UNIVERSIDAD NACIONAL DE JAÉN CARRERA PROFESIONAL DE INGENIERÍA CIVIL

RESISTENCIA A COMPRESIÓN DEL CONCRETO F'C= 280 KG/CM2 ELABORADO CON CONCRETO RECICLADO EN LA CIUDAD DE JAÉN - 2023

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autores: Bach. Jose Javier, Ruiz Delgado

Bach. Richard Carlos, Baquedano Cabrejos

Asesor: Dra. Ing. Zadith Nancy Garrido Campaña

Línea de Investigación: LI_IC_01 Estructuras

JAÉN – PERÚ

Mayo - 2024

UNIVERSIDAD NACIONAL DE JAÉN CARRERA PROFESIONAL DE INGENIERÍA CIVIL

RESISTENCIA A COMPRESIÓN DEL CONCRETO F'C= 280 KG/CM2 ELABORADO CON CONCRETO RECICLADO EN LA CIUDAD DE JAÉN - 2023

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autores: Bach. Jose Javier, Ruiz Delgado

Bach. Richard Carlos, Baquedano Cabrejos

Asesor: Dra. Ing. Zadith Nancy Garrido Campaña

Línea de Investigación: LI_IC_01 Estructuras

JAÉN – PERÚ

Mayo - 2024

E DEL TRABAJO

Resistencia a compresión del concreto f c=280kg_cm2 elaborado con concreto re ciclado en la cuidad de AUTOR

Jose Javier Ruiz Delgado & Richard Carl os Baquedano Cabrejos

RECUENTO DE PALABRAS

11171 Words

RECUENTO DE PÁGINAS

65 Pages

FECHA DE ENTREGA

May 22, 2024 8:30 AM GMT-5

RECLIENTO DE CAPACTERES

52386 Characters

TAMAÑO DEL ARCHIVO

5.3MB

FECHA DEL INFORME

May 22, 2024 8:31 AM GMT-5

• 16% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base de datos.

- . 15% Base de datos de Internet
- · Base de datos de Crossref
- 12% Base de datos de trabajos entregados
- 1% Base de datos de publicaciones
- Base de datos de contenido publicado de Crossref
- Excluir del Reporte de Similitud
- Material bibliográfico

· Coincidencia baja (menos de 15 palabras)

Dr. Alexander Huamán Mera

FORMATO 03: ACTA DE SUSTENTACIÓN

En la ciudad de Ja	aén, el di	a 31 de mayo del a	ño 202	4, siendo las 10:00	horas,	se reuniero
los integrantes d						
Presidente: Mg. J	osé Luis	Piedra Tineo				
		Zayed Apaza Panca				
		o Demetrio LLatas		eva, para evaluar	la Sust	entación de
Informe Final:						
() Trabajo de	Investig	ración				
(X) Tesis						
The same of the same	Suficien	icia Profesional				
Titulado:						
RESISTENCIA A	COMPRE	SIÓN DEL CONCRI	ETO F	C= 280 KG/CM2	ELABO	RADO CON
		LA CIUDAD DE JAE				
presentado por l	os bachi	lleres Richard Carl	os Baq	uedano Cabrejos	y Jose	Javier Ruiz
Delgado,						
de la Escuela Prof	esional c	le Ingeniería Civil de	la Uni	versidad Nacional d	le Jaén.	
	tentació	n y defensa, el Jurac	do acue	rda:		
(X) Aprobar	() Desaprobar	(X) Unanimidad	() Mayoría
Con la siguiente me	nción:					
a) Excelente		18, 19, 20	()		
b) Muy bueno		16, 17	(j		
c) Bueno		14, 15	i	14)		
d) Regular		13	í	í		
e) Desaprobac	lo	12 ò menos	i	í		

Siendo las 11:00 horas del mismo día, el Jurado concluye el acto de sustentación confirmando su participación con la suscripción de la presente.

Presidente

Voca

ÍNDICE

ÍNDICE	Página II
RESUMEN	
ABSTRACT	
I. INTRODUCCIÓN	10
1.1. Descripción de la realidad problemática	
1.2. Justificación	
1.3. Hipótesis	12
1.4. Objetivos	
1.4.1. Objetivos generales	12
1.4.2. Objetivos específicos	12
1.5. Antecedentes	13
1.5.1. Internacionales	13
1.5.2. Nacionales	14
1.5.3. Regional	16
1.5.4. Locales	17
II. MATERIAL Y MÉTODOS	19
2.1. Ubicación Geográfica	19
2.2. Población, muestra y muestreo	19
2.2.1. Población	19
2.2.2. Muestra	20
2.2.3. Muestreo	20
2.3. Métodos	20
2.3.1. Método	20
2.3.2. Análisis estadístico	21
2.3.2.1. Resistencia del concreto a una edad de 7 días	21
2.3.2.2. Resistencia del concreto a una edad de 14 días	23
2.3.2.3. Resistencia del concreto a una edad de 28 días	25
2.4. Procedimientos de recolección de datos	26
2.4.1. Materiales	26
2.4.2. FASE 1: Obtención de los materiales	26
2.4.2.1. Tratamiento para el concreto reciclado	27

2.4.3. FASE 2: Recopilación de información	29
III. RESULTADOS	54
3.1. Determinar las propiedades físicas químicas y mecánicas de los insumos, para el	
diseño de mezcla	54
3.2. Analizar la resistencia a compresión del concreto f'c = 280 kg/ cm2 al sustituir	
concreto reciclado por agregado grueso en los porcentajes de 0%, 10%, 15%, y 22% y	para
el agregado fino en 0%, 2%, 4%, y 7%	55
3.2.1. Propiedades del concreto fresco	55
3.2.1.1. Asentamiento	55
3.2.2. Propiedades del concreto endurecido	57
3.2.2.1. Resistencia a la compresión	57
3.3. Comparar el efecto de los distintos porcentajes sustitutorios de concreto reciclado	por
agregado grueso y fino en el ensayo de resistencia a compresión del concreto f'c = 280)
kg/cm2 y descubrir su óptimo porcentaje de concreto reciclado que mejora la resstenci	a la
compresión para el concreto f°c = 280 kg/cm2.	65
3.4. Determinar el costo del nuevo diseño de concreto respecto al convencional	66
IV. DISCUSIÓN	70
V. CONCLUSIONES Y RECOMENDACIONES	73
5.1. Conclusiones	73
5.2. Recomendaciones	74
VI.REFERENCIAS BIBLIOGRÁFICAS	75
AGRADECIMIENTO	79
DEDICATORIA	80
ANEYOS	Ω1

ÍNDICE DE TABLAS

Tabla 1. Muestras o testigos de concreto elaborados
Tabla 2. Pruebas de homogeneidad de varianzas
Tabla 3. Prueba POST HOC
Tabla 4. Pruebas de homogeneidad de varianzas
Tabla 5. Prueba POST HOC
Tabla 6. Pruebas de homogeneidad de varianzas
Tabla 7. Prueba POST HOC
Tabla 8. Equipos y materiales
Tabla 9. Características fisicas y mecánicas de los agregados naturales
Tabla 10. Características fisicas y mecánicas de los agregados reciclados
Tabla 11. Resultados de los ensayos químicos del concreto reciclado55
Tabla 12. Asentamientos promedio del concreto
Tabla 13. Resistencia a compresión del concreto f´c=280kg/cm2
Tabla 14. Resistencia a compresión del concreto f´c=280kg/cm2 + 10% AGR + 2%
AFR
Tabla 15. Resistencia a compresión del concreto patrón f´c=280kg/cm2 + 15% AGR +
4% AFR61
Tabla 16. Resistencia a compresión del concreto patrón f´c=210kg/cm2 + 22% AGR +
7% AFR
Tabla 17. Costo de produccion del agregado grueso reciclado puesto en obra 66
Tabla 18. Costo de produccion del agregado fino reciclado puesto en obra
Tabla 19. Analisis de precios unitarios para el concreto f´c = 280 kg/cm2 68
Tabla 20. Analisis de precios unitarios para el concreto f´c = 280 kg/cm2 + 10% AGR +
2% AFR
Tabla 21. Operacionalización de variables

ÍNDICE DE FIGURAS

Figura 1. Mapa de Ubicación	19
Figura 2. Recolección del concreto reciclado en botadero Fila alta	27
Figura 3. Limpieza superficial del concreto reciclado	27
Figura 4. Trituración y reducción del tamaño del concreto reciclado	28
Figura 5. Ensayos químicos del concreto reciclado en laboratorio	28
Figura 6. Contenido de humedad del agregado grueso	29
Figura 7. Contenido de humedad del agregado fino	30
Figura 8. Análisis granulométrico para el agregado grueso	30
Figura 9. Análisis granulométrico para el agregado fino	31
Figura 10. Peso específico y porcentaje de absorción del agregado grueso	31
Figura 11. Peso específico y porcentaje de absorción del agregado fino	32
Figura 12. Peso unitario suelto para el agregado grueso	32
Figura 13. Peso unitario varillado para el agregado grueso	33
Figura 14. Peso unitario suelto para el agregado fino	33
Figura 15. Peso unitario varillado para el agregado fino	34
Figura 16. Ensayo de abrasión de los ángeles del agregado grueso natural	34
Figura 17. Contenido de humedad para el agregado grueso reciclado	35
Figura 18. Contenido de humedad para el agregado fino reciclado	35
Figura 19. Análisis granulométrico del agregado grueso reciclado	36
Figura 20. Análisis granulométrico del agregado fino reciclado	36
Figura 21. Peso específico y porcentaje de absorción para el agregado grueso recicla	ıdo
	37
Figura 22. Peso específico y porcentaje de absorción del agregado fino reciclado	37
Figura 23. Peso unitario suelto del agregado fino reciclado	38
Figura 24. Peso unitario varillado del agregado fino reciclado	38
Figura 25. Ensayo de abrasión de los ángeles del agregado grueso reciclado	39
Figura 26. Peso de los materiales para la dosificación de concreto	40
Figura 27. Dosificación de concreto patrón f´c= 280kg/cm2	40
Figura 28. Medición del asentamiento para el concreto patrón f'c= 280kg/cm2	41
Figura 29. Elaboración de probetas patrón f´c= 280kg/cm2	41
Figura 30. Dosificación de concreto patrón f'c= 280kg/cm2 +10% AGR + 2% AFR	42

Figura 31. Medición del slump del concreto f´c= $280 \text{kg/cm2} + 10\% \text{ AGR} + 2\% \text{ AFR}$. 42.
Figura 32. Elaboración de probetas de concreto f´c= 280kg/cm2 +10% AGR + 2% AFR
43
Figura 33. Dosificación de concreto patrón f´c= 280 kg/cm2 +15% AGR + 4% AFR 43
Figura 34. Asentamiento del concreto f´c= 280kg/cm2 +15% AGR + 4% AFR 44
Figura 35. Elaboración de probetas de concreto f´c= $280 \text{kg/cm2} + 15\% \text{ AGR} + 4\% \text{ AFR}$
44
Figura 36. Dosificación de concreto patrón f´c= 280kg/cm2 +22% AGR + 7% AFR 45
Figura 37. Medición del slump del concreto f´c= 280 kg/cm2 + 22 % AGR + 7% AFR . 45
Figura 38. Elaboración de probetas de concreto f´c= 280kg/cm2 +22% AGR + 7% AFR
46
Figura 39. Rotura de probetas de concreto f'c=280kg/cm2 a los 7 días
Figura 40. Rotura de probetas de concreto f´c=280kg/cm2 + 10% AGR + 2% AFR a los
7 días
Figura 41. Rotura de probetas de concreto f´c=280kg/cm2 + 15% AGR + 4% AFR a los
7 días
Figura 42. Rotura de probetas de concreto f´c=280kg/cm2 + 22% AGR + 7% AFR a los
7 días
Figura 43. Rotura de probetas de concreto f´c=280kg/cm2 a los 14 días
Figura 44. Rotura de probetas de concreto f´c=280kg/cm2 + 10% AGR + 2% AFR a los
14 días
Figura 45. Rotura de probetas de concreto f´c=280kg/cm2 + 15% AGR + 4% AFR a los
14 días
Figura 46. Rotura de probetas de concreto f´c=280kg/cm2 + 22% AGR + 7% AFR a los
14 días
Figura 47. Rotura de probetas de concreto f´c=280kg/cm2 a los 28 días
Figura 48. Rotura de probetas de concreto f´c=280kg/cm2 + 10% AGR + 2% AFR a los
28 días
Figura 49. Rotura de probetas de concreto f´c=280kg/cm2 + 15% AGR + 4% AFR a los
28 días
Figura 50. Rotura de probetas de concreto f´c=280kg/cm2 + 22% AGR + 7% AFR a los
28 días
Figure 51 Asentamientos promedios del concreto 56

Figura 52. Resistencia a compresión para el concreto f´c=280kg/cm258
Figura 53. Resistencia a compresión para el concreto f´c=280kg/cm2 + 10% AGR + 2%
AFR
Figura 54. Resistencia a compresión para el concreto patrón f´c=280kg/cm2 + 15%
AGR + 4% AFR
Figura 55. Resistencia a compresión del concreto patrón f´c=280kg/cm2 + 22% AGR +
7% AFR64
Figura 56. Resistencia a compresión para el concreto f´c=280kg/cm2 con las diferentes
sustituciones de concreto reciclado
Figura 57. Presupuesto de producción de concreto f°c = 280 kg/cm283
Figura 58. Presupuesto de producción de concreto f°c = 280 kg/cm2 + 15% AGR + 4%
AFR84

RESUMEN

El principal objetivo consistió en determinar la resistencia a compresión del concreto f'c = 280 kg/cm2 elaborado con concreto reciclado en la ciudad de Jaén en 2023. La metodología consistió en elaborar especímenes cilíndricos de concreto f'c = 280 kg/cm2, con diferentes sustituciones de concreto reciclado (0%, 10%, 15%, 22% para agregado grueso y 0%, 2%, 4%, 7% para agregado fino). Los resultados promedio obtenidos del asentamiento (slump) para las sustituciones de 0% AGR + 0% AFR, 10% AGR + 2% AFR, 15% AGR + 4% AFR y 22% AGR + 7% AFR fueron 3.5, 3.2, 2.8 y 2.2, respectivamente, siendo inversamente proporcional a la sustitución de agregados. La resistencia a compresión a 7 días fueron: 213.2, 259.3, 259.7 y 213.3 Kg/cm2. A los 14 días: 245.7, 276.2, 286.5 y 250.6 Kg/cm2 y a los 28 días: 288.1, 312.7, 316.8 y 277.1 Kg/cm2. La proporción óptima de agregados reciclados, que maximiza la resistencia a compresión, es del 15% AGR + 4% AFR, logrando un aumento del 109.9% respecto a la resistencia de diseño. Para el slump, la mejor proporción fue del 22% AGR + 7% AFR, con un asentamiento de 2.2 pulgadas.

