UNIVERSIDAD NACIONAL DE JAÉN CARRERA PROFESIONAL DE INGENIERÍA CIVIL

INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autores : Bach. Mejía Seclén Abel Eduardo

Bach. Vasquez Perez Jhon Breiner

Asesor : Dr. Marco Antonio Martínez Serrano

línea de investigación: LI_IC_02 Transporte

JAÉN - PERÚ, OCTUBRE, 2024

NOMBRE DEL TRABAJO

AUTOR

INFLUENCIA DE LA CENIZA DE CÁSCAR A DE GUABA Y CAFÉ SOBRE LAS CARAC TERÍSTICAS DE SUBRASANTE, CARRETE R Mejía Seclén Abel Eduardo y Vasquez Perez Jhon Breiner

RECUENTO DE PALABRAS

RECUENTO DE CARACTERES

25868 Words

126593 Characters

RECUENTO DE PÁGINAS

TAMAÑO DEL ARCHIVO

249 Pages

35.3MB

FECHA DE ENTREGA

FECHA DEL INFORME

Oct 3, 2024 11:18 AM GMT-5

Oct 3, 2024 11:21 AM GMT-5

• 14% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base de datos.

- 13% Base de datos de Internet
- 0% Base de datos de publicaciones

· Base de datos de Crossref

- Base de datos de contenido publicado de Crossref
- 6% Base de datos de trabajos entregados

• Excluir del Reporte de Similitud

Material bibliográfico

Coincidencia baja (menos de 15 palabras)

FORMATO 03: ACTA DE SUSTENTACIÓN

En la ciudad de Jaén,	el dia	16 de	octubre	del	año	2024,	siendo	las	12:00	horas,	se	reunieron	de	manera
presencial los integrant	es del	Jurado);											

: Dra. Zadith Nancy Garrido Campaña. Presidente

: M. Sc. Marcos Antonio Gonzales Santisteban. Secretario

: M. Sc. Leonardo Damián Sandoval., Vocal

Para evaluar la Sustentación del Informe Final:

() Trabajo de Investigación
(X) Tesis
() Trabajo de Suficiencia Profesional

Titulado:

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS-GRANADILLAS, JAEN, 2024", presentado por los tesistas Mejía Seclén Abel Eduardo y Vasquez Perez Jhon Breiner, teniendo como asesor al Dr. Martínez Serrano Marco Antonio de la Escuela Profesional de Ingenieria Civil de la Universidad Nacional de Jaén, referencia Resolución N° 888-2024-UNJ/FI de fecha 11/10/2024.

Después de la sustentación y defensa, el Jurado acuerda:

(7	Aprobar	() Desaprobar	(\times) U	nanimidad	() Mayoria
Co	n la siguiente mer	nción:					
a)	Excelente		18, 19, 20	()		
b)	Muy bueno		16, 17	()		
c)	Bueno		14, 15	(15)		
d)	Regular		13	()		
e)	Desaprobado		12 ò menos	()		

Siendo las 12:40 horas del mismo día, el Jurado concluye el acto de sustentación confirmando su participación con la suscripción de la presente.

Dra. Zadith Nancy Garrido Campaña Presidente

M. Sc. Marcos Antonio Gonzales Santisteban Secretario

M. Sc. Leonardo Damián/Sandoval

Vocal

ÍNDICE

ÍNDICE	ii
RESUMEN	X
ABSTRACT	xi
I. INTRODUCCIÓN	1
1.1. Situación problemática	1
1.2. Justificación	2
1.3. Antecedentes	3
1.4. Objetivos	9
II. MATERIALES Y MÉTODOS	10
2.1. Tipo y diseño de investigación	10
2.2. Población, muestra y muestreo	10
2.3. Hipótesis	11
2.4. Variables	11
2.5. Materiales y métodos	12
2.6. Técnicas	
2.7. Instrumentos	13
2.8. Procedimientos de recolección de datos	
III. RESULTADOS	42
IV. DISCUSIÓN	60
V. CONCLUSIONES Y RECOMENDACIONES	63
5.1. Conclusiones	63
5.2. Recomendaciones	64
VI. REFERENCIAS BIBLIOGRÁFICAS	65
AGRADECIMIENTO	70
DEDICATORIA	71
ANEXOS	72

ÍNDICE DE TABLAS

Tabla 1. Adiciones de las muestras de ceniza	10
Tabla 2. Categorías de la subrasante según su CBR	11
Tabla 3. Normas para los ensayos de laboratorio	12
Tabla 4. Resumen de clasificación del suelo	49
Tabla 5. Resumen del Proctor modificado del suelo natural	53
Tabla 6. Resumen del CBR del suelo natural	55
Tabla 7. Resumen del Proctor modificado del suelo natural	56
Tabla 8. Resumen del CBR del suelo natural	58
Tabla 9. Resumen del costo para la obtención de la ceniza de guaba y café	59
Tabla 10. Operalización de variables	74
Tabla 11. Matriz de consistencia	76

ÍNDICE DE FIGURAS

Figura 1. Obtención del fruto de la guaba	13
Figura 2. Obtención del fruto de la guaba	14
Figura 3. Obtención de la cáscara de café	14
Figura 4. Preparación de la muestra de guaba	15
Figura 5. Preparación de la muestra de café	15
Figura 6. Proceso de quemado de la cáscara de guaba	16
Figura 7. Proceso de quemado de la cáscara de café	16
Figura 8. Obtención de la ceniza de cáscara de guaba	17
Figura 9. Obtención de la ceniza de cáscara de café	17
Figura 10. Ubicación de la progresiva de la Calicata nº 01	18
Figura 11. Excavación de la Calicata nº 01	19
Figura 12. Extracción de muestra de la Calicata nº 01	19
Figura 13. Ubicación de la progresiva de la Calicata nº 02	20
Figura 14. Excavación de la Calicata nº 02	20
Figura 15. Extracción de muestra de la Calicata nº 02	21
Figura 16. Ubicación de la progresiva de la Calicata nº 03	21
Figura 17. Excavación de la Calicata nº 03	22
Figura 18. Extracción de muestra de la Calicata nº 03	22
Figura 19. Ubicación de la progresiva de la Calicata nº 04	23
Figura 20. Excavación de la Calicata nº 04	23
Figura 21. Extracción de muestra de la Calicata nº 04	24
Figura 22. Ubicación de la progresiva y extracción de la Calicata nº 05	24
Figura 23. Extracción de muestra de la Calicata nº 05	25
Figura 24. Ubicación de la progresiva de la Calicata nº 06	25
Figura 25. Excavación de la Calicata nº 06	26
Figura 26. Extracción de muestra de la Calicata nº 06	26
Figura 27. Obtención de muestras representativas- Cuarteo (MTC E 105)	27
Figura 28. Ensayo de contenido de humedad (MTC E 108)	28
Figura 29. Lavado de la muestra por el tamiz nº 200	28
Figura 30. Ensayo de análisis granulométrico por tamizado (MTC E 107)	29
Figura 31. Ensayo de análisis granulométrico por tamizado (MTC E 107)	29
Figura 32. Ensayo de Límite de Atterberg- Límite líquido (MTC E 110)	30

