anexo 12 TABLA A-20 Propiedades de gas ideal del dióxido de carbono,CO2

TABLA A-20

Propiedades de gas ideal del dióxido de carbono, CO2 (conclusión)

T	h	ū	₹°	Т	ħ	ū	<u>\$</u> °
K	kJ/kmol	kJ/kmol	kJ/kmol · K	К	kJ/kmol	kJ/kmol	kJ/kmol · K
1000	42,769	34,455	269.215	1760	86,420	71,787	301.543
1020	43,859	35,378	270.293	1780	87,612	72,812	302.217
1040	44,953	36,306	271.354	1800	88,806	73,840	302.884
1060	46,051	37,238	272.400	1820	90,000	74,868	303.544
1080	47,153	38,174	273.430	1840	91,196	75,897	304.198
1100	48,258	39,112	274.445	1860	92,394	76,929	304.845
1120	49,369	40,057	275.444	1880	93,593	77,962	305.487
1140	50,484	41,006	276.430	1900	94,793	78,996	306.122
1160	51,602	41,957	277.403	1920	95,995	80,031	306.751
1180	52,724	42,913	278.361	1940	97,197	81,067	307.374
1200	53,848	43,871	297.307	1960	98,401	82,105	307.992
1220	54,977	44,834	280.238	1980	99,606	83,144	308.604
1240	56,108	45,799	281.158	2000	100,804	84,185	309.210
1260	57,244	46,768	282.066	2050	103,835	86,791	310.701
1280	58,381	47,739	282.962	2100	106,864	89,404	312.160
1300	59,522	48,713	283.847	2150	109,898	92,023	313.589
1320	60,666	49,691	284.722	2200	112,939	94,648	314.988
1340	61,813	50,672	285.586	2250	115,984	97,277	316.356
1360	62,963	51,656	286.439	2300	119,035	99,912	317.695
1380	64,116	52,643	287.283	2350	122,091	102,552	319.011
1400	65,271	53,631	288.106	2400	125,152	105,197	320.302
1420	66,427	54,621	288.934	2450	128,219	107,849	321.566
1440	67,586	55,614	289.743	2500	131,290	110,504	322.808
1460	68,748	56,609	290.542	2550	134,368	113,166	324.026
1480	66,911	57,606	291.333	2600	137,449	115,832	325.222
1500	71,078	58,606	292.114	2650	140,533	118,500	326.396
1520	72,246	59,609	292.888	2700	143,620	121,172	327.549
1540	73,417	60,613	292.654	2750	146,713	123,849	328.684
1560	74,590	61,620	294.411	2800	149,808	126,528	329.800
1580	76,767	62,630	295.161	2850	152,908	129,212	330.896
1600	76,944	63,741	295.901	2900	156,009	131,898	331.975
1620	78,123	64,653	296.632	2950	159,117	134,589	333.037
1640	79,303	65,668	297.356	3000	162,226	137,283	334.084
1660	80,486	66,592	298.072	3050	165,341	139,982	335.114
1680	81,670	67,702	298.781	3100	168,456	142,681	336.126
1700	82,856	68,721	299.482	3150	171,576	145,385	337.124
1720	84,043	69,742	300.177	3200	174,695	148,089	338.109
1740	85,231	70,764	300.863	3250	177,822	150,801	339.069

TABLA A-20

Propiedades de gas ideal del dióxido de carbono, CO2 (conclusión)