Palabras clave: concreto, agregado reciclado, Slump, resistencia a compresión.

ABSTRACT

The main objective was to determine the compressive strength of concrete f'c = 280 kg/cm2 made with recycled concrete in the city of Jaén in 2023. The methodology consisted of preparing cylindrical specimens of concrete f'c = 280 kg/cm2, with different recycled concrete substitutions (0%, 10%, 15%, 22% for coarse aggregate and 0%, 2%, 4%, 7% for fine aggregate). The average slump results obtained for the substitutions of 0% AGR + 0% AFR, 10% AGR + 2% AFR, 15% AGR + 4% AFR and 22% AGR + 7% AFR were 3.5, 3.2, 2.8 and 2.2, respectively, being inversely proportional to the aggregate substitution. The compressive strength at 7 days were: 213.2, 259.3, 259.7 and 213.3 Kg/cm2. At 14 days: 245.7, 276.2, 286.5 and 250.6 Kg/cm2 and at 28 days: 288.1, 312.7, 316.8 and 277.1 Kg/cm2. The optimum proportion of recycled aggregates, which maximizes the compressive strength, is 15% AGR + 4% AFR, achieving an increase of 109.9% with respect to the design strength. For the slump, the best ratio was 22% AGR + 7% AFR, with a slump of 2.2 in.

Keywords: concrete, recycled aggregate, slump, compressive strength.

I. INTRODUCCIÓN

1.1. Descripción de la realidad problemática

A nivel internacional, la industria de la construcción ha crecido en los últimos años provocando significativamente el crecimiento de la economía y desarrollo social global. Los pueblos, sin embargo, tienen una contrapartida ambiental en un proceso diferente Los edificios que generan residuos de construcción y demolición (RCD) pasan a ser suelos y aguas superficiales fuentes de contaminación por su volumen y Arreglo inadecuado. Solo en Europa, hay aproximadamente 1.300 millones de toneladas de residuos producidos anualmente, de los cuales el 40%, son desechos de construcción y demolición (RCD), la gran mayoría de los cuales no existen disposiciones finales completas, terminando con ríos, lagos, ecosistemas, etc. por otro lado, Solo en China se genera alrededor de 1.500 millones de toneladas de RCD cada año, siendo esto 2,6 veces respecto de los 569 millones de toneladas generadas en EE. UU (Oviedo y Vega, 2021).

Referir a nuestro país a los diversos escombros o desperdicios, que viene dejando el sector construcción, es hacerse idea a que estos desechos son habitualmente desechados en los lugares más accesibles y cercanos para el poblador o constructor, donde se evidencia la carencia de políticas nacionales de reciclaje y/o procesamiento. En 2015, hubo una generación de desechos de RCD de 5 millones de toneladas localizadas en 8,810 puntos en todo el Perú, localizándose las más altas cantidades en las regiones de Lima, Callao e Ica (Flores, 2020).

Solo en Cajamarca, los (RCD) generados en el 2015 son de 31,162.0 m3 localizados en 61 puntos de la región, lo cual ha venido contaminando el medio ambiente de manera continua debido a su disposición final y volumen inadecuado.

A nivel local, mencionar a la ciudad de Jaén es referir a una zona de constante crecimiento poblacional, lo cual ha generado una amplia oferta y demanda en el sector construcción. solo en el ámbito de construcción de pavimentos y edificaciones los residuos generados ascienden a miles de toneladas, cuya disposición final de los RCD se encuentran en lugares inadecuados, que afectan y contaminando suelos y aguas

superficiales. La falta de políticas de reciclaje de RCD en la provincia de Jaén ha venido afectando el ornato público de esta ciudad.

Debido a la eliminación inadecuada de estos residuos que se genera en las distintas ciudades y partes del mundo, esto trae como consecuencia la contaminación de suelos, aguas superficiales y además son un deterioro ambiental y paisajista para las mismas. Ante esto surge la necesidad de darle un nuevo uso a los (RCD), así mismo se pueden fabricar nuevos concretos que pueden ser utilizados en vías de tránsito tanto vehicular como peatonal y edificaciones de distinto tipo, ya que con el agregado reciclado se pueden fabricar concretos nuevos de distintas resistencias.

Finalmente nos plantearemos la pregunta de investigación: ¿Cómo será la resistencia a compresión del concreto f'c= 280 kg/cm2 elaborado con concreto reciclado en la ciudad de Jaén – 2023?

1.2. Justificación

El presente estudio se justica técnicamente, ya que se da para adquirir nuevos conocimientos al elaborar concreto con agregados reciclado, para incrementar esfuerzos del concreto.

El presente estudio se justifica ambientalmente, ya que, gracias al aprovechamiento del agregado reciclado, se aprovecha de manera positiva a la descontaminación parcial del medio ambiente donde habitamos.

Se justifica metodológicamente, ya que aportará un nuevo diseño de mezcla para nuevos concretos en la industria del sector construcción.

Se justifica socialmente porque contribuye positivamente a la sociedad con fines de trabajo, aprovechamiento y utilización de este nuevo material en la que se podría trabajar.

Se justifica científicamente, ya que, a partir de este proyecto a investigar, se dará continuación a nuevas investigaciones con el uso y aprovechamiento del concreto reciclado.

Este presente estudio se justifica económicamente, ya que gracias al concreto reciclado se elabora un nuevo concreto a bajo costo, creando así una economía circular.

1.3. Hipótesis

La resistencia a compresión del concreto f'c= 280 kg/cm2 elaborado con concreto reciclado en la ciudad de Jaén – 2023, incrementará satisfactoriamente.

1.4. Objetivos

1.4.1. Objetivos generales

 Determinar la resistencia a compresión del concreto f°c= 280 kg/cm2 elaborado con concreto reciclado en la ciudad de Jaén – 2023.

1.4.2. Objetivos específicos

- Determinar las propiedades físicas y mecánicas de los insumos, para el diseño de mezcla.
- Analizar la resistencia a compresión del concreto f'c = 280 kg/cm2 al sustituir concreto reciclado por agregado grueso en los porcentajes de 0%, 10%, 15%, y 22% y para el agregado fino en 0%, 2%, 4%, y 7%.
- Comparar el efecto de los distintos porcentajes sustitutorios de concreto reciclado por agregado grueso y fino en el ensayo de resistencia a compresión del concreto f'c = 280 kg/cm2 y descubrir su óptimo porcentaje de concreto reciclado que mejora la resistencia la compresión del concreto f'c = 280 kg/cm2.
- Determinar el costo del nuevo diseño de concreto respecto al convencional

1.5. Antecedentes

1.5.1. Internacionales

De acuerdo con Cruz & Ramírez (2022), en su artículo "Evaluation of samples of the coarse aggregate from concrete wates to produce new concrete". Su fue objetivo utilizar agregado proveniente de residuos de construcción de obras civiles para producir agregados que puedan ser reutilizados en nuevos concretos. La metodología experimental, consistió en realizar diseños de mezclas en distintas proporciones de reemplazo de agregado reciclado por agregado grueso natural para luego ensayarlas. Como valores se tuvo que el esfuerzo a compresión para los reemplazos de 30%, 50% y 100% fueron de 116%, 111% y 105% respecto de la muestra patrón. Concluyendo que el CR es indirectamente proporcional a la resistencia a compresión.

De acuerdo con Melo & Apolonio (2022), en su artículo "Physical and mechanical characterization of concrete blocks with the incorporation of sand aggregate from construction waste". Tuvo por objetivo describir las particularidades físicas y mecánicas del concreto al sustituir el agregado fino por áridos de residuos de construcción. La metodología consistió en sustituir el agregado fino por áridos de residuos de construcción en distintos porcentajes para luego determinar su valor a compresión ensayados en distintos tiempos. Entre sus resultados, se tuvo que las resistencias obtenidas a los 28 días para las sustituciones de 0%, 25%, 50% y 100% fueron 3.85, 2.86, 4.01 y 3.10 Moa, respectivamente. Se concluye que el concreto reciclado cumple de manera satisfactoria hasta para el tercer diseño.

Según Arcilla et al. (2022), en su investigación "Effect of treatment in recycled aggregate on properties in fresh and hardened state of self compacting concrete". Tuvo por objetivo sustituir el agregado grueso por agregados reciclados para mejorar las propiedades de concretos autocompactantes. La metodología consistió en sustituir el agregado grueso por agregados reciclados en distintos porcentajes y hallar el esfuerzo a compresión del concreto. Entre sus resultados obtenidos a los 56 días para los reemplazos de 0%, 20%, 40% y 100% fueron 47, 42, 41.5 y 38 Mpa, respectivamente. Se concluye que el agregado reciclado no cumple de manera satisfactoria en los porcentajes indicados para la resistencia a compresión.

De acuerdo con Martínez (2021), en su investigación "Evaluation of the use of recycled concrete agregates for the production of self-compacting concretes and cement mortars". Tuvo por objetivo determinar las propiedades mecánicas del concreto al sustituir el agregado natural por áridos reciclados en distintos porcentajes. La metodología experimental consistió en reemplazar el agregado natural por áridos reciclados en determinados porcentajes para ser ensayadas. Consecuentemente se tuvo que el esfuerzo a compresión en los porcentajes de 25%, 50% y 100% las resistencias variaron en 120%, 118% y 95% respecto de la muestra patrón. Se concluye que el concreto reciclado cumple de manera satisfactoria en determinados porcentajes.

Según Burgos, et al. (2019), en su artículo "Mechanical and durable performance of concrete that incorporates commercial fine recycled aggregate". Tuvo por objetivo determinar el desempeño mecánico de los concretos reemplazando agregado natural por agregado reciclado. su metodología de tipo experimental, fue reemplazar agregado reciclado por agregado natural en determinadas proporciones para luego hallar el esfuerzo a compresión. De los datos obtenido se tuvo que el esfuerzo a compresión a los 28 y 90 días, se tuvo que para los reemplazos de 20% y 40% fueron del 97% y 94%; y 98% y 97% respecto de la muestra patrón. Se concluye que dichas proporciones son aptas para concretos de mediana resistencia.

1.5.2. Nacionales

Según Montoya y Aragón (2022), en su tesis "Determinación de la resistencia a la compresión del concreto reciclado para construcciones ecoeficientes en la ciudad de Tacna, 2022". Tuvo por objetivo sustituir el agregado grueso por concreto reciclado para determinar su resistencia a compresión. La metodología consistió en sustituir el agregado grueso por concreto reciclado en distintos porcentajes para posteriormente identificar el esfuerzo a compresión. Entre sus resultados a 28 días para las sustituciones de 0%, 15%, 25%, 50%, 75% y 100% fueron 220.23, 240.70, 236.79, 210.0, 209.76, 183.13 kg/cm2, respectivamente. Se concluye que el concreto reciclado cumple de manera satisfactoria hasta determinados porcentajes de sustitución.

De acuerdo con Calsina (2021), en su investigación "Análisis de las características mecánicas del concreto incorporando agregado de concreto reciclado en la ciudad de Juliaca – 2021". Su fin fue determinar las propiedades mecánicas del concreto al incorporar agregados de CR. La metodología consistió en sustituir el agregado grueso por concreto reciclado en distintos porcentajes e identificar el esfuerzo a compresión. En consecuencia, se tuvo que la resistencia a compresión, se tuvo que para los reemplazos de 0%, 25%, 50%, 75% y 100% fueron 217.98, 210.65, 203.76, 196.22, 181.91 kg/cm², respectivamente. Se concluye que el concreto reciclado no cumple satisfactoriamente en los porcentajes indicados.

Según Tarazona (2019), en su investigación: "Aprovechamiento del concreto reciclado proveniente de los residuos de demolición de pavimento rígido en la producción de concreto nuevo en la ciudad de Huánuco – 2018". Tuvo como finalidad determinar las cualidades mecánicas del concreto elaborado con residuos de demolición de pavimento. La metodología consistió en realizar diseños de concreto con distintas dosificaciones para luego determinar sus características. Entre sus resultados a 28 días para las sustituciones de 0%, 20%, 40% y 60% fueron 325.40, 324.16, 279.58 y 262.51 kg/cm2. Se concluye que el agregado reciclado no cumple satisfactoriamente en los porcentajes indicados.