Figura 33. Ensayo de Límite de Atterberg- Límite plástico (MTC E 111)	. 30
Figura 34. Ensayo de Límite de Atterberg- Contenido de humedad	. 31
Figura 35. Ensayo de Proctor Modificado (MTC E 115)- Muestra patrón	. 31
Figura 36. Ensayo de Proctor Modificado (MTC E 115)- Muestra patrón	. 32
Figura 37. Ensayo de Proctor Modificado- Contenido de humedad	. 32
Figura 38. Ensayo de CBR (MTC E 132)- Muestra Patrón	. 33
Figura 39. Ensayo de CBR (MTC E 132)- Muestra Patrón	. 33
Figura 40. Ensayo de saturación de la muestra de CBR al agua	. 34
Figura 41. Ensayo de penetración de la muestra de CBR	. 34
Figura 42. Muestras de ceniza de cáscara de guaba y café	. 35
Figura 43. Peso de la muestra de ceniza	. 36
Figura 44. Peso de la muestra de suelo	. 36
Figura 45. Mezclado de la muestra de suelo con ceniza	. 37
Figura 46. Cuarteo de la muestra de suelo	. 37
Figura 47. Ensayo CBR con adición de ceniza del 10%	. 38
Figura 48. Ensayo CBR con adición de ceniza del 12%	. 38
Figura 49. Ensayo CBR con adición de ceniza del 12%	. 39
Figura 50. Ensayo de penetración de la muestra de CBR con el 6% de ceniza	. 39
Figura 51. Ensayo de penetración de la muestra de CBR con el 8% de ceniza	. 40
Figura 52. Ensayo de penetración de la muestra de CBR con el 10% de ceniza	. 40
Figura 53. Ensayo de penetración de la muestra de CBR con el 12% de ceniza	.41
Figura 54. Contenido de humedad de la muestra patrón de CBR	.41
Figura 55. Determinación en laboratorio del análisis granulométrico de suelos mediante	
tamizado de la Calicata nº 01	. 43
Figura 56. Determinación en laboratorio del análisis granulométrico de suelos mediante	
tamizado de la Calicata nº 02	. 44
Figura 57. Determinación en laboratorio del análisis granulométrico de suelos mediante	
tamizado de la Calicata nº 03	. 45
Figura 58. Determinación en laboratorio del análisis granulométrico de suelos mediante	
tamizado de la Calicata nº 04	. 46
Figura 59. Determinación en laboratorio del análisis granulométrico de suelos mediante	
tamizado de la Calicata nº 05	. 47

Figura 60. Determinación en laboratorio del análisis granulométrico de suelos	mediante
tamizado de la Calicata nº 06	48
Figura 61. Resumen de los componentes de la muestra	50
Figura 62. Límite de consistencia de la calicata 01	50
Figura 63. Límite de consistencia de la calicata 02	51
Figura 64. Límite de consistencia de la calicata 03	51
Figura 65. Límite de consistencia de la calicata 04	52
Figura 66. Límite de consistencia de la calicata 05	52
Figura 67. Límite de consistencia de la calicata 06	53
Figura 68. Óptimo Contenido de Humedad de la calicata 06	54
Figura 69. Máxima Densidad Seca de la calicata 06	54
Figura 70. Capacidad de soporte de CBR de la calicata 06	55
Figura 71. Óptimo Contenido de Humedad con las adiciones de ceniza de la ca	licata 06 . 56
Figura 72. Óptimo Contenido de Humedad con las adiciones de ceniza de la ca	licata 06 . 57
Figura 73. Capacidad de soporte de CBR con las adiciones de ceniza de la calie	cata 06 58
Figura 74. Conteo vehicular	200
Figura 75. Conteo vehicular	200
Figura 76. Conteo vehicular	201
Figura 77. Conteo vehicular	201
Figura 78. Conteo vehicular	202
Figura 79. Conteo vehicular	202
Figura 80. Conteo vehicular	203
Figura 81. Conteo vehicular	203
Figura 82. Conteo vehicular	204
Figura 83. Conteo vehicular	204
Figura 84. Obtención del fruto de la guaba	206
Figura 85. Obtención del fruto de la guaba	206
Figura 86. Obtención de la cáscara de café	207
Figura 87. Preparación de la muestra de guaba	207
Figura 88. Preparación de la muestra de café	208
Figura 89. Proceso de quemado de la cáscara de guaba	208
Figura 90. Proceso de quemado de la cáscara de café	209
Figura 91. Obtención de la ceniza de cáscara de guaba	209

Figura 92. Obtención de la ceniza de cáscara de café	210
Figura 93. Ubicación de la progresiva de la Calicata nº 01	212
Figura 94. Excavación de la Calicata nº 01	212
Figura 95. Extracción de muestra de la Calicata nº 01	213
Figura 96. Ubicación de la progresiva de la Calicata nº 02	213
Figura 97. Excavación de la Calicata nº 02	214
Figura 98. Extracción de muestra de la Calicata nº 02	214
Figura 99. Ubicación de la progresiva de la Calicata nº 03	215
Figura 100. Excavación de la Calicata nº 03	215
Figura 101. Extracción de muestra de la Calicata nº 03	216
Figura 102. Ubicación de la progresiva de la Calicata nº 04	216
Figura 103. Excavación de la Calicata nº 04	217
Figura 104. Extracción de muestra de la Calicata nº 04	217
Figura 105. Ubicación de la progresiva y extracción de la Calicata nº 05	218
Figura 106. Extracción de muestra de la Calicata nº 05	218
Figura 107. Ubicación de la progresiva de la Calicata nº 06	219
Figura 108. Excavación de la Calicata nº 06	219
Figura 109. Extracción de muestra de la Calicata nº 06	220
Figura 110. Obtención de muestras representativas- Cuarteo (MTC E 105)	222
Figura 111. Ensayo de contenido de humedad (MTC E 108)	222
Figura 112. Lavado de la muestra por el tamiz nº 200	223
Figura 113. Ensayo de análisis granulométrico por tamizado (MTC E 107)	223
Figura 114. Ensayo de análisis granulométrico por tamizado (MTC E 107)	224
Figura 115. Ensayo de Límite de Atterberg- Límite líquido (MTC E 110)	224
Figura 116. Ensayo de Límite de Atterberg- Límite plástico (MTC E 111)	225
Figura 117. Ensayo de Límite de Atterberg- Contenido de humedad	225
Figura 118. Ensayo de Proctor Modificado (MTC E 115)- Muestra patrón	226
Figura 119. Ensayo de Proctor Modificado (MTC E 115)- Muestra patrón	226
Figura 120. Ensayo de Proctor Modificado- Contenido de humedad	227
Figura 121. Ensayo de CBR (MTC E 132)- Muestra Patrón	227
Figura 122. Ensayo de CBR (MTC E 132)- Muestra Patrón	228
Figura 123. Ensayo de saturación de la muestra de CBR al agua	228
Figura 124. Ensayo de penetración de la muestra de CBR	229

Figura 125. Muestras de ceniza de cáscara de guaba y café	231
Figura 126. Peso de la muestra de ceniza.	231
Figura 127. Peso de la muestra de suelo con 6% de ceniza	232
Figura 128. Mezclado de la muestra de suelo con ceniza	232
Figura 129. Cuarteo de la muestra de suelo	233
Figura 130. Ensayo CBR con adición de ceniza del 10%	233
Figura 131. Ensayo CBR con adición de ceniza del 12%	234
Figura 132. Ensayo CBR con adición de ceniza del 12%	234
Figura 133. Ensayo de penetración de la muestra de CBR con el 6% de ceniza	235
Figura 134. Ensayo de penetración de la muestra de CBR con el 8% de ceniza	235
Figura 135. Ensayo de penetración de la muestra de CBR con el 10% de ceniza	236
Figura 136. Ensayo de penetración de la muestra de CBR con el 12% de ceniza	236
Figura 137. Contenido de humedad de la muestra patrón de CBR	237

ÍNDICE DE ANEXOS

Anexo 1. OPERACIONALIZACIÓN DE VARIABLES
Anexo 2. Matriz de consistencia
Anexo 3. Validación de instrumentos de recolección de datos
Anexo 4. Certificados de indecopi
Anexo 5. Certificado de diseño de mezclas
Anexo 6. Ensayos de laboratorio estándar
Anexo 7. Ensayos de laboratorio especiales
Anexo 8. Perfiles estratigráficos
Anexo 9. Resultados del conteo vehicular
Anexo 10. Resultados del imda
Anexo 11. Plano de ubicación de calicatas
Anexo 12. Plano de coordenadas de las calicatas
Anexo 13. Cotización de la bolsa de cemento
Anexo 14. Panel fotográfico del conteo vehicular
Anexo 15. Panel fotográfico de la obtención de la ceniza de cáscara de guaba y café 205
Anexo 16. Panel fotográfico de elaboración de calicatas y muestreo de suelos
Anexo 17. Panel fotográfico del estudio de las propiedades físicas y mecánicas del suelo
Anexo 18. Estudio de las propiedades mecánicas del suelo con adición de ceniza 230

RESUMEN

La presente investigación tuvo como objetivo determinar la influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, carretera las Delicias – Granadillas, según la metodología utilizada, es de tipo básica y diseño experimental. Como resultado se obtuvo para la muestra patrón un CBR (California Bearing Ratio) al 95% y 100% de 3.70% y 5.85%, clasificándolo como una subrasante menor al 6%, es decir de mala calidad.