T	h	ū	₹°	Т	ħ	ū	<u>\$</u> °
K	kJ/kmol	kJ/kmol	kJ/kmol · K	К	kJ/kmol	kJ/kmol	kJ/kmol · K
1000	42,769	34,455	269.215	1760	86,420	71,787	301.543
1020	43,859	35,378	270.293	1780	87,612	72,812	302.217
1040	44,953	36,306	271.354	1800	88,806	73,840	302.884
1060	46,051	37,238	272.400	1820	90,000	74,868	303.544
1080	47,153	38,174	273.430	1840	91,196	75,897	304.198
1100	48,258	39,112	274.445	1860	92,394	76,929	304.845
1120	49,369	40,057	275.444	1880	93,593	77,962	305.487
1140	50,484	41,006	276.430	1900	94,793	78,996	306.122
1160	51,602	41,957	277.403	1920	95,995	80,031	306.751
1180	52,724	42,913	278.361	1940	97,197	81,067	307.374
1200	53,848	43,871	297.307	1960	98,401	82,105	307.992
1220	54,977	44,834	280.238	1980	99,606	83,144	308.604
1240	56,108	45,799	281.158	2000	100,804	84,185	309.210
1260	57,244	46,768	282.066	2050	103,835	86,791	310.701
1280	58,381	47,739	282.962	2100	106,864	89,404	312.160
1300	59,522	48,713	283.847	2150	109,898	92,023	313.589
1320	60,666	49,691	284.722	2200	112,939	94,648	314.988
1340	61,813	50,672	285.586	2250	115,984	97,277	316.356
1360	62,963	51,656	286.439	2300	119,035	99,912	317.695
1380	64,116	52,643	287.283	2350	122,091	102,552	319.011
1400	65,271	53,631	288.106	2400	125,152	105,197	320.302
1420	66,427	54,621	288.934	2450	128,219	107,849	321.566
1440	67,586	55,614	289.743	2500	131,290	110,504	322.808
1460	68,748	56,609	290.542	2550	134,368	113,166	324.026
1480	66,911	57,606	291.333	2600	137,449	115,832	325.222
1500	71,078	58,606	292.114	2650	140,533	118,500	326.396
1520	72,246	59,609	292.888	2700	143,620	121,172	327.549
1540	73,417	60,613	292.654	2750	146,713	123,849	328.684
1560	74,590	61,620	294.411	2800	149,808	126,528	329.800
1580	76,767	62,630	295.161	2850	152,908	129,212	330.896
1600	76,944	63,741	295.901	2900	156,009	131,898	331.975
1620	78,123	64,653	296.632	2950	159,117	134,589	333.037
1640	79,303	65,668	297.356	3000	162,226	137,283	334.084
1660	80,486	66,592	298.072	3050	165,341	139,982	335.114
1680	81,670	67,702	298.781	3100	168,456	142,681	336.126
1700	82,856	68,721	299.482	3150	171,576	145,385	337.124
1720	84,043	69,742	300.177	3200	174,695	148,089	338.109
1740	85,231	70,764	300.863	3250	177,822	150,801	339.069

Anexo 13 TABLA A-23 Propiedades de gas ideal del vapor de agua, H2O

TABLA A-23

Propiedades de gas ideal del vapor de agua, H₂O

T	ħ	Ū	≅°	T	h	Ū	<u></u> s°
K	kJ/kmol	kJ/kmol	kJ/kmol - K	К	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	20,402	15,413	212.920
220	7,295	5,466	178.576	610	20,765	15,693	213.529
230	7,628	5,715	180.054	620	21,130	15,975	214.122
240	7,961	5,965	181.471	630	21,495	16,257	214.707
250	8,294	6,215	182.831	640	21,862	16,541	215.285
260	8,627	6,466	184.139	650	22,230	16,826	215.856
270	8,961	6,716	185.399	660	22,600	17,112	216.419
280	9,296	6,968	186.616	670	22,970	17,399	216.976
290	9,631	7,219	187.791	680	23,342	17,688	217.527
298	9,904	7,425	188.720	690	23,714	17,978	218.071
300	9,966	7,472	188.928	700	24,088	18,268	218.610
310	10,302	7,725	190.030	710	24,464	18,561	219.142
320	10,639	7,978	191.098	720	24,840	18,854	219.668
330	10,976	8,232	192.136	730	25,218	19,148	220.189
340	11,314	8,487	193.144	740	25,597	19,444	220.707
350	11,652	8,742	194.125	750	25,977	19,741	221.215
360	11,992	8,998	195.081	760	26,358	20,039	221.720
370	12,331	9,255	196.012	770	26,741	20,339	222.221
380	12,672	9,513	196.920	780	27,125	20,639	222.717
390	13,014	9,771	197.807	790	27,510	20,941	223.207
400	13,356	10,030	198.673	800	27,896	21,245	223.693
410	13,699	10,290	199.521	810	28,284	21,549	224.174
420	14,043	10,551	200.350	820	28,672	21,855	224.651
430	14,388	10,813	201.160	830	29,062	22,162	225.123
440	14,734	11,075	201.955	840	29,454	22,470	225.592
450	15,080	11,339	202.734	850	29,846	22,779	226.057
460	15,428	11,603	203.497	860	30,240	23,090	226.517
470	15,777	11,869	204.247	870	30,635	23,402	226.973
480	16,126	12,135	204.982	880	31,032	23,715	227.426
490	16,477	12,403	205.705	890	31,429	24,029	227.875
500	16,828	12,671	206.413	900	31,828	24,345	228.321
510	17,181	12,940	207.112	910	32,228	24,662	228.763
520	17,534	13,211	207.799	920	32,629	24,980	229.202
530	17,889	13,482	208.475	930	33,032	25,300	229.637
540	18,245	13,755	209.139	940	33,436	25,621	230.070
550	18,601	14,028	209.795	950	33,841	25,943	230.499
560	18,959	14,303	210.440	960	34,247	26,265	230.924
570	19,318	14,579	211.075	970	34,653	26,588	231.347
580	19,678	14,856	211.702	980	35,061	26,913	231.767
590	20,039	15,134	212.320	990	35,472	27,240	232.184