Asimismo, Machaca (2019), en su tesis "Evaluación de concreto reciclado, proveniente de procesos de demolición y construcción de viviendas para su reúso en concreto simple en la ciudad de Juliaca". Tuvo por finalidad evaluar las propiedades del CR para usarlo en la producción de nuevos concretos. La metodología consistió en sustituir el agregado natural por reciclado en bajos porcentajes para posteriormente hallar su esfuerzo a compresión. Se tuvo como datos que para las sustituciones de 0%, 5% y 10% fueron 176.68, 188.54 y 175.08 kg/cm2, respectivamente. Se concluye que el agregado reciclado cumple satisfactoriamente hasta para el segundo diseño.

De acuerdo con Mori-Apagüeño (2019), en su investigación "La resistencia a la compresión e impermeabilidad de concretos con agregados reciclados en comparación de concretos tradicionales". Tuvo por finalidad determinar su resistencia a compresión del concreto elaborado con agregados reciclados en comparación al concreto tradicional. La metodología consistió en sustituir el agregado natural por reciclado totalmente para

posteriormente evaluar sus valores a compresión. Entre sus resultados a los 28 días de curado para los reemplazos de 0% y 100% fueron 274.27 y 180.57 kg/cm2, respectivamente. Se concluye que el agregado reciclado no cumple satisfactoriamente para la resistencia a compresión.

1.5.3. Regional

De acuerdo con Centurión (2022), en su investigación "Determinación de la resistencia del concreto f'c = 210 kg/cm2 elaborado con agregados reciclados de vías, en la ciudad de Cajamarca, 2021". Tuvo por objetivo determinar la varianza de resistencia al reemplazar el agregado natural por agregado reciclado. Su metodología consistió en sustituir el agregado natural por agregado reciclado en distintos porcentajes para finalmente identificar la resistencia a compresión. Entre sus resultados, se tuvo que para las sustituciones de 0%, 15%, 20% y 25% fueron 223.5, 231.84, 243.17 y 217.57 kg/cm2, respectivamente. Se concluye que el agregado reciclado cumple satisfactoriamente para todos los diseños.

Afirma Cachay (2022), en su investigación "Variación de la resistencia a compresión de un concreto permeable de f'c = 210 kg/cm2 con aditivo plastificante sikament® 290N al reemplazar en diferentes porcentajes el agregado grueso por agregado de concreto reciclado". Tuvo como finalidad hallar el esfuerzo a compresión del concreto al reemplazar agregado natural por reciclado y adicionar el aditivo Sikament® 290N. La metodología consistió en sustituir el agregado grueso por concreto reciclado y adicionar el aditivo Sikament® 290N en distintos porcentajes y hallar sus propiedades. Entre sus datos para los 28 días con reemplazos de 0%, 10%, 20% y 30% las resistencias incrementaron en 100%, 101.37%, 115.52% y 111.81%, respectivamente. Se concluye que el concreto reciclado y el aditivo sikament® 290N cumple de manera satisfactoria para todos los diseños.

Afirma Gonzaga (2022), en su tesis "Análisis de la resistencia a la compresión y patología en concreto fc=210 kg/cm² adicionado con vidrio reciclado, Cajamarca 2022". Sostuvo como objeto analizar el esfuerzo a compresión del concreto adicionando vidrio reciclado. La técnica consistió en realizar diseños de concreto adicionando vidrio reciclado en distintos porcentajes para posteriormente determinar su resistencia a

compresión del concreto. Se tuvo que la resistencia a la compresión a los 28 días, se tuvo que para las adiciones de 0%, 5%, 10% y 16% fueron 223.40, 234.10, 244.9 y 257.90 kg/cm2, respectivamente. Se concluye que el vidrio reciclado incrementa las cualidades del concreto.

Según Aguilar-Coro (2019), en su tesis "Variación de la resistencia a compresión de un concreto compactado f'c=210 kg/cm2 al usar agregado grueso reciclado". Tuvo por finalidad comprobar los esfuerzos a compresión de un concreto compactado al suplir el agregado natural por agregado reciclado. La metodología consistió en sustituir el agregado de cantera por reciclado en distintos porcentajes para posteriormente realizar ensayos. Entre sus resultados, tuvo que para las sustituciones de 0%, 25%, 50%, 75% y 100% las resistencias variaron en 106.04%, 101.47%, 92.36% y 89.02%, respectivamente. Se concluye que el concreto reciclado cumple satisfactoriamente hasta determinados porcentajes.

De acuerdo con Cayotopa-Cabanillas (2019), en su investigación "Resistencia a la compresión de ladrillos de concreto f'c=210 kg/cm2, reemplazando el agregado grueso por ladrillo y concretos reciclados, en diferentes porcentajes". Tuvo como finalidad estudiar el esfuerzo a compresión de ladrillos al sustituir el agregado grueso por concreto reciclado. La metodología consistió en sustituir en agregado grueso natural por concreto reciclado en distintos porcentajes para determinar su resistencia a compresión. Entre sus resultados se tuvo a los 28 días, se tuvo que para las sustituciones de 0%, 10%, 15% y 20% fueron 100%, 105.06%, 103.94% y 102.72%, respectivamente. Se concluye que el concreto reciclado cumple de manera satisfactoria en los porcentajes indicados.

1.5.4. Locales

De acuerdo con Campos y Hoyos (2022), en su tesis "Uso de ceniza de cáscara de arroz para mejorar la resistencia a la compresión y flexotracción del concreto f´c=280 kg/cm2". Su fin fue usar ceniza de cáscara de arroz para mejorar las propiedades del concreto. La metodología consistió en adicionar ceniza en variadas cantidades para posteriormente identificar la resistencia a compresión. Entre sus resultados obtenidos a los 28 días para las adiciones de 0%, 0.5%, 1%, 3% y 5% fueron 304.75, 373.25, 412.30,

295.45 y 340.10 kg/cm2, respectivamente. Concluyó que la ceniza mejora las propiedades del concreto en las adiciones indicadas.

Según Ramírez y Díaz (2022), en su investigación "Inclusión de aditivo Sikament 290N para mejorar la resistencia a la compresión y flexotracción del concreto f´c 280 kg/cm2, Jaén". Tuvo por objetivo adicionar el aditivo Sikament 290N para mejorar sus propiedades del concreto en estado endurecido. La metodología consistió en adicionar el aditivo Sikament 290N en distintos porcentajes y hallar sus valores a compresión. Entre sus valores hallados, tuvo que para los 28 días para las adiciones de 0%, 0.3%, 0.4%, 0.5%, 0.6% y 0.7% fueron 421, 429.20, 451.50, 458.30, 348.65 y 399.20 kg/cm2, respectivamente. Se concluye que el aditivo Sikament 290N cumple satisfactoriamente en determinados porcentajes.

De acuerdo con Huamán y Palacios (2021), en su tesis "Determinación de las propiedades del concreto f'c 210 Kg.cm-2 elaborado con residuos de la demolición de estructuras civiles en Jaén 2021". Tuvo por objetivo determinar las propiedades del concreto al sustituir el agregado natural por CR. La metodología consistió en sustituir el agregado natural por concreto reciclado en distintos porcentajes para consecuentemente determinar su resistencia. Entre sus resultados obtenidos a los 28 días, para las sustituciones de agregado grueso (0, 20, 25 y 30%) y fino (0, 5, 10 y 15%) fueron 214, 213, 199 y 183 Kg/cm2, respectivamente. Se concluye que el concreto reciclado en los porcentajes indicados no cumple de manera satisfactoria.

Según Chasquero y Hurtado (2019), en su investigación "Uso del concreto reciclado proveniente de demoliciones para la producción de afirmado". Tuvo como finalidad producir afirmado con concreto reciclado y suelo natural. La metodología consistió en combinar el suelo con concreto reciclado en distintos porcentajes para posteriormente determinar el CBR. Entre sus resultados obtenidos para los CBR al 100% de su máxima densidad seca de 50% C°R: 50% S.M., 60% C°R: 40% S.M. y 70% C°R: 30% S.M. fueron 30%, 46% y 61%, respectivamente. Se concluye que la combinación de concreto reciclado y suelo natural cumplen satisfactoriamente para el ensayo de CBR

II. MATERIALES Y MÉTODOS

2.1. Ubicación Geográfica

La investigación se llevó a cabo en la ciudad y provincia de Jaén, del departamento de Cajamarca.

Figura 1 *Mapa de Ubicación*

Nota. Datos tomados de Maldonado y Elera (2022).

2.2. Población, muestra y muestreo

2.2.1. Población

Es un conjunto de elementos, que comparten caracteres similares para ser investigados en una encuesta (Trujillo, 2020).

Es así que el estudio estuvo conformado por 60 muestras cilíndricas de concreto con agregado reciclado.

2.2.2. Muestra

La muestra constó de 60 muestras cilíndricas de hormigón, 0%, 10%, 15% y 22% para árido grueso, 0%, 2%, 4% y 7% para árido grueso Árido fino fabricado a partir de hormigón reciclado, que posteriormente se utilizará en 7, 14 y 28 días.

 Tabla 1

 Muestras o testigos de concreto elaborados

	Sustitución de	concreto reciclado	o por agregado G	rueso y Fino
Días	0% AG + 0% AF	10% AG + 2% AF	15% AG + 4%AF	22% AG + 7%AF
7	5	5	5	5
14	5	5	5	5
28	5	5	5	5

2.2.3. Muestreo

El muestreo a utilizarse fue el no probabilístico, ya que las muestras se elegirán al azar para ser ensayadas a la resistencia a compresión

El muestreo no probabilístico que se usó en la investigación es el aleatorio simple, ya que este ofrece la ventaja de que todas las muestras representativas incluidas en la población que serán sometidas al ensayo de resistencia a la compresión.

2.3. Métodos

2.3.1. Método

Para Sanca (2011), la finalidad de la investigación aplicada adquiere nuevos conocimientos, para ayudar a solucionar problemas. El presente estudio también tuvo una finalidad aplicada, a través del porcentaje óptimo de incorporación de concreto reciclado en el diseño base.

De acuerdo con Hernández et al. (2019), un enfoque cuantitativo se refiere a la acción sobre la variable independiente y permite la observación de resultados sobre la

variable dependiente; como resultado, se infiere que el estudio empleó un enfoque cuantitativo ya que los datos serán recolectados y la hipótesis será verificada.

Según Arias y Covinos (2021), un diseño es experimental, ya que el observador o investigador manipula las variables de estudio, además de describir las causas del fenómeno o del objeto de estudio, un experimento también implica reproducir el fenómeno en un entorno controlado.

2.3.2. Análisis estadístico

Se procedió a utilizar el programa Excel office 2019 para gráficos y tablas comparativas, además para la validación de resultados se procedió a utilizar el SPSS v21, donde se realizaron las pruebas y se verificó la hipótesis planteada.

2.3.2.1. Resistencia del concreto a una edad de 7 días

Tabla 2

Pruebas de homogeneidad de varianzas

		Estadístico de Levene	gl1	gl2	p
Resistencia a compresión del concreto patrón f'c=280kg/cm2	Se basa en la media	0.312	3	16	0.816
	Se basa en la mediana Se basa en la mediana y con gl ajustado Se basa en la media recortada	0.096	3	16	0.961
		0.096	3	10.802	0.961
		0.279	3	16	0.840

Nota. Para los datos se hizo uso del programa IBM spss statistics 27

De acuerdo a los resultados de la Tabla 2, se observa que los valores de homogeneidad de varianzas no cumplen con el criterio de p > 0.05, lo que indica que no hay uniformidad de varianzas entre los tratamientos, es decir, los valores difieren en al menos uno de ellos.

Tabla 3

Prueba POST HOC

Comparaciones múltiples

Variable Resistencia a compresión del concreto patrón f'c=280kg/cm2

(I) Porcentajes	(J)		Error		Intervalo de confianza al 95%		
	Porcentajes	(I-J)	estándar	p	Límite inferior	Límite superior	
	10,00 + 2,00	-46,06000*	6.01983	0.000	-64.825	-27.295	
00,00	15,00 + 4,00	-46,52000*	6.01983	0.000	-65.285	-27.755	
	22,00 + 7, 00	-0.14	6.01983	1.000	-18.905	18.6247	
	00,00	46,06000*	6.01983	0.000	27.2953	64.8247	
10,00	15,00+ 4, 00	-0.46	6.01983	1.000	-19.225	18.3047	
	22,00+7,00	45,92000*	6.01983	0.000	27.1553	64.6847	
	00,00	46,52000*	6.01983	0.000	27.7553	65.2847	
15,00	10,00+ 2, 00	0.46	6.01983	1.000	-18.305	19.2247	
	22,00+7,00	46,38000*	6.01983	0.000	27.6153	65.1447	
22,00	00,00	0.14	6.01983	1.000	-18.625	18.9047	
	10,00+ 2,00	-45,92000*	6.01983	0.000	-64.685	-27.155	
	15,00+4,00	-46,38000*	6.01983	0.000	-65.145	-27.615	

Nota. La diferencia de medias es significativa en el nivel 0.05; usando el programa IBM spss statistics 27

En la Tabla 3, se presentan los valores comparativos del nivel de significancia de las medias para cada tratamiento. Se observa que en algunos casos, el valor de p es menor que 0.05, lo que sugiere diferencias significativas entre las medias. siendo solo para los diseños de 10%AGR + 2%AFR y 15%AGR + 4%AFR que la resistencia presento aumentos.

2.3.2.2. Resistencia del concreto a una edad de 14 días

Tabla 4Pruebas de homogeneidad de varianzas

		Estadístico de Levene	gl1	gl2	р
	Se basa en la media	0.476	3	16	0.703
Resistencia a compresión del concreto patrón f'c=280kg/cm2	Se basa en la mediana	0.367	3	16	0.778
	Se basa en la mediana y con gl ajustado	0.367	3	10.066	0.778
	Se basa en la media recortada	0.433	3	16	0.732

Nota. Para los datos se hizo uso del programa IBM spss statistics 27

De acuerdo a los resultados de la Tabla 4, se observa que los valores de homogeneidad de varianzas no cumplen con el criterio de p > 0.05, lo que indica que no hay uniformidad de varianzas entre los tratamientos, es decir, los valores difieren en al menos uno de ellos.