Se logró finalmente determinar los efectos que tiene la adición del 6%, 8%, 10% y 12% de ceniza de cáscara de guaba y café en diferentes proporciones a la muestra de suelo patrón, los cuales fueron evaluadas en un laboratorio de suelos, cuyos resultados fueron que con las adiciones antes mencionadas si se mejora la resistencia de corte de dicho suelo, obteniéndose que con la adición del 12% de ceniza en sus proporciones de 6% ceniza de cáscara de guaba y 6% de ceniza de cáscara de café una mejora al 95% y 100% de 12.85% y 15.65%. Concluyendo de esta manera que todas las adiciones de ceniza mejoran las propiedades mecánicas del suelo para ser usado como subrasante de buena calidad, no obstante, cabe resaltar que con la adición del 12% de ceniza resulta ser la más óptima y adecuada.

Palabras clave: Subrasante, ceniza de cáscara de guaba y café, adición, CBR.

ABSTRACT

The objective of this research was to determine the influence of guaba and coffee shell ash on the subgrade characteristics of the Las Delicias - Granadillas highway, according to the methodology used, it is basic and experimental in design. As a result, a CBR (California Bearing Ratio) at 95% and 100% of 3.70% and 5.85% was obtained for the standard sample, classifying it as a subgrade less than 6%, that is, of poor quality.

It was finally possible to determine the effects of adding 6%, 8%, 10% and 12% of guaba and coffee husk ash in different proportions to the standard soil sample, which were evaluated in a soil laboratory. The results of which were that with the aforementioned additions the shear resistance of said soil was improved, obtaining that with the addition of 12% ash in its proportions of 6% guava shell ash and 6% coffee shell ash an improvement at 95% and 100% from 12.85% and 15.65%. Concluding in this way that all ash additions improve the mechanical properties of the soil to be used as a good quality subgrade, however, it is worth highlighting that the addition of 12% ash turns out to be the most optimal and appropriate.

Keywords: Concrete, Subgrade, guaba and coffee shell ash, addition, CBR

I. INTRODUCCIÓN

1.1. Situación problemática

A nivel internacional, En la India, el 20% del país predominan los suelos de algodón negro, siendo estos un patrón común de subrasante tenues, ya que estos están conformados por minerales arcillosos que al contactar en zonas húmedas se dilatan y se contraen en zonas secas, causando desplazamientos verticales en carreteras (Kishor et al., 2022). En Etiopia, las superficies indican alrededor de un 40% de suelos arcillosos, mostrando una subrasante de baja resistencia a la carga y propenso a asentamientos durante la construcción de pavimentos y carreteras, trascendiendo costos muy elevados, al ejecutar en caminos cimentados y fallan luego de unos meses o años (Amena, 2021). En Indonesia, la existencia de suelo expansivo tiene una mala influencia en la estructura por encima de este, donde los cambios en el volumen del suelo debido al contenido de agua y los cambios estacionales generan grietas e inestabilidad (Zaika y Suryo, 2020).

A nivel nacional, en Lima, los suelos están compuestos por arcillas con alto grado de saturación, al contactarse con las frecuentes lluvias, este factor hace que el suelo disminuya su consistencia y se comporte de forma plástica, acortando sus características físicomecánicas e impidiendo su empleo como capa de subrasante del pavimento (Ccansaya y Tello, 2022). En Piura, el 80% de las vías sin pavimentar se ubican en el sector agrícolas estando en malas condiciones de tráfico, los municipios son responsables en vías rurales y un sinnúmero de estos se encuentran construidas hasta nivel afirmado, lo que un mejoramiento en la subrasante ayudaría en su rendimiento para que pueda usarse por un período de tiempo más largo (Montejo y Chávez, 2020). En Ica, las carreteras rurales carecen de tener parámetros seguros para la transitividad del área, ya que la resistencia de corte en la subrasante es insuficiente para obras viales, afrontando complicaciones tales como baches, superfícies rodantes desgastadas, el ahuellamiento y el asentamiento originados por el fenómeno del niño (Aybar y Villaroel, 2022).

A nivel regional, Cajamarca constituye en gran parte suelos compuestos por arcilla, siendo estos los causantes de muchas dificultades y peligros que surgen en las vías pavimentadas. Para el correcto funcionamiento de la vía depende en gran medida de la calidad de la subrasante, por tanto, es muy importante saber si sus parámetros son suficientes a la hora de construir para evitar los cambios en la humedad del suelo, tomando como opción considerar aplicaciones de procesos de estabilización u mejoramiento (Marin, 2023). En Chota existen un 26.89 % de vías afirmadas y 27.22 % sin pavimentar sumando un total de

54.11% el cual representa un estado de conservación deficiente. Los caminos sin pavimentar en Chota son propensos al deterioro, ya que los suelos son finos, tienen alta plasticidad y son bajos en la capacidad de carga, otra de las razones es que frecuenta mayor tráfico y fuertes lluvias (Ruiz, 2023).

A nivel local, el sector Uña de Gato del distrito de Jaén, el suelo presenta características de forma expansiva cuyas propiedades lo destacan como un suelo arcilloso de alta plasticidad y vulnerable a los cambios de su densidad y humedad por lo tanto las propiedades mecánicas encontradas de CBR son muy bajas oscilando entre 3,50% a 4,50% a un 95% de MDS y 2.54 milímetros de penetración (Piedra et al., 2021). La carretera que conecta los pueblos Las Delicias con el Centro Poblado Granadillas, pertenecientes al distrito y provincia de Jaén en la región de Cajamarca, es una carretera sin agenda a mejorarse, la cual no se ha brindado mantenimiento a nivel de afirmado por más de 10 años, presentando en la actualidad muchos deterioros a nivel de subrasante debido fuertes lluvias que se suscitan en dichas zonas, lo cual al ser un suelo arcilloso tiende arrojar el material de buena calidad hacia las cunetas, afectando a todos los productores cafetaleros y toda la población en general de los caseríos aledaños que transitan por dicha vía para llegar hasta la provincia de Jaén. Ante ello es necesario conocer las características de suelo a nivel de subrasante y poder plantear soluciones como es el caso de mejoramiento con ceniza de café y guaba la cual abunda en dichos lugares.

1.1.1. Planteamiento del problema

¿Cómo influye la ceniza de cáscara de guaba y café sobre las características de subrasante, carretera Las Delicias – Granadillas, Jaén, 2024?

1.2. Justificación

1.2.1. Técnica

La presente investigación se justifica técnicamente porque tiene como fin aportar nuevos conocimientos acera del uso de ceniza como materiales orgánicos que se encuentran en la zona, apoyando de esta manera a otras investigaciones con relación al tema, por cuanto contribuye como una de las alternativas para solucionar un problema.

1.2.2. Metodológica

Es relevante porque para lograr los objetivos propuestos utiliza técnicas para demostrar la fundamentación científica de las variables que deben evaluarse. Asimismo, nuestro objetivo es permitir que otros investigadores consideren nuestro estudio, garantizando la plena fiabilidad de los datos mediante la validación de sus resultados.

1.2.3. Económica

En relación a lo económico se plantea el uso de materiales orgánicos como es el caso de la cáscara de café y guaba para la obtención de ceniza, los cuales son encontrados en su entorno de estudio, teniendo bajos costos para su elaboración y brindando beneficios muy altos en comparación con otros estabilizantes químicos como es el caso del cemento y cal.