TABLA A-23

Propiedades de gas ideal del vapor de agua, H₂O (conclusión)

T	\overline{h}	ū	₹°	T	\bar{h}	\overline{u}	δ°
K	kJ/kmol	kJ/kmol	kJ/kmol · K	К	kJ/kmol	kJ/kmol	kJ/kmol · K
1000	35,882	27,568	232.597	1760	70,535	55,902	258.151
1020	36,709	28,228	233.415	1780	71,523	56,723	258.708
1040	37,542	28,895	234.223	1800	72,513	57,547	259.262
1060	38,380	29,567	235.020	1820	73,507	58,375	259.811
1080	39,223	30,243	235.806	1840	74,506	59,207	260.357
1100	40,071	30,925	236.584	1860	75,506	60,042	260.898
1120	40,923	31,611	237.352	1880	76,511	60,880	261.436
1140	41,780	32,301	238.110	1900	77,517	61,720	261.969
1160	42,642	32,997	238.859	1920	78,527	62,564	262.497
1180	43,509	33,698	239.600	1940	79,540	63,411	263.022
1200	44,380	34,403	240.333	1960	80,555	64,259	263.542
1220	45,256	35,112	241.057	1980	81,573	65,111	264.059
1240	46,137	35,827	241.773	2000	82,593	65,965	264.571
1260	47,022	36,546	242.482	2050	85,156	68,111	265.838
1280	47,912	37,270	243.183	2100	87,735	70,275	267.081
1300	48,807	38,000	243.877	2150	90,330	72,454	268.301
1320	49,707	38,732	244.564	2200	92,940	74,649	269.500
1340	50,612	39,470	245.243	2250	95,562	76,855	270.679
1360	51,521	40,213	245.915	2300	98,199	79,076	271.839
1380	52,434	40,960	246.582	2350	100,846	81,308	272.978
1400	53,351	41,711	247.241	2400	103,508	83,553	274.098
1420	54,273	42,466	247.895	2450	106,183	85,811	275.201
1440	55,198	43,226	248.543	2500	108,868	88,082	276.286
1460	56,128	43,989	249.185	2550	111,565	90,364	277.354
1480	57,062	44,756	249.820	2600	114,273	92,656	278.407
1500	57,999	45,528	250.450	2650	116,991	94,958	279.441
1520	58,942	46,304	251.074	2700	119,717	97,269	280.462
1540	59,888	47,084	251.693	2750	122,453	99,588	281.464
1560	60,838	47,868	252.305	2800	125,198	101,917	282.453
1580	61,792	48,655	252.912	2850	127,952	104,256	283.429
1600	62,748	49,445	253.513	2900	130,717	106,605	284.390
1620	63,709	50,240	254.111	2950	133,486	108,959	285.338
1640	64,675	51,039	254.703	3000	136,264	111,321	286.273
1660	65,643	51,841	255.290	3050	139,051	113,692	287.194
1680	66,614	52,646	255.873	3100	141,846	116,072	288.102
1700	67,589	53,455	256.450	3150	144,648	118,458	288.999
1720	68,567	54,267	257.022	3200	147,457	120,851	289.884
1740	69,550	55,083	257.589	3250	150,272	123,250	290.756

Anexo 14 TABLA A-26 Entalpía de formación, función de Gibbs de formación y entropía absoluta a 25°C, 1 atm.