Tabla 5Prueba POST HOC

Comparaciones múltiples Resistencia a compresión del concreto patrón f´c=280kg/cm²

Variable	Resistencia a compresión del concreto patrón f´c=280kg/cm2						
(I) porcentajes	(J)	(I-J)	Error estánda	n	Intervalo de confianza al 95%		
	porcentajes		r	р	Límite inferior	Límite superior	
	10,00 + 2,00	-30,46000*	7.06225	0.005	-52.474	-8.4459	
00,00	15,00 + 4,00	-40,82000*	7.06225	0.000	-62.834	-18.806	
	22,00 + 7,00	-4.9	7.06225	0.921	-26.914	17.1141	
	00,00	30,46000*	7.06225	0.005	8.4459	52.4741	
10,00	15,00+ 4, 00	-10.36	7.06225	0.556	-32.374	11.6541	
	22,00+ 7, 00	25,56000*	7.06225	0.02	3.5459	47.5741	
	00,00	40,82000*	7.06225	0.000	18.8059	62.8341	
15,00	10,00+2,00	10.36	7.06225	0.556	-11.654	32.3741	
	22,00+ 7, 00	35,92000*	7.06225	0.001	13.9059	57.9341	
22,00	00,00	4.9	7.06225	0.921	-17.114	26.9141	
	10,00+ 2, 00	-25,56000*	7.06225	0.02	-47.574	-3.5459	
	15,00+ 4, 00	-35,92000*	7.06225	0.001	-57.934	-13.906	

Nota. La diferencia de medias es significativa en el nivel 0.05; usando el programa IBM spss statistics 27

En la Tabla 5, se presentan los valores comparativos del nivel de significancia de las medias para cada tratamiento. Se observa que en algunos casos, el valor de p es menor que 0.05, lo que sugiere diferencias significativas entre las medias, siendo solo para los diseños de 10%AGR + 2%AFR y 15%AGR + 4%AFR que la resistencia presento aumentos.

2.3.2.3. Resistencia del concreto a una edad de 28 días

Tabla 6 *Pruebas de homogeneidad de varianzas*

		Estadístico de Levene	gl1	gl2	p
Resistencia a compresión del concreto patrón f´c=280kg/cm2	Se basa en la media	1.205	3	16	0.340
	Se basa en la mediana	0.693	3	16	0.570
	Se basa en la mediana y con gl ajustado	0.693	3	13.504	0.572
	Se basa en la media recortada	1.224	3	16	0.333

Nota. Para los datos se hizo uso del programa IBM spss statistics 27

Los resultados de la Tabla 6 muestran que no hay homogeneidad de varianzas entre los tratamientos, ya que los valores de p son menores que 0.05., es decir en alguno de los tratamientos los valores son diferentes.

Tabla 7 *Prueba POST HOC*

Comparaciones múltiples								
Variable:	Resistencia a compresión del concreto patrón f´c=280kg/cm2							
(I) porcentajes	(J) porcentajes	(I-J)	Error estándar	p	Intervalo de confianza al 95%			
		(1-3)			Límite inferior	Límite superior		
00,00	10,00 + 2,00	-24,58000*	5.77679	0.006	-42.587	-6.5729		
	15,00 + 4,00	-28,66000*	5.77679	0.002	-46.667	-10.6529		
	22,00 + 7,00	11.08	5.77679	0.333	-6.9271	29.0871		
10,00	00,00	24,58000*	5.77679	0.006	6.5729	42.5871		
	15,00+4,00	-4.08	5.77679	0.918	-22.087	13.9271		
	22,00+7,00	35,66000*	5.77679	0.000	17.6529	53.6671		
15,00	00,00	28,66000*	5.77679	0.002	10.6529	46.6671		
	10,00+2,00	4.08	5.77679	0.918	-13.927	22.0871		
	22,00+7,00	39,74000*	5.77679	0.000	21.7329	57.7471		
22,00	00,00	-11.08	5.77679	0.333	-29.087	6.9271		
	10,00+2,00	-35,66000*	5.77679	0.000	-53.667	-17.6529		
	15,00+4,00	-39,74000*	5.77679	0.000	-57.747	-21.7329		

Nota. La diferencia de medias es significativa en el nivel 0.05; usando el programa IBM spss statistics 27

En la Tabla 7, se presentan los valores comparativos del nivel de significancia de las medias para cada tratamiento. Algunos casos muestran un valor de p menor que 0.05, lo que sugiere diferencias significativas entre las medias. siendo solo para los diseños de 10% AGR + 2% AFR y 15% AGR + 4% AFR que la resistencia presento aumentos.

2.4. Procedimientos de recolección de datos

2.4.1. Materiales

Con la finalidad de llevar a cabo los ensayos de estudio, fue necesario contar con diversos equipos y materiales, los cuales se mencionan a continuación:

Tabla 8Eauipos y materiales

Ensayo	Normas	Equipo y Materiales			
Análisis Granulométrico	NTP 400.012	Balanza 1000gr, mallas granulométricas,			
Anansis Granulometrico	MTC E 204	agitador mecánico, horno, recipientes.			
Contenido de Humedad	NTP 339.185 MTC E 215	Taras, balanza 500gr y horno.			
Peso unitario suelto y	NTP 400.017	Balanza 1000gr, varilla compactadora,			
varillado	MTC E 203	recipiente de medida, cucharón.			
Peso específico y	NTP 400.021	Balanza 10kg, cesta con malla de			
porcentaje de absorción del agregado grueso	MTC E 206	alambre, recipiente para muestra depósito de agua, tamices y estufa.			
Peso específico y porcentaje de absorción	NTP 400.022	Balanza 500gr, picnómetro, frasco,			
del agregado fino	MTC E 205	molde, barra de compactación y estufa			
Asentamiento	NTP 339.035	Cono de Abrams, varilla y wincha de			
	MTC E 705	mano.			
Resistencia a la	NTP 339.034	Vernier y máquina de rotura de probetas			
compresión	MTC E 704	vermer y maquina de fotura de probetas			

2.4.2. FASE 1: Obtención de los materiales

Los agregados se extrajeron de la cantera Olano – Jaén y se utilizó cemento Portland tipo I junto con concreto reciclado del botadero de Fila Alta.

2.4.2.1. Tratamiento para el concreto reciclado

Figura 2

Recolección del concreto reciclado en botadero Fila alta

Nota. Recolección del concreto reciclado en botadero Fila alta

En la presente figura se visualiza la recolección del concreto reciclado en el botadero Fila alta.

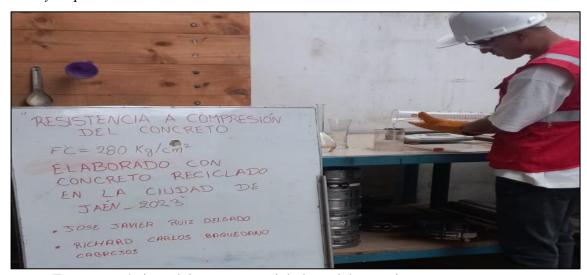
Figura 3

Limpieza superficial del concreto reciclado

Nota. Limpieza superficial del concreto reciclado

En la presente figura se visualiza el lavado que recibió el concreto reciclado

Figura 4Trituración y reducción del tamaño del concreto reciclado



Nota. Trituración y reducción del tamaño del concreto reciclado

En la figura se logra visualizar el tratamiento que recibió el concreto reciclado, lo cual consistió en triturar para poder utilizarlo como agregado grueso y fino.

Figura 5

Ensayos químicos del concreto reciclado en laboratorio

Nota. Ensayos químicos del concreto reciclado en laboratorio

En la figura se logra visualizar el tratamiento que recibió el concreto reciclado para los ensayos químicos como sales solubles.

2.4.3. FASE 2: Recopilación de información

a) Ensayos para los agregados naturales

Figura 6Contenido de humedad del agregado grueso

Nota. Contenido de humedad del agregado grueso

En la figura se logra visualizar la ejecución del ensayo de contenido de humedad del agregado grueso.

Figura 7

Contenido de humedad del agregado fino

Nota. Contenido de humedad del agregado fino

En la figura se logra visualizar la ejecución del ensayo de contenido de humedad del agregado fino.

Figura 8Análisis granulométrico del agregado grueso

Nota. Análisis granulométrico del agregado grueso

En la figura se logra visualizar la ejecución del ensayo de análisis granulométrico del agregado grueso.

Figura 9Análisis granulométrico del agregado fino

Nota. Análisis granulométrico del agregado fino

En la figura se logra visualizar la ejecución del ensayo de análisis granulométrico del agregado fino.

Figura 10

Peso específico y porcentaje de absorción del agregado grueso

Nota. Peso específico y porcentaje de absorción del agregado grueso

En la figura se logra visualizar la ejecución del ensayo de Peso específico y porcentaje de absorción del agregado grueso.

Figura 11

Peso específico y porcentaje de absorción del agregado fino

Nota. Peso específico y porcentaje de absorción del agregado fino

En la figura se logra visualizar la ejecución del ensayo de Peso específico y porcentaje de absorción del agregado fino.

Figura 12Peso unitario suelto del agregado grueso

Nota. Peso unitario suelto del agregado grueso

En la figura se logra visualizar la ejecución del ensayo Peso unitario suelto del agregado grueso.

Figura 13Peso unitario varillado del agregado grueso

Nota. Peso unitario varillado del agregado grueso

En la figura se logra visualizar la ejecución del ensayo Peso unitario varillado del agregado grueso.

Figura 14

Peso unitario suelto del agregado fino

Nota. Peso unitario suelto del agregado fino

En la figura se logra visualizar la ejecución del ensayo Peso unitario suelto del agregado fino.

Figura 15

Peso unitario varillado del agregado fino

Nota. Peso unitario varillado del agregado fino

En la figura se logra visualizar la ejecución del ensayo Peso unitario varillado del agregado fino.

Figura 16

Ensayo de abrasión de los ángeles del agregado grueso natural

Nota. Ensayo de abrasión de los ángeles del agregado grueso natural

En la figura se logra visualizar la ejecución del ensayo de Abrasión de los Ángeles del agregado grueso natural.

b) Ensayos para los agregados reciclados

Figura 17

Contenido de humedad del agregado grueso reciclado

Nota. Contenido de humedad del agregado grueso reciclado

En la figura se logra visualizar la ejecución del ensayo de contenido de humedad del agregado grueso reciclado.

Figura 18

Contenido de humedad del agregado fino reciclado

Nota. Contenido de humedad del agregado fino reciclado

En la figura se logra visualizar la ejecución del ensayo de contenido de humedad del agregado grueso reciclado.

Figura 19

Análisis granulométrico del agregado grueso reciclado

Nota. Análisis granulométrico del agregado grueso reciclado

En la figura se logra visualizar la ejecución del ensayo de análisis granulométrico del agregado grueso reciclado.

Figura 20Análisis granulométrico del agregado fino reciclado

Nota. Análisis granulométrico del agregado fino reciclado

En la figura se logra visualizar la ejecución del ensayo de análisis granulométrico del agregado fino reciclado.

Figura 21

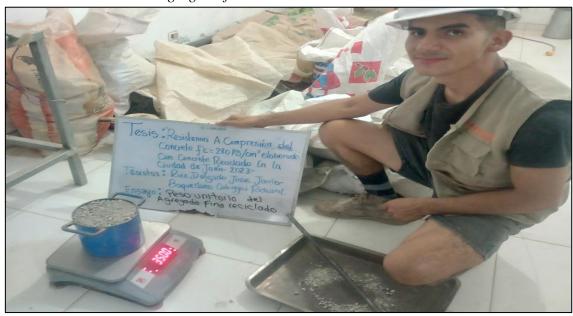
Peso específico y porcentaje de absorción del agregado grueso reciclado

Nota. Peso específico y porcentaje de absorción del agregado grueso reciclado

En la figura se logra visualizar la ejecución del ensayo de Peso específico y porcentaje de absorción del agregado grueso.

Figura 22

Peso específico y porcentaje de absorción del agregado fino reciclado



Nota. Peso específico y porcentaje de absorción del agregado fino reciclado

En la figura se logra visualizar la ejecución del ensayo de Peso específico y porcentaje de absorción del agregado fino reciclado.

Figura 23

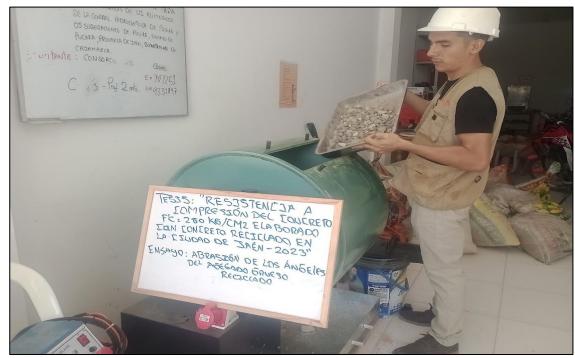
Peso unitario suelto del agregado fino reciclado

Nota. Peso unitario suelto del agregado fino reciclado

En la figura se logra visualizar la ejecución del ensayo Peso unitario suelto para el agregado fino reciclado.

Figura 24

Peso unitario varillado del agregado fino reciclado



Nota. Peso unitario varillado del agregado fino reciclado

En la figura se logra visualizar la ejecución del ensayo Peso unitario varillado para el agregado fino reciclado.