1.2.4. Social

Socialmente la justificación radica en que el uso de estos materiales es amigable con el medio ambiente permitiendo acceso fácil a la población aplicar esta técnica, beneficia a los productores tanto en la calidad de vida y de tránsito ya que no tendrían problemas de transportarse hacia la ciudad en temporadas de lluvias, facilitando la salida de sus productos agrícolas hacia el mercado.

1.2.5. Ambiental

En relación a lo ambiental contribuye a disminuir el impacto ambiental con el uso de la ceniza en comparación a la contaminación que se genera a elaborar la fabricación del cemento y/o cal que son añadidas para mejorar las propiedades físicas y mecánicas del suelo a nivel de subrasante para obtener mayor calidad de vía.

1.3. Antecedentes

1.3.1. Internacionales

Tamiru (2023) en su artículo desarrollado en Etiopía, estableció como objetivo evaluar la idoneidad de la subrasante, combinando el 5, 10,15, y 20% de ceniza de cascarilla de café con el suelo natural para luego mezclarla con la fibra de Enset con 0,3, 0,6, 0,9 y 1,2%, su metodología tuvo un enfoque cuantitativo y diseño. Los resultados fueron que el 15% de CCC redujo un 60% de hinchamiento del suelo ejemplar y al momento de adicionar la fibra de Enset con el 0.9% y la adición óptima del café aumentó su MDS de 1,54 g/cm3 a 1,67 g/cm3 favoreciendo en la resistencia al corte del suelo; el valor de CBR aumentó en un 200%, finalmente concluyó que al 15% de CCC y 0.9% de Fibra Enset, el suelo expansivo se estabiliza y es el más adecuado para material de subrasante a la vez el económico y respetuoso con el medio ambiente.

Ezema et al., (2022) en su artículo desarrollado en Niguelia, propusieron como objetivo determinar la viabilidad y la estabilización de suelos arcillosos y altamente plásticos empleando cenizas de bagazo de caña de azúcar CBCA y cenizas de hojas de plátano CH, la metodología tuvo un enfoque cuantitativo y experimental. Los resultados fueron que al añadir 10% de CHP tuvo un 21% para LL, 17% para LP y 10% para IP, consiguiendo

también el valor más alto en la MDS con un 19,42 % el OCH aumentó el 14,0% para todas las mezclas, por último, las composiciones de 3% de CBCA y 7% de CHP alcanzaron el mejor resultado de CBR con un 64% y 50,6% para valores sin remojar y remojados, siendo estos los más adecuados para subrasante y subbase en la construcción del pavimento. Concluyendo que el aprovechamiento de las cenizas de bagazo y de hojas de plátano produce un estabilizador ecológico que se puede utilizar como material estabilizador.

Munirwan et al., (2022) en su artículo presentado en Indonesia, establecieron como objetivo determinar los parámetros geotécnicos de suelos arcillosos, adicionando el 25% de cenizas de cáscaras de café, para encontrar una composición alternativa de bajo costo y provechoso para el medio ambiente, la metodología tuvo un enfoque cuantitativo y diseño experimental. Los resultandos fueron que el suelo natural comprende un 56.9% arcilla, 32.4% limos y 10.7% arena, la gravedad especifica reduce de un 2.67 a 2.486, el valor de la cohesión varía desde un 80.1 kN/m2 a 148.7 kN/m2 y a la misma vez el ángulo de fricción desde un 16.1° a 25.8°. Concluyeron que al aumentar la cohesión algunos minerales se transformaron en arcilla durante la desintegración y el ángulo de fricción completa los espacios entre las partículas del suelo para uso como estabilizante.

Thanappan et al., (2021) en su artículo desarrollado en Etiopía, su objetivo fue mejorar las propiedades del suelo arcillosos y con alto índice de plasticidad para hacerlo más estable, para la técnica de estabilización, manteniendo el porcentaje de cemento como constante 2%, solo los CHA fueron agregado a las muestras de suelo originales en diferentes proporciones, como 4%, 8% y 15%, la metodología tuvo un enfoque cuantitativo y diseño experimental. Los resultados fueron que la MDD se incrementó de 1,46 g/cm3 a 1,58 g/cm3 y disminuye el OMC de 24% a 18% respectivamente. concluyendo que durante el proceso de estabilización se realizaron tres ensayos. De los resultados se concluye que la estabilidad con 2 % de cemento y 15 % de CHA es el mejor estabilizador.

Vargas et al., (2020) en su tesis ejecutada en Colombia, plantearon como objetivo estudiar la viabilidad de la subrasante, utilizando las cenizas derivadas del café adicionando 4, 8 y 14%, según su metodología tuvo un enfoque cuantitativo y diseño experimental, la muestra fue el suelo compuesto por cinco calicatas. Como resultados obtuvieron 42.3% de gravas, 57.2% de arena y 0.60% de limos del suelo sin adición, con el 8% y 14% de adición de cenizas de cáscaras de café se alcanzó una MDS de 2.05 y 1.944 respectivamente, un OCH de 11% y 13.8%. Concluyeron que con el 14% de adición se logran mejores

propiedades del suelo especialmente para el CBR con un 27%, por lo que recomendaron estudiar otras propiedades del suelo.

1.3.2. Nacionales

Breña (2022) en su tesis desarrollada en Chanchamayo, trazó como objetivo de estudio evaluar la influencia del suelo en la carretera Alto Vaquería - Chanchamayo aplicando cenizas de cascara de pacay (CCP) con los porcentajes de 5, 10 y 15% respectivamente, la metodología de la investigación fue aplicativa y cuasi – experimental. Se obtuvieron como resultados, que el IP del terreno natural aumentó de 7.5 a un 8.3 empleando el 10%, la MDS incrementó de 2.123 gr/cm3 de la muestra patrón a 2.129 gr/cm3 añadiendo el 5%, el OCH fue de 7.62% a 9.10% con un 15% y por último en el índice de la resistencia del suelo aumentó de 37.60% a 49.30% con un 10%. Concluyó que el uso de CCP influye efectivamente en la subrasante de la carretera, teniendo en cuenta los porcentajes, para mejorar sus relativas propiedades físicas-mecánicas del suelo de la carretera.

Gonzales (2022) en su tesis realizada en Lambayeque, señaló como objetivo estudiar los parámetros físicos y mecánicos en la subrasante con fines de pavimentación del centro Poblado Chacupe Alto incorporando cenizas de carbón (CC) con porcentajes 10, 15, 20 y 25%, la metodología fue de enfoque cuantitativo y diseño cuasiexperimental. Los resultados fueron que la muestra natural se clasificó como suelos arcillosos y de baja plasticidad (CL) según el SUCS, al adicionar el 20% de ceniza de carbón, el IP y el OCH redujeron un 43.94% y 22.65%, su MDS aumentó un 3.81%. Concluyó que la subrasante mostraba una mejora en su CBR pasando de 1.51% (inadecuada) a 11.20% (buena) con una dosis óptima de 20% de ceniza de carbón sometida a una temperatura de 600° aproximadamente, a la vez fue un aditivo sustentable para mejorar las subrasantes inapropiadas.

Escobar y Reyes (2022) en su investigación desarrollada en Trujillo, tuvieron como objetivo determinar la influencia de Ceniza de Cáscara de Café (CCC) más Cáscara de Huevo (CH), ejecutando cinco calicatas para adquirir muestras de estudios y adicionando nueve mezclas de distintos porcentajes de estabilizantes, en el tramo Santa Elena - El Carmelo, la investigación fue aplicativa con diseño experimental - Cuasi experimental. Los resultados fueron que al combinar 4% de CCC y 2% de CH, su MDS pasó de 1.523gr/cm3 a 1.793gr/cm3 y su OCH pasó de 14.28% a 20.60%. Concluyeron que fusionando 4% de CCC y 2% de CH en adelante superan el 30% de CBR que es el mínimo según la Normativa para convertirse en un CBR óptimo para nuestro material de arcilla de baja plasticidad (CL) y ahorro de costos al momento de ejecutar.