TABLA A-26

Entalpía de formación, función de Gibbs de formación y entropía absoluta a 25°C, 1 atm

		°,	g _î °	<u>s</u> °
Sustancia	Fórmula	kJ/kmol	kJ/kmol	kJ/kmol - K
Acetileno	$C_2H_2(g)$	+226,730	+209,170	200.85
Agua	$H_2O(\ell)$	-285,830	-237,180	69.92
Alcohol etílico	$C_2H_5OH(g)$	-235,310	-168,570	282.59
Alcohol etílico	$C_2H_5OH(\ell)$	-277,690	-174,890	160.70
Alcohol metílico	CH ₃ OH(g)	-200,670	-162,000	239.70
Alcohol metílico	CH ₃ OH(ℓ)	-238,660	-166,360	126.80
Amoniaco	$NH_3(g)$	-46,190	-16,590	192.33
Benceno	$C_6H_6(g)$	+82,930	+129,660	269.20
n-butano	$C_4H_{10}(g)$	-126,150	-15,710	310.12
Carbón	C(s)	0	0	5.74
Dióxido de carbono	CO ₂ (g)	-393,520	-394,360	213.80
n-dodecano	$C_{12}H_{26}(g)$	-291,010	+50,150	622.83
Etano	$C_2H_6(g)$	-84,680	-32,890	229.49
Etileno	$C_2H_4(g)$	+52,280	+68,120	219.83
Hidrógeno	$H_2(g)$	0	0	130.68
Hidrógeno	H(g)	+218,000	+203,290	114.72
Hidroxilo	OH(g)	+39,460	+34,280	183.70
Metano	$CH_4(g)$	-74,850	-50,790	186.16
Monóxido de carbono	CO(g)	-110,530	-137,150	197.65
Nitrógeno	$N_2(g)$	0	0	191.61
Nitrógeno	N(g)	+472,650	+455,510	153.30
n-octano	$C_8H_{18}(g)$	-208,450	+16,530	466.73
n-octano	$C_8H_{18}(\ell)$	-249,950	+6,610	360.79
Oxígeno	O ₂ (g)	0	0	205.04
Oxígeno	O(g)	+249,190	+231,770	161.06
Peróxido de hidrógeno	$H_2O_2(g)$	-136,310	-105,600	232.63
Propano	$C_3H_8(g)$	-103,850	-23,490	269.91
Propileno	$C_3H_6(g)$	+20,410	+62,720	266.94
Vapor de agua	H ₂ O(g)	-241,820	-228,590	188.83

Fuente: De JANAF, Thermochemical Tables, Midland, MI, Dow Chemical Co., 1971, Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-3, 1968; y API Research Project 44, Carnegie Press, 1953.

Anexo 15 Panel Fotográfico Visita a Planta de Reserva Fría de Eten.

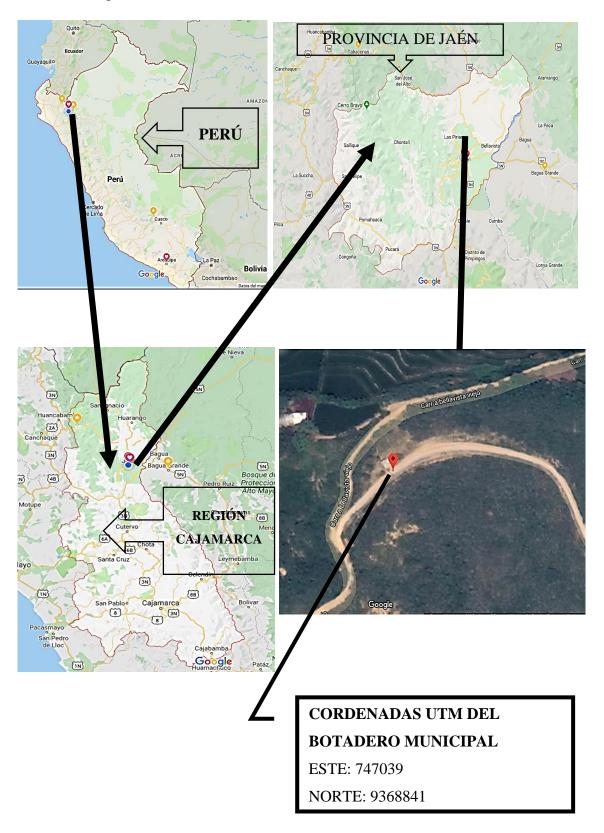
Tanques de Almacenamiento de Combustible Diésel B5.

Tableros de Control Automatizados de la Planta.

Turbina de la Planta.

Anexo 16 Botadero Municipal actual de la ciudad de Jaén.

Entrada al Botadero


Lixiviados generados.

Anexo 17 Mapa de Ubicación