Figura 25

Ensayo de abrasión de los ángeles del agregado grueso reciclado

Nota. Ensayo de abrasión de los ángeles del agregado grueso reciclado

En la figura se logra visualizar la ejecución del ensayo de Abrasión de los Ángeles del agregado grueso reciclado.

c) Ensayos para el concreto fresco

Figura 26Peso de los materiales para la dosificación de concreto

Nota. Peso de los materiales para la dosificación de concreto

En la figura se logra visualizar el peso realizado de los materiales para la dosificación de concreto f'c = 280 kg/cm2.

Figura 27Dosificación de concreto patrón f´c= 280kg/cm2

Nota. Dosificación de concreto patrón f´c= 280kg/cm2

En la figura se logra visualizar la dosificación de concreto patrón f´c=280kg/cm2.

Figura 28 $\label{eq:medicion} \textit{Medición del asentamiento para el concreto patrón } \textit{f'c} = 280 \textit{kg/cm2}$

Nota. Medición del asentamiento para el concreto patrón f'c= 280kg/cm2

En la figura se logra visualizar la medición del asentamiento, se tuvo un slump de 3.6".

Figura 29Elaboración de probetas patrón f´c= 280kg/cm2

Nota. Elaboración de probetas patrón f´c= 280kg/cm2

En la figura se logra visualizar la fabricación de los especímenes de concreto patrón f'c=280kg/cm2.

Figura 30 $Dosificación \ de \ concreto \ patrón \ f'c = 280kg/cm2 + 10\% \ AGR + 2\% AFR$

Nota. Dosificación de concreto patrón f´c= 280kg/cm2 + 10% AGR + 2% AFR

En la figura se visualiza la dosificación de concreto f´c=280kg/cm2 + 10% AGR + 2% AFR

Figura 31 $\label{eq:medicion} \textit{Medición del slump del concreto f'c} = 280kg/cm2 + 10\% \ AGR + 2\% \ AFR$

Nota. Medición del slump del concreto f´c= 280kg/cm2 + 10% AGR + 2% AFR

En la figura se logra visualizar la medición del asentamiento, se tuvo un slump de 3.5".

Figura 32 $Elaboraci\'on\ de\ probetas\ de\ concreto\ f'c = 280kg/cm2 + 10\%\ AGR + 2\%AFR$

Nota. Elaboración de probetas de concreto f´c= 280kg/cm2 + 10% AGR + 2% AFR

En la figura se visualiza la fabricación de especímenes de concreto patrón f´c=280kg/cm2 + 10% AGR + 2% AFR

Figura 33Dosificación de concreto patrón f´c= 280kg/cm2 + 15% AGR + 4%AFR

Nota. Dosificación de concreto patrón f´c= 280kg/cm2 + 15% AGR + 4% AFR

En la figura se logra visualizar la dosificación de concreto f´c=280 kg/cm2 + 15% AGR + 4% AFR

Figura 34Asentamiento del concreto f´c= 280kg/cm2 + 15% AGR + 4%AFR

Nota. Asentamiento del concreto f'c= 280kg/cm2 + 15% AGR + 4% AFR

En la figura se logra visualizar el asentamiento (slump), siendo 2.6".

Figura 35

Elaboración de probetas de concreto f´c= 280kg/cm2 + 15% AGR + 4% AFR

Nota. Elaboración de probetas de concreto f´c= 280kg/cm2 + 15% AGR + 4% AFR

En la figura se logra visualizar la fabricación de los especímenes de concreto patrón f´c=280 kg/cm2 + 15% AGR + 4% AFR

Figura 36Dosificación de concreto patrón f´c= 280kg/cm2 + 22% AGR + 7%AFR

Nota. Dosificación de concreto patrón f´c= 280kg/cm2 + 22% AGR + 7% AFR

En la figura se visualiza la dosificación de concreto f´c=280kg/cm2 + 22% AGR + 7% AFR

Figura 37Medición del slump del concreto f´c= 280kg/cm2 + 22% AGR + 7%AFR

Nota. Medición del slump del concreto f´c= 280kg/cm2 + 22% AGR + 7% AFR

En la figura se logra visualizar la medición del asentamiento (slump), siendo de 2".

Figura 38 $Elaboraci\'on\ de\ probetas\ de\ concreto\ f\'c = 280kg/cm2 + 22\%\ AGR + 7\% AFR$

Nota. Elaboración de probetas de concreto f´c = 280kg/cm2 + 22% AGR + 7% AFR

En la figura se visualiza la fabricación de especímenes de concreto patrón $f\mbox{\'c}=280\mbox{kg/cm2}+22\%\mbox{ AGR}+7\%\mbox{AFR}.$

b) Ensayos para el concreto Endurecido

Figura 39

Rotura de probetas de concreto f´c= 280kg/cm2 a los 7días

Nota. Rotura de probetas de concreto f´c= 280kg/cm2 a los 7días

En la figura se logra visualizar el ensayo a compresión del concreto f´c=280 kg/cm2, a 7 días de curado.

Figura 40

Rotura de probetas de concreto f´c= 280kg/cm2+ 10% AGR + 2% AFR a los 7 días

Nota. Rotura de probetas de concreto f´c= 280kg/cm2+ 10% AGR + 2% AFR a los 7 días

En la figura se visualiza el ensayo a compresión del concreto f´c=280 kg/cm2 + 10% AGR + 2% AFR a los 7 días.

Figura 41

Rotura de probetas de concreto f´c= 280kg/cm2+ 15% AGR + 4% AFR a los 7 días

Nota. Rotura de probetas de concreto f´c= 280kg/cm2+ 15% AGR + 4% AFR a los 7 días

En la figura se visualiza el ensayo a compresión del concreto f´c=280 kg/cm2 + 15% AGR + 4% AFR a los 7 días.

Figura 42

Rotura de probetas de concreto f´c= 280kg/cm2+ 22% AGR + 7% AFR a los 7 días

Nota. Rotura de probetas de concreto f´c= 280kg/cm2+ 22% AGR + 7% AFR a los 7 días

En la figura se visualiza el ensayo a compresión del concreto f´c=280 kg/cm2 + 22% AGR + 7% AFR a los 7 días.

Figura 43

Rotura de probetas de concreto f´c= 280kg/cm2 a los 14 días

Nota. Rotura de probetas de concreto f´c= 280kg/cm2 a los 14 días

En la figura se logra visualizar el ensayo a compresión del concreto f´c=280 kg/cm2, a 14 días de curado.

Figura 44

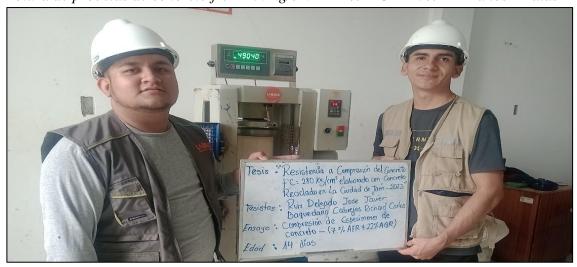
Rotura de probetas de concreto f´c= 280kg/cm2+ 10% AGR + 2% AFR a los 14 días

Nota. Rotura de probetas de concreto f´c= 280kg/cm2+ 10% AGR + 2% AFR a los 14 días

En la figura se visualiza el ensayo a compresión del concreto f´c=280 kg/cm2 + 10% AGR + 2% AFR a los 14 días.

Figura 45

Rotura de probetas de concreto f'c= 280kg/cm2+ 15% AGR + 4% AFR a los 14 días

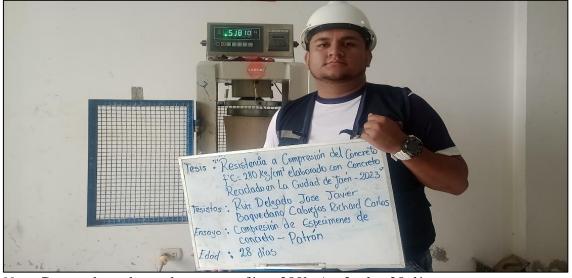


Nota. Rotura de probetas de concreto f´c= 280kg/cm2+ 15% AGR + 4% AFR a los 14 días

En la figura se visualiza el ensayo a compresión del concreto f´c=280 kg/cm2 + 15% AGR + 4% AFR a los 14 días.

Figura 46

Rotura de probetas de concreto f´c= 280 kg/cm2+ 22% AGR + 7% AFR a los 14 días



Nota. Rotura de probetas de concreto f´c= 280 kg/cm2+ 22% AGR + 7% AFR a los 14 días

En la figura se visualiza el ensayo a compresión del concreto f´c=280 kg/cm2 + 22% AGR + 7% AFR a los 14 días.

Figura 47

Rotura de probetas de concreto f´c = 280kg/cm2 a los 28 días

Nota. Rotura de probetas de concreto f´c = 280kg/cm2 a los 28 días

En la figura se logra visualizar el ensayo a compresión del concreto f´c=280 kg/cm2, a 28 días de curado.

Figura 48

Rotura de probetas de concreto f´c= 280kg/cm2 + 10% AGR + 2% AFR a los 28 días

Nota. Rotura de probetas de concreto f´c= 280kg/cm2 + 10% AGR + 2% AFR a los 28 días

En la figura se logra visualizar el ensayo a compresión del concreto f´c=280 kg/cm2+ 10% AGR + 2% AFR *a los 28 días*

Figura 49

Rotura de probetas de concreto f´c= 280kg/cm2 + 15% AGR + 4% AFR a los 28 días

Nota. Rotura de probetas de concreto f´c= 280kg/cm2 + 15% AGR + 4% AFR a los 28 días

En la figura se logra visualizar el ensayo a compresión del concreto f´c=280 kg/cm2 + 15% AGR + 4% AFR a los 28 días.

Figura 50

Rotura de probetas de concreto f´c= 280 kg/cm2+ 22% AGR + 7% AFR a los 28 días

Nota. Rotura de probetas de concreto f´c= 280kg/cm2 + 15% AGR + 4% AFR a los 28 días

En la figura se logra visualizar el ensayo a compresión del concreto f´c=280 kg/cm2 + 22% AGR + 7% AFR a los 28 días.

III. RESULTADOS

3.1. Determinar las propiedades físicas y mecánicas de los insumos, para el diseño de mezcla

Tabla 9Características físicas y mecánicas de los agregados naturales

Características		
	Agregado fino	Agregado grueso
Perfil	-	Angular y Sub angular
Tamaño máximo nominal	-	3/4"
Peso específico de masa	2.54 gr/cm3	2.66 gr/cm3
Peso unitario suelto seco	1547 kg/m3	1452 kg/m3
Peso unitario seco compactado	1732 kg/m3	1600 kg/m3
Humedad natural	1.74%	0.49%
Absorción	2.57%	0.88%
Módulo de finura	2.29	6.47
Material fino que pasa el Tamiz N° 200	2.90%	0.93%
Abrasión Los Ángeles		30.06%

Tabla 10Características físicas y mecánicas de los agregados reciclados

Características		
	Agregado fino reciclado	Agregado grueso reciclado
Perfil	-	Angular y Sub angular
Tamaño máximo nominal	-	3/4"
Peso específico de masa	2.47 gr/cm3	2.64 gr/cm3
Peso unitario suelto seco	1753 kg/m3	1395 kg/m3
Peso unitario seco compactado	1869 kg/m3	1571 kg/m3
Humedad natural	1.68%	0.46%
Absorción	2.88%	1.32%
Módulo de finura	2.95	6.45
Material fino que pasa el Tamiz N° 200	2.41%	0.80%
Abrasión Los Ángeles		33.48%

Tabla 11

Resultados de los ensayos químicos del concreto reciclado

	Sales Solubles Totales		0.0165% ppm 165.00%
	Expresado como ÍON	CI -	
Cloruros	(ppm)		55%
Cioruros	Expresado como ÍON	SO4 -	
	(ppm)		230%
			0.01%
	SO4		2.00%

El cemento utilizado fue Pacasmayo tipo I con un peso específico de 3.15 gr/cm3

Para el diseño de la mezcla de concreto con una resistencia nominal f'c=280kg/cm2, se establecieron proporciones volumétricas específicas de los materiales.

1: 1.61: 1.81: 20.4 lt/bolsa Cemento: AF: AG: Agua

3.2. Analizar la resistencia a compresión del concreto f'c = 280 kg/ cm2 al sustituir concreto reciclado por agregado grueso en los porcentajes de 0%, 10%, 15%, y 22% y para el agregado fino en 0%, 2%, 4%, y 7%.

3.2.1. Propiedades del concreto fresco

3.2.1.1. Asentamiento

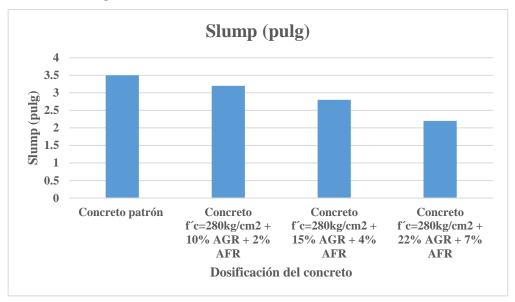

El presente ensayo se realizó considerando la norma técnica NTP 339.035, obteniendo los siguientes resultados:

Tabla 12Asentamientos promedio del concreto

Dosificaciones de Concreto	Tanda	Asentamiento (pulg)	Asentamiento promedio
Congrete petrón fía-200 kg/am2	1	3.4	3.5
Concreto patrón f´c=280 kg/cm2	2	3.6	3.3
Concreto f´c=280kg/cm2 + 10% AGR + 2% AFR	1	3.5	3.2
	2	2.8	
Concreto f´c=280kg/cm2 + 15% AGR + 4% AFR	1	2.6	2.8
	2	2.9	
Concreto f´c=280kg/cm2 + 22% AGR + 7% AFR	1	2	2.2
	2	2.4	

De la tabla 11, Se indica los resultados promedio de Slump para las distintas dosificaciones de concreto, teniendo que las sustituciones de agregados naturales por reciclados son inversamente proporcionales al Slump en algunos de sus diseños.