Gil y García (2022) en su tesis desarrollada en Lambayeque, tuvieron como objetivo determinar la correlación de las cenizas de cáscaras de Café (CCC) con porcentajes de 6,11 y 16%, en las vías de U.V Casuerinas, Señor de la Justicia y Héctor Aurich Soto, la metodología fue de tipo aplicativa y diseño correlacional, empleando fichas de observación y análisis para los ensayos Límite de Attberger, Proctor modificado y CBR. Los resultados fueron que la subrasante presenta un CBR al 95% de 9.22% y que al adicionarlo el 16% de CCC presenta un 1.88 gr/m3 de MDS y un 13.20% de OCH. Concluyeron que al emplear 16% de CCC es la dosis ideal y recomendable para obras de pavimentación, porque eleva su resistencia y a la vez reduce el OCH de la combinación.

Laos (2022) en su tesis desarrollada en Huánuco, tuvo como objetivo determinar los efectos al adicionar cenizas de biomasa de palma de aceitera con porcentajes de 15, 20 y 25%, en suelos tipo CL y grupo A-6 clasificado según SUCS y AASHTO en la localidad de Naranjillo, Distrito Luyando, provincia Leoncio Prado, Departamento de Huánuco, la metodología fue de enfoque explicativo y diseño experimental. Los resultados fueron que la subrasante sin adición presenta un CBR de 1.53% y al añadirle 25% de CBPA muestra 22.57% pasando de una subrasante insuficiente a una categoría muy buena, y a la vez que al sumarle esa cantidad presenta un 1.768 gr/m3 de MDS y un 13.43% de OCH. Concluyó que los efectos evaluados con las dosificaciones mejoran las propiedades del suelo arcilloso, siendo el 25% de CBPA el más significativo.

1.3.3. Regionales

Coronel y Guerra (2022) en su tesis realizada en San Ignacio, plantearon como objetivo determinar la estabilidad del suelo para el camino rural de los tramos La Lima - Huarango adicionando ceniza de cáscara de arroz en 10, 15, 20 y 25% del volumen de la muestra, según su metodología fue de tipo aplicada, nivel explicativo y diseño experimental, la muestra fue el suelo de ocho calicatas. Como resultados obtuvieron una arcilla inorgánica de alta plasticidad con un IP de 29.16%, CBR de 4.01% sin adición, al adicionar 10, 15, 20 y 25% de ceniza el CBR se incrementó a 9.46, 11.80, 13.48 y 14.37% todo al 95% de la DMS. Concluyeron que las adiciones de ceniza mejora significativamente las condiciones de las propiedades del suelo, aceptando de esta manera la hipótesis planteada.

Torres (2022) en su investigación realizada en Cajamarca, planteó como objetivo determinar la influencia de ceniza de cascarilla de arroz en las propiedades del suelo en porcentajes de 7.5% y 8.5%, en la carretera Santa Rosa de Combayo – Cajamarca, la muestra fue en suelo en 10 calicatas, según su metodología fue de enfoque cuantitativo con diseño

experimental. Como resultados respecto al ensayo de CBR al 95% de la máxima densidad seca se incrementó de 16.40% a 36% con la adición del 7.5% de ceniza y respecto a la adición de 8.5% también se incrementó de 16.40% a 34% pero ésta en menor porcentaje que la anterior. Se concluye finalmente que la adición del 7.5% de ceniza de cascarilla de arroz en suelos arcillosos fue el porcentaje más optimo y adecuado.

Banda y Paz (2021) en su investigación realizada en Cutervo, plantearon como objetivo estabilizar el suelo de la vía carrozable de los tramos Yanacate - El Ape adicionando ceniza de paja de pino en 5, 10 y 15% del volumen de la muestra, según su metodología fue de enfoque cuantitativo con diseño experimental, la muestra fue el suelo de dos calicatas. Como resultados obtuvieron que el suelo perteneciente a la vía carrozable es una arcilla orgánica de baja plasticidad según la clasificación AASHTO, de la primera y segunda calicata obtuvieron LL de 26% y 32%, LP de 19% y 22%, IP de 7% y 10% sin adición, con 15% de adición de ceniza en la calicata Nº1 y Nº 2 la MDS se incrementó de 1.803gr/cm3 a 1.920gr/cm3 y de 1.706gr/cm3 a 2.022gr/cm3, el CBR tambien se incrementó de 4.40% a 14.80% y 4.15% a 14.90%, todo al 95% de la DMS. Concluyeron que la adición del 15% de ceniza logra estabilizar el suelo en mejores condiciones, logrando una sub rasante buena.

Rojas (2021) en su investigación realizada en Cajamarca, planteó como objetivo determinar de qué manera influye la ceniza de bagazo de caña de azúcar adicionando 8, 12 y 18%, según su metodología fue de diseño experimental (cuasi) de enfoque cuantitativo y nivel aplicada, la muestra fue el suelo compuesto por tres calicatas. Como resultados se obtuvieron un descenso en el índice de plasticidad de 24% al 11% con la adición del 30%, a través del ensayo de Proctor modificado se redujo el OCH de 27.60% a 8.69% a la vez se incrementó la MDS de 1.456gr/cm3 a 2.194gr/cm3 con la adición de 8% de CBCA, con el ensayo de CBR al 95% de la MDS se incrementó de 8.6% a 17.5% con la adición de 8% de CBCA. Se concluyó que la ceniza de bagazo de caña de azúcar añadido a la subrasante de la trocha carrozable da buenos resultados favorables mejorando dicha resistencia.

Ormeño y Rivas (2020) en su investigación realizada en Chota, plantearon como objetivo establecer la influencia que tiene la ceniza de cascara de arroz con la adición de 10, 15, 20 y 25% para la estabilización de la carretera Callampampa de Chota — Cajamarca, según su metodología fue de diseño experimental y nivel descriptivo, la muestra fue el suelo de cuatro calicatas. Como resultados obtuvieron la clasificación del suelo como Arcilla de Baja Plasticidad, teniendo como valores de LL 26%, IP 7% y un CH 19%, con el 20% de ceniza se logró incrementar el CBR de 4.30% a 20.70%. Concluyeron que al agregar los

porcentajes de ceniza su OCH aumenta, además con la adición de ceniza se logra incrementa sus propiedades del suelo hasta superar el 6% de CBR convirtiendo en un suelo muy bueno.

1.3.4. Locales

Ricardo (2023) en su investigación realizada en Jaén, planteó como objetivo determinar la influencia de ceniza de pulpa de café en 3, 6, 9 y 12% para la estabilización de la vía Chontalí - Pachapiriana, según su metodología fue de tipo aplicada y diseño experimental, la muestra fue el suelo compuesto por ocho calicatas. Como resultados se obtuvo un IP de 12.2 y la densidad seca de 1.89gr/cm3 sin adición, al adicionar 3% de ceniza el IP fue de 7.83 y Ds de 1.950gr/cm3, al 6% el IP fue de 7.03 y Ds de 1.98gr/cm3, al 9% el IP fue de 6.61 y Ds de 1.99gr/cm3, finalmente al 12% IP fue de 7.29 y Ds de 1.98gr/cm3, con la adición del 9% de ceniza se incrementó el CBR al 100% de la MDS de 45% a 58%, con el CBR al 95% de MDS de 35% a 43%. Concluyó que la dosificación más optima es la del 9%, con esta dosificación se logró mejorar las propiedades de plasticidad, se incrementó la densidad seca y CBR.