Figura 51Asentamientos promedios del concreto

De la figura 49, para el concreto f'c=280kg/cm2 se tuvo un Slump promedio de 3.3", al sustituir agregados naturales por reciclado en los porcentajes de 10% AGR + 2%

AFR, 15% AGR + 4% AFR y 22% AGR + 7% AFR el slump promedio fueron 3.9", 3.1" y 2.2", respectivamente.

3.2.2. Propiedades del concreto endurecido

3.2.2.1. Resistencia a la compresión

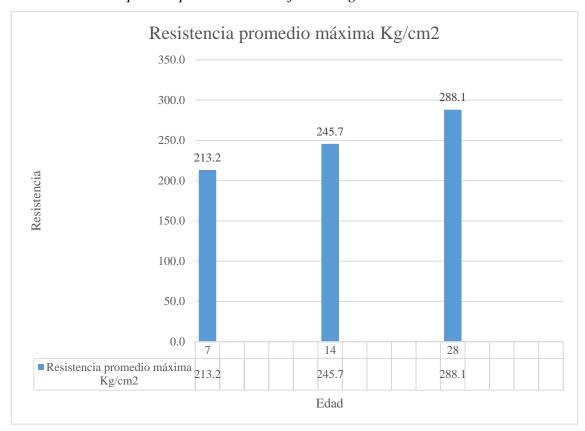

El ensayo se llevó a cabo conforme a la norma NTP 339.034, evaluando la resistencia a edades de 7, 14 y 28 días para el concreto con resistencia f'c=280kg/cm2.y para las distintas sustituciones agregados naturales por reciclados, lo cual se verificó la condición de cumplimiento de acuerdo a la normativa vigente, teniendo en cuenta que el porcentaje mínimo de resistencia a los 7, 14 y 28 días debe ser del 70, 80 y 100 % del f'c.

Tabla 13Resistencia a compresión del concreto f´c=280kg/cm2

Edad (días)	Resistencia máxima Kg/cm2	Resistencia promedio máxima Kg/cm2	Porcentaje F´c	Condición
	204.3 202.8			
7 días	222.8	213.2	76.14	Cumple
	212.8			OK
	223.3			
	239.8			
	255.9			Cumple
14 días	251.1	245.7	87.76	OK
	238.7			
	243.1			
	293.2			
	282			Cuma 1a
28 días	296.6	288.1	102.91	Cumple OK
	286			OK
	282.9			

De la tabla 12, Se presenta los datos de resistencia a compresión del concreto f'c=280kg/cm2, ensayadas a los 7, 14 y 28 días.

Figura 52Resistencia a compresión para el concreto f´c=280kg/cm2

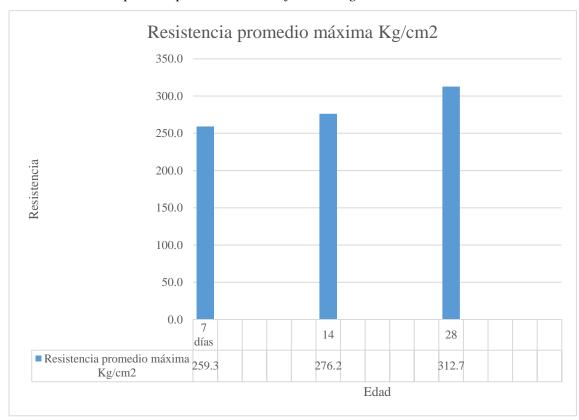

De la figura 50, se presenta los valores hallados para el concreto f´c=280 kg/cm2, donde se tuvo resistencias promedios máximos de 213.2 kg/cm2, 245.7 kg/cm2 y 288.1 kg/cm2 para los 7, 14 y 28 días, respectivamente.

Tabla 14Resistencia a compresión del concreto f´c=280kg/cm2 + 10% AGR + 2% AFR

Edad (días)	Resistencia máxima Kg/cm2	Resistencia promedio máxima Kg/cm2	Porcentaje F´c	Condición
	264.2			
	243.1			Cumple
7 días	267.7	259.3	92.59	OK
	264.7			011
	256.6			
	278			
	280.4			Cumple
14 días	287	276.2	98.64	Cumple OK
	262			OK
	273.5			
	315.1			
	329.7			
28 días	301.8	312.7	111.69	Cumple
- 2	318.7			OK
	298.3			

De la tabla 13, Se presenta los datos de resistencia a la compresión del concreto f'c=280kg/cm2 + 10% AGR + 2% AFR, ensayadas a 7, 14 y 28 días.

Figura 53 $Resistencia\ a\ compresi\'on\ para\ el\ concreto\ f\'c = 280\ kg/cm2 + 10\%\ AGR + 2\%\ AFR$

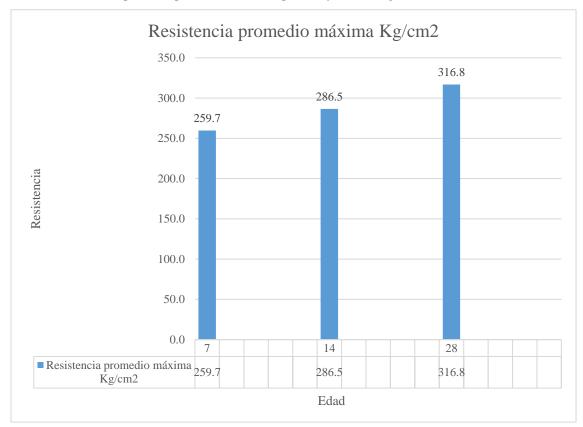

De la figura 51, se presenta los valores del concreto f´c=280kg/cm2 + 10% AGR + 2%AFR, lo cual para se tuvo resistencias promedios máximos de 259.3 kg/cm2, 276.2 kg/cm2 y 312.7 kg/cm2 a los 7, 14 y 28 días. Lo cual representa un incremento al sustituir a los agregados naturales por reciclados de manera parcial, respectivamente.

Tabla 15 $Resistencia\ a\ compresión\ del\ concreto\ patrón\ f'c = 280\ kg/cm2 + 15\%\ AGR + 4\%\ AFR$

Edad (días)	Resistencia máxima Kg/cm2	Resistencia promedio máxima Kg/cm2	Porcentaje F'c	Condición
	253.3 251			
7 días	277.6	259.7	92.76	Cumple
	262.5			
	254.2			
	284.8 274.1			
14 días	294	286.5	102.34	Cumple
	281.1			1
	298.7			
	310			
	311.9			
28 días	329.3	316.8	113.14	Cumple
	319.4			
	313.4			

De la tabla 14, Se presenta los datos de resistencia a compresión para el concreto $f'c = 280 \text{kg/cm} \\ 2 + 15\% AGR + 4\% AFR, ensayadas a 7, 14 y 28 días.$

Figura 54 $Resistencia\ a\ compresi\'on\ para\ el\ concreto\ patr\'on\ f\'c = 280kg/cm2 + 15\%\ AGR + 4\%\ AFR$

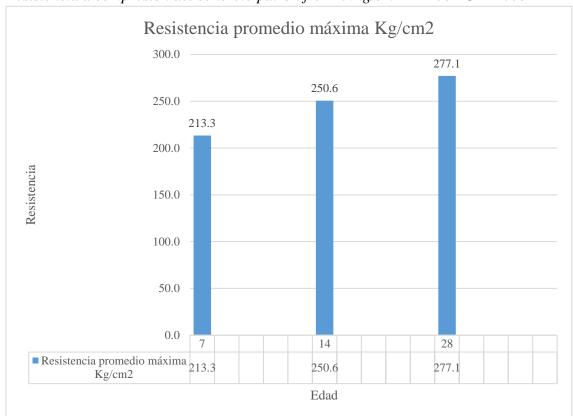
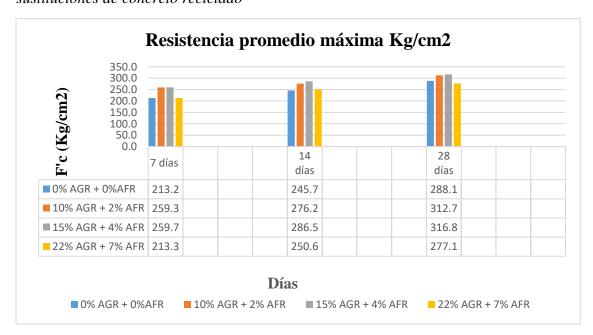

De la figura 52, se presenta los valores para el concreto f´c=280kg/cm2 + 15% AGR + 4%AFR, lo cual se tuvo resistencias promedios máximos de 259.7 kg/cm2, 286.5 kg/cm2 y 316.8 kg/cm2 ensayadas a los 7, 14 y 28 días, respectivamente.

Tabla 16 $Resistencia\ a\ compresi\'on\ para\ el\ concreto\ patr\'on\ f\'c = 280kg/cm2 + 22\%\ AGR + 7\%\ AFR$

Edad (días)	Resistencia máxima Kg/cm2	xima promedio		Condición
	208.8			
	204.4			
7 días	220.6	213.3	76.19	Cumple
	212.8			
	220.1			
	237.6			
	250.3			
14 días	277.5	250.6	89.49	Cumple
	238.9			
	248.5			
	273.4			
	280.3			
28 días	266.4	277.1	98.95	Cumple
	288.4			_
	276.8			

De la tabla 15, se presenta los datos de resistencia a compresión del concreto f´c = 280 kg/cm 2 + 22% AGR + 7% AFR, ensayadas a 7, 14 y 28 días.


Figura 55 $Resistencia\ a\ compresi\'on\ del\ concreto\ patr\'on\ f\'c = 280kg/cm2 \ +\ 22\%\ AGR\ +\ 7\%\ AFR$

De la figura 53, se presenta los valores del concreto f´c=280kg/cm2 + 22% AGR + 7%AFR, lo cual para los 7, 14 y 28 días se tuvo resistencias promedio de 213.3 kg/cm2, 250.6 kg/cm2 y 277.1 kg/cm2. Esto representa un incremento al sustituir a los agregados naturales por reciclados de manera parcial, respectivamente.

3.3. Comparar el efecto de los distintos porcentajes sustitutorios de concreto reciclado por agregado grueso y fino en el ensayo de resistencia a compresión del concreto f'c = 280 kg/cm2 y descubrir su óptimo porcentaje de concreto reciclado que mejora la resistencia la compresión para el concreto f'c = 280 kg/cm2.

Figura 56Resistencia a compresión para el concreto f'c = 280 kg/cm2 con las diferentes sustituciones de concreto reciclado

De la figura 54, se presenta los valores para el concreto f'c = 280 kg/cm2 con las diferentes sustituciones de concreto reciclado, ensayadas a los 7, 14 y 28 días de curado, lo cual se tiene que para las sustituciones de 10% AGR + 2% AFR y 15% AGR + 4% AFR se tuvo un incremento en un 8.5% y 9.9% en la resistencia respecto del concreto de diseño, sin embargo, para el 22% AGR + 7% AFR de sustitución la resistencia disminuyó en un 3.8% con respecto al concreto patrón.

3.4. Determinar el costo del nuevo diseño de concreto respecto al convencional

Se procedió a realizar el costo del concreto reciclado puesto en obra para posteriormente determinar el costo de producción de concreto para la resistencia f´c=280 kg/cm2 y para el diseño que mejor cumplió su resistencia siendo elaborado con agregados reciclados sustituidos parcialmente.