Alvarez y Fuentes (2022) en su tesis desarrollada en Jaén, plantearon como objetivo usar la ceniza de cáscara de café adicionando 10, 12, 15, 17 y 20% para mejorar la resistencia en el suelo, según su metodología fue de tipo aplicada y diseño experimental, la muestra fue el suelo compuesto por cinco calicatas. Como resultados obtuvieron que al adicionar el 15% de ceniza, se reduce el IP de 23% a 6.02%, aumentó la MDS de 1.633gr/cm3 a 1.684gr/cm3 con 23.6% a 18.6% del optimo contenido de humedad para alcanzar su compactación, el CBR mejoró de 1.10% al 10%. Concluyeron que todas las adiciones de ceniza mejoraron la resistencia del suelo, siendo el 15% la más optima debido a que mejora sus propiedades físico- mecánicas pasando de una subrasante inadecuada a buena.

Quispe y Quispe (2022) en su investigación realizada en Jaén, plantearon como objetivo determinar la influencia de la ceniza de cáscara de arroz y café en la estabilización del suelo adicionando 5, 10 y 20% respecto al peso del suelo seco, según su metodología fue de tipo aplicada, diseño experimental y nivel explicativo, la muestra fue el suelo compuesto por una calicata. Como resultados obtuvieron que sin la adición de ceniza un LL de 41%, LP de 29% e IP de 12%, un CBR de 2.70% con una DMS de 1.579gr/cm3 y un OCH de 12%, al adicionar el 20% de ceniza el CBR alcanza un valor de 19.5%, con el 10% un 23.40% y con el 20% alcanza el 29%. Concluyeron que la adición de ceniza logra estabilizar el suelo siendo recomendable su uso en obras de carreteras que presentan un suelo inadecuado como subrasante.

Palacios y Villalobos (2021) en su investigación realizada en Jaén, plantearon como objetivo estabilizar el suelo adicionando cal en 2, 4 y 8% para mejorar el CBR de la carretera el Huito, según su metodología fue de tipo aplicada y diseño experimental, la muestra fue el suelo compuesto por una calicata. Como resultados obtuvieron que sin la adición de cal un LP de 30%, LL de 22% y el IP de 8%, un CBR de 4.80% al 95% de DMS, al adicionar cal en 2, 4 y 8% se obtuvo que el LP, LL y IP no están presentes, sin embargo, el CBR aumentó a 17.81%, 50.40% y 111.00%, por otra parte la DMS varia de 1.85gr/cm3 a 1.96gr/cm3 respecto del 8 y 4% de adición de cal. Concluyeron que la adición del 4% es la que obtiene la MDS con un OCH mejorando las propiedades físicas del suelo respecto a las demás adiciones para ser usado como subrasante.

Galvez y Santoyo (2019) en su investigación realizada en Jaén, plantearon como objetivo determinar la influencia de la adición de 3,10 y 15% de ceniza de cáscara de arroz como estabilizante del suelo en la carretera Yanuyacu - Señor Cautivo, según su metodología fue aplicada y diseño experimental, la muestra fue el suelo compuesto por una calicata. Como resultados obtuvieron un IP de 11% sin adición, al adicionar 10 y 15% no presento, sin embargo, adicionando el 3% fue de 13% de IP, la resistencia al 95% de la DMS del SN fue de 3.92%, al adicionar el 3% de ceniza fue de 6.68%, con el 10% fue de 10.93 y finalmente con la adición para el 15% fue de 13.77%. concluyeron que la dosificación del 15% logró la máxima resistencia del suelo prometiendo buenos resultados.

1.4. Objetivos

1.4.1. Objetivo general

Determinar la influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, carretera las Delicias – Granadillas, Jaén, 2024.

1.4.2. Objetivos específicos

- a) Determinar las principales características físicas y mecánicas del suelo a nivel de subrasante de la carretera Las Delicias – Granadillas.
- b) Determinar la influencia sobre las principales características mecánicas del suelo de subrasante con la adición de 6%, 8%, 10% y 12% de cáscara de guaba y café.
- c) Establecer el costo de la ceniza de cáscara de guaba y café en comparación con el estabilizador químico cemento.

II. MATERIALES Y MÉTODOS

2.1. Tipo y diseño de investigación

2.1.1. Tipo de investigación

Según su finalidad. Básica, porque solo se realizaron ensayos de laboratorio para determinar en qué porcentaje se mejoran las propiedades físicas y mecánicas del suelo con la adición de ceniza, pero bajo condiciones controladas de laboratorio.

Según su enfoque. Cuantitativa, porque los resultados de las características físicas y mecánicas del suelo se analizaron en función de valores numéricos y porcentuales, que indicarán si la ceniza mejoraría estos niveles de desempeño del suelo.

2.1.2. Diseño de investigación

Experimental. Porque se manipularon las variables de estudio, adicionando un porcentaje de ceniza de cáscara de café y guaba al suelo extraído de cada kilómetro para determinar qué porcentaje de mejora se obtiene en sus propiedades mecánicas.

2.2. Población, muestra y muestreo

2.2.1. Población

La población está conformada por el suelo de los 6km de carretera que une el caserío las Delicias con el Centro Poblado Granadillas.

2.2.2. Muestra

La muestra está compuesta por el material que se obtuvo de seis calicatas de la subrasante de la vía Las Delicias – Granadillas incorporando ceniza de cáscara de café y guaba al 6%, 8%, 10% y 12% respecto al peso de muestra del suelo.

 Tabla 1

 Adiciones de las muestras de ceniza

Nº	Tipo de muestra	Código	Total de muestras
1	Suelo natural	TO	2
2	Suelo natural+6% de ceniza	Т1	2
	(3% de CCC y 3% CCG)	11	
3	Suelo natural+8% de ceniza	T2	2
	(4% de CCC y 4% CCG)	12	
4	Suelo natural+10% de ceniza	Т3	2
	(5% de CCC y 5% CCG)	13	
5	Suelo natural+12% de ceniza	Т4	2
	(6% de CCC y 6% CCG)	14	
	Total		10

Fuente: Elaboración propia

2.2.3. Muestreo

Se aplico un muestreo no probabilístico, porque no es posible que determinemos las propiedades de todo el tramo de la carretera, por ello se establece el número de muestras a ensayar según los criterios del MTC, lo cual indicada que se debe elaborar una calicata por cada Km para carreteras de bajo volumen de tránsito y un CBR por cada 3km. Para nuestros ensayos con adición de ceniza se realizó en una calicata, la cual fue en el suelo más desfavorable.

2.3. Hipótesis

La ceniza de cáscara de guaba y café mejora en 8% las características de subrasante, carretera Las Delicias – Granadillas, Jaén, 2024.

2.4. Variables

2.4.1. Variable dependiente: Características de subrasante

Según el Manual de Suelos, Geología, Geotecnia y pavimentos del MTC (2014), la subrasante se define como el nivel del terreno sobre el cual se colocará la estructura del pavimento o el afirmado, considerando el movimiento de tierras (corte y relleno). La subrasante de acuerdo al valor de CBR se agrupan en las siguientes categorías:

Tabla 2Categorías de la subrasante según su CBR

Categorías de la Subrasante	CBR (%)
S ₀ : Subrasante Inadecuada	CBR < 3%
S ₁ : Subrasante Pobre	De CBR \geq 3% A CBR $<$ 6
S ₂ : Subrasante Regular	De CBR \geq 6% A CBR $<$ 10
S ₃ : Subrasante Buena	De CBR $\geq 10\%$ A CBR < 20
S ₄ : Subrasante Muy buena	De CBR \geq 20% A CBR $<$ 30
S ₅ : Subrasante Excelente	De CBR $\geq 30\%$

Fuente: MTC – Sección de suelos y pavimentos (2014)

2.4.2. Variable independiente: Ceniza de cáscara de café y guaba

Las características de las cenizas de cáscaras orgánicas contribuyen al uso y a la aplicación de las nuevas tecnologías en mejorar la capacidad portante del suelo (Bravo y Becerra, 2021).

2.4.3. Operacionalización de variables

La operacionalización de variables se presenta en el anexo 1, de igual forma se presenta la respectiva matriz de consistencia en el anexo 2.

2.5. Materiales y métodos

2.5.1. Materiales

Los materiales que se utilizaron para la investigación, son los establecidos por el manual de ensayo de materiales correspondiente para cada ensayo, las cuales se describen a continuación:

Tabla 3 *Normas para los ensayos de laboratorio*

Características físicas	Normas aplicables
Contenido de humedad	MTC E-108
Análisis granulométrico por tamizado	MTC E-107
Límites de Atterberg	
Límite líquido	MTC E-110
Límite plástico	MTC E-111
Índice de plasticidad	MTC E-111
Características mecánicas	
Proctor modificado	MTC E-115
California Bearing Ratio (CBR)	MTC E-132

Fuente: Elaboración propia

2.5.2. Métodos

Deductivo: Este método será establecido cuando se haya logrado obtener toda la información requerida con respecto a esta investigación, cuyos resultados determinados en situaciones similares tanto a nivel local, nacional e internacional, le sirvan de apoyo para afirmar la influencia que conlleva al adicionar ceniza de guaba y café en el comportamiento de las propiedades mecánicas de la subrasante.

Inductivo: Este método se pondrá en práctica después de determinar cada uno de los objetivos en la fase de elaboración, lo cual con los resultados logrados acerca de las propiedades físicas que son el ensayo de granulometría, clasificación SUCS y AASHTO, contenido de humedad, límites de atterberg (Límite Líquido, Límite Plástico e Índice de Plasticidad) y las propiedades mecánicas que son el ensayo de Proctor y CBR (California

Bearing Ratio), que al adicionarle ceniza de guaba y café, se podrán establecer cuáles son sus mejoras en cuanto a sus propiedades mecánicas.

2.6. Técnicas

La observación. Mediante esta técnica se pudo observar y determinar la condición actual de la carretera, se aplicó de manera metódica y directa para la recolección de datos, asimismo en la ejecución de los ensayos y el análisis del suelo con y sin la adición de los diferentes porcentajes de ceniza de cáscara de café y guaba.

2.7. Instrumentos

Guías de observación. Las guías de observación fueron los formatos con los que cuenta el laboratorio local para realización de los ensayos de acuerdo a la normativa, en los cuales nos sirvieron para ingresar nuestros datos obtenidos.

2.8. Procedimientos de recolección de datos

Los procedimientos que se han seguido para el desarrollo de cada uno de los objetivos se presentan a continuación organizados por etapas, adjuntando y describiendo cada procedimiento, para ello se añaden imágenes en cada actividad que se realiza.

Etapa 1: Obtención de ceniza de la cáscara de guaba y café

Nota. En la figura 1, se muestra el proceso de recolección de los frutos de guaba de los principales puntos de las localidades en la que se está ejecutando dicho proyecto.

Figura 2 *Obtención del fruto de la guaba*

Nota. En la figura 2, se muestra el proceso de recolección de los frutos de guaba de los principales puntos de las localidades a intervenir en la que se está ejecutando dicho proyecto.

Figura 3

Obtención de la cáscara de café

Nota. En la figura 3, se muestra el acopio de la cáscara de café, el cual es eliminado después de realizar la despulpa de dicho grano, siendo esta útil para la obtención de ceniza, dicho punto se ubica en la localidad de granadillas.

Figura 4 *Preparación de la muestra de guaba*

Nota. En la figura 4, se evidencia la preparación de la muestra de cáscara de guaba previo a la quema para la obtención de ceniza.

Figura 5 *Preparación de la muestra de café*

Nota. En la figura 5, se evidencia la preparación de la muestra de cáscara de café previo a la quema para la obtención de ceniza.

Figura 6 *Proceso de quemado de la cáscara de guaba*

Nota. En la figura 6, se evidencia el proceso de quema de la muestra de cáscara de guaba dicha actividad es realizada en un horno artesanal de molienda de caña ubicado en el caserío de Granadillas.

Figura 7

Proceso de quemado de la cáscara de café

Nota. En la figura 7, se evidencia el proceso de quema de la muestra de cáscara de café dicha actividad es realizada en un horno artesanal utilizado para quemar ladrillos ubicado en el centro poblado de granadillas.

Figura 8 *Obtención de la ceniza de cáscara de guaba*

Nota. En la figura 8, se evidencia la obtención de la ceniza de la muestra de cáscara de guaba después de pasado el proceso de enfriamiento en un aproximado de 24 horas de haber realizado la quema.

Figura 9 *Obtención de la ceniza de cáscara de café*

Nota. En la figura 9, se evidencia la obtención de la ceniza de la muestra de cáscara de café después de pasado el proceso de enfriamiento en un aproximado de 72 horas de haber realizado la quema.

Etapa 2: Elaboración de calicatas y muestreo de suelos: En esta etapa se elaboró la realización de las calicatas, según el Manual de Carreteras: Suelos, Geología, Geotecnia y Pavimentos (2014), nos menciona que para carreteras de bajo volumen de tránsito es decir carreteras con un IMDA ≤ 200 veh/día, el número de calicatas mínimo a realizar es de 1 por km. Según nuestro resultado obtenido nos salió un IMDA de 19 veh/día, de lo cual tendiendo una carretera de 6 km se concluye la realización de 6 calicatas, las cuales serán realizadas en las progresivas dadas a continuación.

Figura 10 *Ubicación de la progresiva de la Calicata nº 01*

Nota. En la figura 10, se muestra la ubicación de la calicata nº 01, con la ayuda del GPS Manual nos da las coordenadas Norte: 9354829.761, Este: 728820.149 y Altura: 1692.00, con el diseño del plano determinamos que está en la progresiva 1+050.

Figura 11 *Excavación de la Calicata nº 01*

Nota. En la figura 11, se muestra el proceso de excavación de la calicata nº 01 con una profundidad de 1.50m según normativa el cual se ubica en la progresiva 1+050, dichos trabajos son realizado por los tesistas.

Figura 12 *Extracción de muestra de la Calicata nº 01*

Nota. En la figura 12, se evidencia el proceso de extracción de muestra de la calicata nº 01 ubicado en las progresivas 1+050, el cual será trasladado a la provincia de Jaén para sus estudios respectivos en laboratorio de suelos.

Figura 13 *Ubicación de la progresiva de la Calicata nº 02*

Nota. En la figura 13, se muestra la ubicación de la calicata nº 02, con la ayuda del GPS Manual nos da las coordenadas Norte: 9354501.679, Este: 729267.701 y Altura: 1715.00, con el diseño del plano determinaos que se encuentra en la progresiva 1+750.

Figura 14 *Excavación de la Calicata nº 02*

Nota. En la figura 14, se muestra el proceso de excavación de la calicata nº 02 con una profundidad de 1.50m según normativa el cual se ubica en la progresiva 1+750, dichos trabajos son realizado por los tesistas.

Figura 15

Extracción de muestra de la Calicata nº 02

Nota. En la figura 15, se evidencia el proceso de extracción de muestra de la calicata nº 02 ubicado en las progresivas 1+750, el cual será trasladado a la provincia de Jaén para sus estudios respectivos en laboratorio de suelos.

Figura 16 *Ubicación de la progresiva de la Calicata nº 03*

Nota. En la figura 16, se muestra la ubicación de la calicata nº 03, con la ayuda del GPS Manual nos da las coordenadas Norte: 9353934.370, Este: 729077.460 y Altura: 1759.00, con el diseño del plano determinaos que se encuentra en la progresiva 2+450.

Figura 17

Excavación de la Calicata nº 03

Nota. En la figura 17, se muestra el proceso de excavación de la calicata nº 03 con una profundidad de 1.50m según normativa el cual se ubica en la progresiva 2+450, dichos trabajos son realizado por los tesistas.

Figura 18 *Extracción de muestra de la Calicata nº 03*

Nota. En la figura 18, se evidencia el proceso de extracción de muestra de la calicata nº 03 ubicado en las progresivas 2+450, el cual será trasladado a la provincia de Jaén para sus estudios respectivos en laboratorio de suelos.