Tabla 17Costo de producción del agregado grueso reciclado puesto en obra

PUESTO EN OBRA SOLO VALIDO PARA LA ZONA DE JAÉN							
AGREGADO GRUESO RECICLADO (CONCRETO RECICLADO)							
DESCRIPCION costo de demolición por 2 sacos (0.3142m3)							
Mano de obra 01 peón Herramientas	s/. 20	63.7					
manuales Transporte	se consideró el 3% de la mano de obra	1.9					
Transporte	se consideró según cotización el traslado m3	9					
	Total	S/74.56					

De la interpretación de la tabla 16, se tiene que el costo total de producción del agregado grueso reciclado puesto en obra es S/74.56

 Tabla 18

 Costo de producción del agregado fino reciclado puesto en obra

PUESTO EN OBRA SOLO VALIDO PARA LA ZONA DE JAÉN AGREGADO FINO RECICLADO (CONCRETO RECICLADO) Costo por Costo de demolición por 0.7 sacos (0.10997m3) **DESCRIPCION** m3Mano de obra s/.501 peón 45.5 Herramientas manuales se consideró el 3% de la mano de obra 1.4 Transporte 9 se consideró según cotización el traslado m3

Total

De la interpretación de la tabla 17, se tiene que el costo total de producción del agregado fino reciclado puesto en obra es S/ 55.83

S/ 55.83

Tabla 19 $Análisis de \ precios \ unitarios \ para \ el \ concreto \ f`c = 280 \ kg/cm2$

		Análisis de	prec	ios unit	arios			
Presupuesto	1201001	RESISTENO ELABORADO CO	CIAA ON CO	COMPRE ONCRETO	SIÓN DELC RECICLAD	ONCRETO : O EN LA CI	F C=280KG UDAD DE J	/CM2 JAÉN - 2023
Subpresupuesto	001	RESISTENCIAA COMPRESIÓN DELCONCRETO F°C=280KG/CM2 ELABORADO CON CONCRETORECICLADO EN LA CIUDAD DE JAÉN - 2023						
Partida	01.01		CON	NCRETO I	F'C=280 KG/	CM2 - PATI	RON	
Rendimiento	m3/DIA	20.0000	EQ.	20.0000	Costo unita		559.92	
Código	Descripción Recurs	so		Unidad	Cuadrilla	Cantidad	Precio S/	Parcial S/
	Mano de Obra							
0101010003	OPERARIO			hh	2.0000	0.8000	28.47	22.78
0101010004	OFICIAL			hh	2.0000	0.8000	22.39	17.91
0101010005	PEON			hh	8.0000	3.2000	20.26	64.83
								105.52
	Materiales							
02070100010002	PIEDRA CHANCA	DA 1/2"		m3		0.8210	65.00	53.37
02070200010002	ARENA GRUESA			m3		0.7680	54.00	41.47
0213010008	CEMENTO EXTRA PACASMAYO	AFORTE		bol		11.0600	31.40	347.28
0290130023	AGUA			m3		0.2160	7.00	1.51
								443.63
	Equipos							
0301060007	HERRAMIENTA N	MANUALES		%mo		3.0000	105.52	3.17
0301290001	VIBRADOR PARA			hm	1.0000	0.4000	7.00	2.80
03012900030001	MEZCLADORA D (23 HP)	E CONCRETO 11 P3		hm	1.0000	0.4000	12.00	4.80
	•							10.77

De la interpretación de la tabla 18, se tiene el análisis de precios unitarios para la producción de concreto f'c = 280 kg/cm2, ascendiendo a un total de S/. 559.92

Tabla 20 $Análisis\ de\ precios\ unitarios\ para\ el\ concreto\ f'c = 280\ kg/cm2 + 10\% AGR + 2\% AFR$

	Anál	isis de j	preci	os unita	rios			
Presupuesto	RESISTENCIAA COMPRESIÓN DELCONCRETO F°C=280KG/CM2 1201001 ELABORADO CON CONCRETORECICLADO EN LA CIUDAD DE JAÉN - 2023 RESISTENCIAA COMPRESIÓN DELCONCRETO F°C=280KG/CM2							
Subpresupuesto	001				NCRETORE	CICLADO I		
Partida	01.02		CONC	RETO F	JAÉN - 2 C=280KG/CN		R + 4%AFI	R
Rendimiento	m3/DIA	20.0000 EQ. 20.0000 Costo unitario directo por: m3 560.73					560.73	
Código	Descripción Recurso			Unidad	Cuadrilla	Cantidad	Precio S/	Parcial S/
	Mano de Obra							
0101010003	OPERARIO			hh	2.0000	0.8000	28.47	22.78
0101010004	OFICIAL			hh	2.0000	0.8000	22.39	17.91
0101010005	PEON			hh	8.0000	3.2000	20.26	64.83
	Materiales							105.52
02070100010002	PIEDRA CHANCADA 1/2"			m3		0.7390	65.00	48.04
0207010012	AGREGADO GRUESO RECICL	ADO		m3		0.0820	74.56	6.11
02070200010002	ARENA GRUESA			m3		0.7530	54.00	40.66
0207020003	AGREGADO FINO RECICLADO	О		m3		0.0150	55.83	0.84
0213010008	CEMENTO EXTRAFORTE PACASMAYO			bol		11.0600	31.40	347.28
0290130023	AGUA			m3		0.2160	7.00	1.51
								444.44
	Equipos							
0301060007	HERRAMIENTA MANUALES			%mo		3.0000	105.52	3.17
0301290001	VIBRADOR PARA CONCRETO)		hm	1.0000	0.4000	7.00	2.80
03012900030001	MEZCLADORA DE CONCRETO (23 HP)	O 11 P3		hm	1.0000	0.4000	12.00	4.80
								10.77

De la interpretación de la tabla 19, se tiene el análisis de precios unitarios para la producción de concreto f´c = 280 kg/cm2 + 15% AGR + 4% AFR, ascendiendo a un total de S/. 560.73

IV. DISCUSIÓN

Los resultados de resistencia a compresión obtenidos en laboratorio para el diseño del concreto, sustituyendo agregados naturales por reciclados en los porcentajes de 0% AGR + 0% AFR, 10% AGR + 2% AFR, 15% AGR + 4% AFR y 22% AGR + 7% AFR, para los 7 días fueron (213.2, 259.3, 259.7, 213.3 kg/cm2), a los 14 días (245.7, 276.2, 286.5, 250.6 kg/cm2) y a los 28 días de curado fueron (288.1, 312.7, 316.8 y 277.1 kg/cm2), resultados similares presentaron Montoya y Aragón (2022), lo cual para sus 6 diseños realizados, los resultados de resistencia a compresión a los 28 días para 100% AN, 85% AN + 15AR, 75% AN + 25 AR, 50% AN + 50AR, 25% AN + 75AR y 100 AR fueron (220.23, 240.70, 236.79, 210.00, 209.76, 183.13 kg/cm2), lo cual nos indica, que el concreto reciclado presenta un comportamiento similar en los distintos diseños para la resistencia a compresión del concreto.

Desde la perspectiva de las propiedades físicas y mecánicas de los agregados naturales y reciclados para el diseño de mezcla del concreto f'c= 280kg/cm2, se tuvo que para los agregados naturales fino y grueso con perfil angular y sub angular, tuvieron un peso específico de 2.54 y 2.66 gr/cm3, peso unitario suelto seco de 1547 y 1452kg/m3, Peso unitario seco compactado de 1732 y 1600kg/m3, absorción de 2.57 y 0.88 %, humedad natural de 1.74 y 0.49%, módulo de finura de 2.29 y 6.47; el material pasante del tamiz N° 200 de 2.9 y 0.93% y el tamaño máximo nominal del agregado grueso natural fue de 3/4"; esto concuerda con características similares de los agregados que estudió Huamán y Palacios (2021) en su investigación que tuvo por objetivo determinar las propiedades del concreto al sustituir el agregado natural por CR; y para los agregados reciclados tuvieron un peso específico de 2.47 y 2.64 gr/cm3, peso unitario suelto seco de 1753 y 1395 kg/m3, Peso unitario seco compactado de 1869 y 1571 kg/m3, absorción de 2.88 y 1.32 %, humedad natural de 1.68 y 0.46 %, módulo de finura de 2.95 y 6.45; el material pasante del tamiz N° 200 de 2.41 y 0.80 % y el tamaño máximo nominal del agregado grueso reciclado fue de 3/4". Además, las características químicas para el concreto reciclado fueron, para sales solubles totales 165.0%, sulfatos 2.00% y para cloruros 55%.

Al analizar la resistencia a compresión del concreto se tuvo que, al sustituir concreto reciclado por agregado grueso en los porcentajes de 10, 15 y 22% y para el agregado fino de 2, 4 y 7%, el slump promedio presentó valores de 3.5, 3.2, 2.8 y 2.2, respectivamente. La dosificación del concreto incluyó la preparación de concreto patrón (0% de sustitución de agregados reciclados) con resistencia a compresión f'c=280kg/cm2, y concretos con la misma resistencia, pero sustituyendo el agregado natural por agregados reciclados en porcentajes de 10% AGR + 2% AFR, 15% AGR + 4% AFR y 22% AGR + 7% AFR de concreto reciclado en función del peso del material. De los resultados a compresión para las distintas sustituciones se tuvo que, para el concreto a los 7 días logró alcanzar resistencias a la compresión promedio en kg/cm2 de 213.2, 259.3, 259.7, 213.3 para las sustituciones de 0% AGR + 0% AFR, 10% AGR + 2% AFR, 15% AGR + 4% AFR y 22% AGR + 7% AFR, respectivamente. Al comparar las resistencias, se evidenciaron incrementos notables en sus valores, demostrando mejoras en la resistencia del concreto a esta edad. A los 14 días el concreto alcanzó resistencias a la compresión promedios en kg/cm² de 245.7, 276.2, 286.5, 250.6 para las mismas sustituciones ya anteriormente mencionadas, respectivamente. Se tuvo que, al comparar las resistencias del concreto con las diversas sustituciones de concreto reciclado, presenta incrementos significativos para los distintos diseños. Así mismo se presentó resultados similares Centurión (2022) en su tesis que tuvo por objetivo determinar la varianza de resistencia a compresión al reemplazar el agregado natural por agregado reciclado. Lo cual, las resistencias obtenidas para los diseños de 100% AN + 0% AR, 85% AN + 15% AR, 80% AN + 20% AR, 75% AN + 25% AR a los 14 días fueron (193.12, 203.82, 211.69, 174.33 kg/cm2). Finalmente, para la edad de 28 días el concreto logró alcanzar resistencias a la compresión promedio en kg/cm2 de 288.1, 312.7, 316.8 y 277.1 para las sustituciones de 0% AGR + 0% AFR, 10% AGR + 2% AFR, 15% AGR + 4% AFR y 22% AGR + 7% AFR. Además, se tuvo que, al comparar las resistencias del concreto con las diversas sustituciones de concreto reciclado, presenta incrementos significativos para los distintos diseños, cumpliendo satisfactoriamente y siendo la más óptima para el 15% AGR + 4% AFR un incremento del 109.9 % respecto del concreto patrón. Así mismo nuevamente Centurión (2022) también para los diseños de 100% AN + 0% AR, 85% AN + 15% AR, 80% AN + 20% AR, 75% AN + 25% AR a los 28 días fueron (223.50, 231,84, 243.17, 217. 57 kg/cm2).

Tras evaluar los distintos porcentajes de concreto reciclado en la resistencia a compresión del concreto f'c= 280 kg/cm², se concluye que los dos porcentajes óptimos de agregados reciclados que incrementan la resistencia del concreto son: la sustitución de 15% AGR + 4% AFR de concreto reciclado a una edad de 28 días y el segundo fue con la sustitución de 10% AGR + 2% AFR de concreto reciclado a la misma edad, lo cual llegaron a obtener resistencias de 316.8 y 312.7 kg/cm², incrementando en un 109.9% y 108.5% en la resistencia respecto del concreto de diseño, Se establece que el mejor porcentaje en términos de aumento de resistencia con el tiempo fue la sustitución de 15% AGR + 4% AFR, evidenciando un aumento continuo en la resistencia con el incremento en la edad de curación. Resultados no similares presentó Tarazona (2019); en su estudio que tuvo como finalidad determinar las características mecánicas del concreto elaborado con residuos de demolición de pavimento; las resistencias obtenidas para sus 4 diseños presentados de 100% AN + 0%AR, 80% AN + 20%AR, 60% AN + 40%AR y 40% AN + 60%AR fueron del 109.68, 109.26, 94.24 y 88.48 respecto de su concreto de diseño, concluyendo que no cumple de manera satisfactoria para los porcentajes realizados.

Para determinar el costo de producción del nuevo diseño de concreto que cumple mejor la resistencia respecto al convencional se procedió a realizar un análisis de costos unitarios, primero para el costo de producción de agregados reciclados puestos en obra, lo cual se determinó que para el m3 de agregado grueso reciclado puesto en obra fue s/. 74.56 y para el agregado fino reciclado fue s/. 55.83, lo cual posteriormente se procedió a realizar un análisis de costos unitarios para el concreto de resistencia de f'c = 280 kg/cm2 y para el concreto f'c = 280 kg/cm2 + 15% AGR + 4% AFR, siendo para este que cumple con una resistencia de 316. 8 kg/cm2, llegando a un 109.9% respecto al concreto de diseño. El costo de producción para un m3 de concreto f'c = 280 kg/cm2 fue S/. 559.92 y para el concreto f'c = 280 kg/cm2 + 15% AGR + 4% AFR fue S/. 560.73, lo cual se determina que la producción de concreto elaborado parcialmente con agregados reciclados se puede obtener una mejor resistencia por una diferencia insignificante respecto a su costo de producción. Lo mismo presentado por Montoya y Aragón (2022) en su informe final de tesis presentan una descripción del costo de producción del concreto reciclado, lo cual para 1 m3 es s/ 121.46, esto incluye traslado, limpieza y reducción, trituración primaria y secundaria para dicha zona en estudio.

V. CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

- Diversas normas abarcaron los ensayos de los agregados naturales y reciclados, luego de los resultados obtenidos de las características físicas y mecánicas se evidencia que los agregados naturales y reciclados son similares, ambos poseen una granulometría uniforme, así mismo considerando donde hay ligeras diferencias como es el peso unitario suelto y compactado. Además, las características químicas presentes para el concreto reciclado fueron, para sales solubles totales 165.0%, sulfatos 2.00% y para cloruros 55%.
- Los resultados de resistencia a compresión obtenidos en laboratorio para el diseño del concreto, sustituyendo agregados naturales por reciclados en los porcentajes de 0% AGR + 0% AFR, 10% AGR + 2% AFR, 15% AGR + 4% AFR y 22% AGR + 7% AFR, para los 28 días fueron (288.1, 312.7, 316.8 y 277.1 kg/cm2).
- Al comparar el efecto de diferentes porcentajes de agregados reciclados en la resistencia a compresión del concreto f'c= 280 kg/cm2, se observaron mejoras significativas con los porcentajes de 10% AGR + 2% AFR y 15% AGR + 4% AFR a los 28 días, respectivamente.
- El costo del nuevo concreto elaborado con agregados reciclados sustituidos parcialmente con los porcentajes de 15% AGR + 4% AFR, cumplen satisfactoriamente en cuanto a su resistencia a compresión y en lo que respecta a su costo de producción fue para el patrón S/. 559.92 y para el concreto f'c = 280 kg/cm2 + 15% AGR + 4% AFR fue S/. 560.73, respectivamente.
- La sustitución de distintos porcentajes de concreto reciclado en la resistencia a compresión del concreto f'c= 280 kg/cm2 mostró incrementos positivos, alcanzando su valor máximo con el 15% AGR + 4% AFR de concreto reciclado, donde la resistencia aumentó en un 9.9% en comparación con el concreto patrón.

5.2. Recomendaciones

- Determinar la resistencia a tracción por flexión del concreto f'c= 280 kg/cm2 elaborado con concreto reciclado.
- Utilizar aditivos para posteriores investigaciones para mejorar su resistencia a compresión.
- Usar concreto reciclado de distintos puntos de extracción para resultados más representativos.
- Se sugiere crear centros de acopio de concreto reciclado para darle un nuevo uso en distintas obras de ingeniería.

VI. REFERENCIAS BIBLIOGRÁFICAS

- Aguilar-Coro, D. (2019). *Variación de la resistencia a compresión de un concreto compactado f'c=210 kg/cm2 al usar agregado grueso reciclado* [Tesis de pregrado, Universidad Nacional de Cajamarca]. Repositorio Institucional. https://repositorio.unc.edu.pe/handle/20.500.14074/3487
- Arcilla, A., Fernando, Y., Medina, F. & Delvasto, S. (2022). Effect of treatment in recycled aggregate on properties in fresh and hardened state of self compacting concrete. *Revista EIA*, 19(38), 1-20. https://revistas.eia.edu.co/index.php/reveia/article/view/1547
- Arias, J., y Covinos, M. (Eds). (2021). *Diseño y metodología de la investigación*. Enfoques Consulting EIRL. file:///C:/Users/USER/Downloads/Arias-Covinos-Dise%C3%B1o_y_metodologia_de_la_investigacion%20(1).pdf
- Burgos, D., Guzmán, Á. & Torres, N. (2019). Mechanical and durable performance of concrete that incorporates commercial fine recycled aggregate. *Revista EIA*, *16*(32), 167-179. https://www.redalyc.org/articulo.oa?id=149259728010
- Cachay-Diaz, L. (2022). Variación de la resistencia a compresión de un concreto permeable de f'c = 210 kg/cm2 con aditivo plastificante sikament® 290n al reemplazar en diferentes porcentajes el agregado grueso por agregado de concreto reciclado [Tesis de pregrado, Universidad Nacional de Cajamarca]. Repositorio Institucional. https://repositorio.unc.edu.pe/handle/20.500.14074/4761
- Calsina-Quispe, J. (2021). Análisis de las características mecánicas del concreto incorporando agregado de concreto reciclado en la ciudad de Juliaca 2021. [Tesis de pregrado, Universidad César Vallejo]. Repositorio de la Universidad César Vallejo. https://repositorio.ucv.edu.pe/handle/20.500.12692/63682
- Campos, V. y Hoyos, M. (2022). Uso de ceniza de cáscara de arroz para mejorar la resistencia a la compresión y flexotracción del concreto f'c=280 kg/cm2 [Tesis de pregrado, Universidad César Vallejo]. Repositorio de la Universidad César Vallejo. https://repositorio.ucv.edu.pe/handle/20.500.12692/92829

- Cayotopa-Cabanillas, K. (2019). Resistencia a la compresión de ladrillos de concreto f'c=210 kg/cm2, reemplazando el agregado grueso por ladrillo y concretos reciclados, en diferentes porcentajes [Tesis de pregrado, Universidad Privada del Norte]. Repositorio de la Universidad Privada del Norte. https://repositorio.upn.edu.pe/handle/11537/22301
- Centurión Vargas, M. (2022). Determinación de la resistencia del concreto f'c = 210 kg/cm2 elaborado con agregados reciclados de vías, en la ciudad de Cajamarca, 2021 [Tesis de posgrado, Universidad Nacional de Cajamarca]. Repositorio Institucional. https://repositorio.unc.edu.pe/handle/20.500.14074/5368
- Chasquero, J. y Hurtado, H. (2019). *Uso del Concreto Reciclado Proveniente de Demoliciones para la Producción de Afirmado* [Tesis de pregrado, Universidad Nacional de Jaén]. Repositorio UNJ. http://repositorio.unj.edu.pe/handle/UNJ/239
- Cruz, N. y Ramírez, D. (2022). Evaluation of samples of the coarse aggregate from concrete wates to produce new concrete. *Métodos y Materiales*, *12*(1), 1-11. https://revistas.ucr.ac.cr/index.php/materiales/article/view/48029
- Díaz, S. y Ramírez, J. (2022). *Inclusión de aditivo Sikament 290N para mejorar la resistencia a la compresión y flexotracción del concreto f´c 280 kg/cm2, Jaén* [Tesis de pregrado, Universidad César Vallejo]. Repositorio de la Universidad César Vallejo. https://repositorio.ucv.edu.pe/handle/20.500.12692/93412
- Flores-Condori, J. (2020). Gestión y tratamiento de residuos de construcción y demolición en la municipalidad provincial de Cusco [Tesis de grado, Universidad Politécnica de Catalunya Barcelonatech]. UPCommons. https://upcommons.upc.edu/handle/2117/335990
- Gonzaga-Toribio, J. (2022). *Análisis de la resistencia a la compresión y patología en concreto f'c=210 kg/cm² adicionado con vidrio reciclado, Cajamarca 2022* [Tesis de pregrado, Universidad Privada del Norte]. Repositorio Institucional UPN. https://repositorio.upn.edu.pe/handle/11537/32510
- Hernández, R., Fernández, C., Baptista, P. (Eds). (2019). *Metodología de la Investigación-cuarta edición*. Compañía Editorial Ultra, S. A.

- https://seminariodemetodologiadelainvestigacion.files.wordpress.com/2012/03/metodologc3ada-de-la-investigacic3b3n-roberto-hernc3a1ndez-sampieri.pdf
- Huamán, J. y Palacios, R. (2021). Determinación de las propiedades del concreto f'c 210 Kg.cm-2 elaborado con residuos de la demolición de estructuras civiles en Jaén 2021 [Tesis de pregrado, Universidad César Vallejo]. Repositorio de la Universidad César Vallejo. https://repositorio.ucv.edu.pe/handle/20.500.12692/88068
- Machaca-Iquiapaza, G. (2019). Evaluación de concreto reciclado, proveniente de procesos de demolición y construcción de viviendas para su reúso en concreto simple en la ciudad de Juliaca [Tesis de pregrado, Universidad Peruana Unión]. Repositorio de Tesis. https://repositorio.upeu.edu.pe/handle/20.500.12840/2714
- Martínez-Garcia, R. (2021). Evaluation of the use of recycled concrete agregates for the production of self-compacting concretes and cement mortars [Tesis de posgrado, Universidad de León]. Biblioteca Universal de León. http://buleria.unileon.es/handle/10612/13363
- Melo, D. & Apolonio, I. (2022). Physical and mechanical characterization of concrete blocks with the incorporation of sand aggregate from construction waste. *Revista Matéria*, 26(4),
 https://www.scielo.br/j/rmat/a/7GSpds4kzSk75tTZZ5KwMpr/?lang=pt
- Montoya, L. y Aragón, S. (2022). Determinación de la resistencia a la compresión del concreto reciclado para construcciones ecoeficientes en la ciudad de Tacna, 2022 [Tesis de pregrado, Universidad Privada de Tacna]. Repositorio Universidad Privada de Tacna. https://repositorio.upt.edu.pe/handle/20.500.12969/2376
- Mori-Apagüeño, H. (2019). La resistencia a la compresión e impermeabilidad de concretos con agregados reciclados en comparación de concretos tradicionales [Tesis de pregrado, Universidad Nacional de San Martin]. Repositorio UNSM-Institucional. https://repositorio.unsm.edu.pe/handle/11458/3392

- Oviedo, C., y Vega, S. (2021). Manejo de residuos de construcción y demolición y economía circular: una revisión narrativa. *Lámpsakos*, 26, 41-31. https://dialnet.unirioja.es/servlet/articulo?codigo=8648934
- Sanca, M. A. (2011). Tipos de investigación científica. *Revista de Actualización Clínica Investiga Boliviana*, 12, 621-624. http://www.revistasbolivianas.ciencia.bo/pdf/raci/v12/v12_a11.pdf
- Tarazona-Beraún, K. (2019). Aprovechamiento del concreto reciclado proveniente de los residuos de demolición de pavimento rígido en la producción de concreto nuevo en la ciudad de Huánuco 2018 [Tesis de pregrado, Universidad Nacional Hermilio Valdizán]. Repositorio Institucional UNHEVAL. https://repositorio.unheval.edu.pe/handle/20.500.13080/4561

AGRADECIMIENTO

Queremos expresar nuestro profundo agradecimiento a Dios, fuente de vida y guía en cada paso de este camino. Agradezco de manera especial a Virginia Jessica Ruiz Delgado, cuyo apoyo incondicional fue fundamental en todas las fases de esta investigación. Su orientación y aporte económico fueron piedras angulares en este proceso.

Además, reconocemos a la Universidad Nacional de Jaén y a todos los docentes que contribuyeron a nuestra formación profesional. El valioso conocimiento adquirido durante nuestra trayectoria académica ha sido fundamental en la elaboración y desarrollo de este trabajo investigativo.

A cada persona que de alguna manera aportó a este proyecto, nuestro más sincero agradecimiento. Sus contribuciones y apoyo fueron piezas clave en la realización de este estudio.

Jose Javier Ruiz Delgado Richard Carlos Baquedano Cabrejos

DEDICATORIA

A nuestros padres y familiares, agradecemos su apoyo incondicional y motivación que nos ha impulsado a alcanzar este logro. Vuestra dedicación y amor han sido la fuerza que nos ha guiado en nuestro camino académico. Este trabajo está dedicado a ustedes y a Virginia Jessica Ruiz Delgado, quienes han sido nuestra inspiración constante. Gracias por ser nuestra mayor motivación y sostén en cada paso que damos y daremos en el futuro.

Jose Javier Ruiz Delgado Richard Carlos Baquedano Cabrejos

ANEXOS

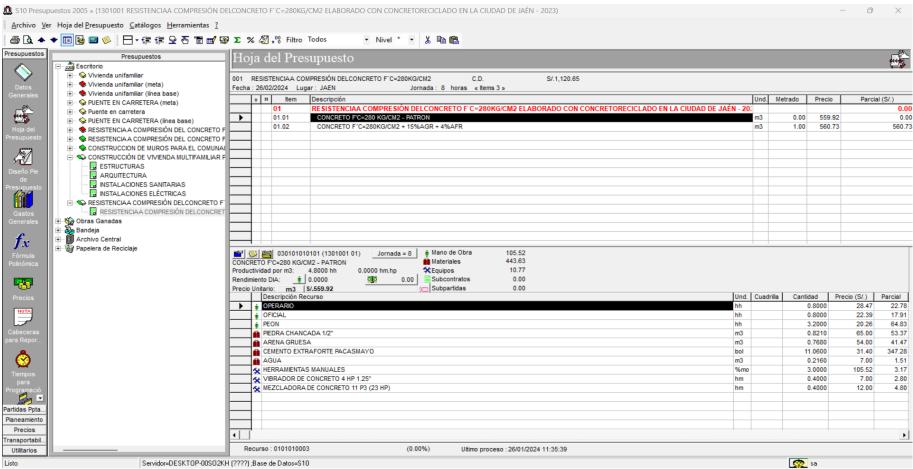
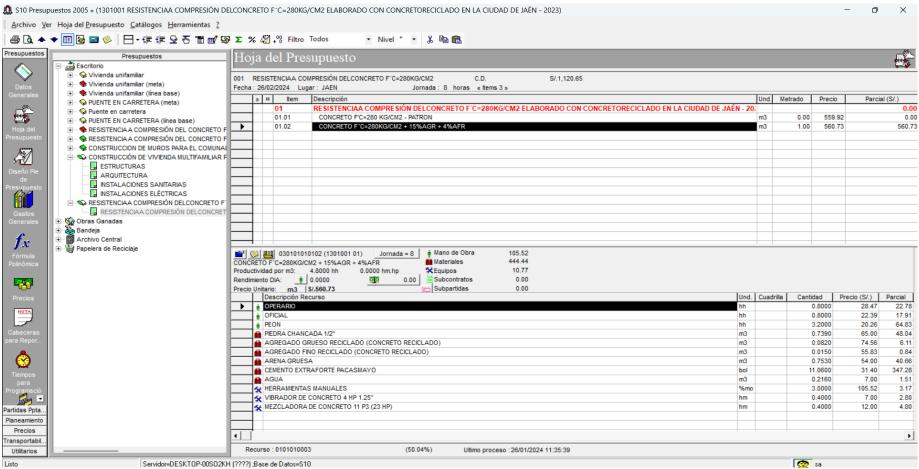

Operación de variables

Tabla 21Operacionalización de variables

	Variable	Dimensiones	Indicador	Unidad	Técnica de recolección de datos	Instrumento
Variables dependientes:	Resistencia a la compresión del concreto f'c= 280 kg/cm2	Propiedad mecánica	Resistencia a compresión a los 7, 14 y 28 días	kg/cm2	Observación	Validado
Variables independientes:	Concreto reciclado	Agregado fino Dosificación Agregado grueso	0% 2% 4% 7% 0% 10% 15%	kg	Observación	Ficha de recolección de datos
		Características físicas y mecánicas	22% Peso volumétrico Solidez	m3/kg %		

Figura 57


Presupuesto de producción de concreto f´c = 280 kg/cm2

Nota. Presupuesto de producción de concreto f'c = 280 kg/cm2

Figura 58

Presupuesto de producción de concreto f´c = 280 kg/cm2 + 15% AGR + 4% AFR

Nota. Presupuesto de producción de concreto f´c = 280 kg/cm2 + 15% AGR + 4% AFR