Figura 19 *Ubicación de la progresiva de la Calicata nº 04*

Nota. En la figura 19, se muestra la ubicación de la calicata nº 03, con la ayuda del GPS Manual nos da las coordenadas Norte: 9353067.401, Este: 729270.837 y Altura: 1801.00, con el diseño del plano determinaos que se encuentra en la progresiva 3+600.

Figura 20
Excavación de la Calicata nº 04

Nota. En la figura 20, se muestra el proceso de excavación de la calicata nº 04 con una profundidad de 1.50m según normativa el cual se ubica en la progresiva 3+600, dichos trabajos son realizado por los tesistas.

Figura 21 *Extracción de muestra de la Calicata nº 04*

Nota. En la figura 21, se evidencia el proceso de extracción de muestra de la calicata nº 04 ubicado en las progresivas 3+600.

Figura 22Ubicación de la progresiva y extracción de la Calicata nº 05

Nota. En la figura 22, se muestra el proceso de excavación de la calicata nº 05 con una profundidad de 1.50m según normativa, con la ayuda del GPS Manual nos da las coordenadas Norte: 9352342.545, Este: 729297.091 y Altura: 1733.00, con el diseño del plano determinaos que se encuentra en la progresiva 4+550.

Figura 23 *Extracción de muestra de la Calicata nº 05*

Nota. En la figura 23, se evidencia el proceso de extracción de muestra de la calicata nº 05 ubicado en las progresivas 4+550.

Figura 24 *Ubicación de la progresiva de la Calicata nº 06*

Nota. En la figura 24, se muestra la ubicación de la calicata nº 06, con la ayuda del GPS Manual nos da las coordenadas Norte: 9351350.032, Este: 729358.032 y Altura: 1745.00, con el diseño del plano determinaos que se encuentra en la progresiva 5+900.

Figura 25 *Excavación de la Calicata nº 06*

Nota. En la figura 25, se muestra el proceso de excavación de la calicata nº 06 con una profundidad de 1.50m según normativa el cual se ubica en la progresiva 5+900, dichos trabajos son realizado por los tesistas.

Figura 26 *Extracción de muestra de la Calicata nº 06*

Nota. En la figura 26, se evidencia el proceso de extracción de muestra de la calicata nº 06 ubicado en las progresivas 5+900, el cual será trasladado a la provincia de Jaén para sus estudios respectivos en laboratorio de suelos.

Etapa 3: Estudio de propiedades del suelo: En esta etapa se elaboraron los ensayos de las propiedades físicas del suelo como son: Contenido de humedad, análisis granulométrico límites de Atterberg y los ensayos de las propiedades mecánicas como son: Proctor y CBR; estas pruebas se realizarán de acuerdo con los procedimientos especificado en la normativa correspondiente.

Figura 27 *Obtención de muestras representativas- Cuarteo (MTC E 105)*

Nota. En la figura 27, se muestra el proceso del cuarteo esto con el objetivo de obtener proporciones representativas de tamaño adecuado para efectuar las pruebas del ensayo de granulometría, siguiendo las pautas de la Normativa MTC E 105.

Figura 28

Ensayo de contenido de humedad (MTC E 108)

Nota. En la figura 28, se evidencia el proceso de ingreso de la muestra de suelo en el horno para determinar su contenido de humedad después de 24 horas siguiendo las pautas de la Normativa MTC E 108.

Figura 29Lavado de la muestra por el tamiz nº 200

Nota. En la figura 29, se muestra el proceso del lavado de la muestra representativa, este con el objetivo de eliminar los finos que pasan por el tamiz nº 200.

Figura 30

Ensayo de análisis granulométrico por tamizado (MTC E 107)

Nota. En la figura 30, se evidencia el proceso de tamizado de la muestra de suelo por cada uno de los tamices correspondientes todo ello siguiendo las pautas de la Normativa MTC E 107.

Figura 31

Ensayo de análisis granulométrico por tamizado (MTC E 107)

Nota. En la figura 30, se muestra el proceso de pesado de la muestra que pasa y es retenido en cada tamiz todo ello será anotado en un formato adaptado a la normativa siguiendo el procedimiento según corresponda.

Figura 32

Ensayo de Límite de Atterberg- Límite líquido (MTC E 110)

Nota. En la figura 32, se muestra el proceso del ensayo del límite líquido, el cual consiste en esparcir una porción de material en la copa de Casagrande, todos estos pasos se realizando siguiendo las pautas de la Normativa MTC E 110.

Figura 33

Ensayo de Límite de Atterberg- Límite plástico (MTC E 111)

Nota. En la figura 33, se muestra el proceso del ensayo del límite plástico, el cual consiste amasar cilindros de 3mm de diámetro, todos estos pasos se realizan siguiendo las pautas de la Normativa MTC E 111.

Figura 34 *Ensayo de Límite de Atterberg- Contenido de humedad*

Nota. En la figura 34, se evidencia el proceso del contenido de humedad tomado de pequeñas muestras obtenidas después de haber realizado los límites de atterberg, para posterior tener que colocar en el horno en un tiempo de 24 horas.

Figura 35

Ensayo de Proctor Modificado (MTC E 115)- Muestra patrón

Nota. En la figura 35, se muestra el proceso del ensayo de Proctor modificado de la muestra patrón, en este caso se evidencia la adición de contenido de agua, todos estos pasos se realizan siguiendo las pautas de la Normativa MTC E 115.

Figura 36

Ensayo de Proctor Modificado (MTC E 115)- Muestra patrón

Nota. En la figura 36, se muestra el proceso del ensayo de Proctor modificado de la muestra patrón, en este caso se evidencia la compactación en capas con la ayuda del pisón, todos estos pasos se realizan siguiendo las pautas de la Normativa MTC E 115.

Figura 37

Ensayo de Proctor Modificado- Contenido de humedad

Nota. En la figura 37, se muestra el proceso del contenido de humedad del ensayo de Proctor modificado de la muestra patrón, en este caso se evidencia las muestras que son añadidas el horno por un tiempo de 24 horas.

Figura 38

Ensayo de CBR (MTC E 132)- Muestra Patrón

Nota. En la figura 38, se muestra el proceso del ensayo de CBR de la muestra patrón, en este caso se evidencia la adición de contenido de agua para posteriormente tener que mezclar, todos estos pasos se realizan siguiendo las pautas de la Normativa MTC E 132.

Figura 39

Ensayo de CBR (MTC E 132)- Muestra Patrón

Nota. En la figura 39, se muestra el proceso del ensayo de CBR de la muestra patrón, en este caso se evidencia la compactación en capas con la ayuda del pisón, todos estos pasos se realizan siguiendo las pautas de la Normativa MTC E 132.

Figura 40

Ensayo de saturación de la muestra de CBR al agua

Nota. En la figura 40, se evidencia el proceso del ensayo de saturación de las muestras de CBR, el cual consiste en sumergir los moldes en agua y aplicar un punzonamiento por un periodo de cuatro días consecutivos dichos resultados son registrados cada 12 horas.

Figura 41

Ensayo de penetración de la muestra de CBR

Nota. En la figura 41, se evidencia el proceso del ensayo de penetración de la muestra patrón de CBR, la cual consiste en aplicar un punzonamiento sobre la superficie del molde mediante un pistón normalizado, siguiendo las pautas de la Normativa ASTM 1883.

Etapa 4: Estudio de suelos con adición de ceniza: En esta etapa se elaboraron los ensayos de las propiedades físicas y mecánicas del suelo adicionando 6, 8, 10 y 12% de ceniza de cascara de café y guaba con respecto al peso de la muestra de suelo en este caso estudiaremos la calicata más desfavorable con presencia de arcilla, para lo cual por simple inspección se escogió la calicata 6.

Figura 42

Muestras de ceniza de cáscara de guaba y café

Nota. En la figura 42, evidencia la muestra de la ceniza obtenida de la cáscara de guaba y café, la cual va ser útil para nuestros ensayos con adiciones de 6, 8, 10 y 12% a la muestra de suelo natural.

Figura 43 *Peso de la muestra de ceniza*

Nota. En la figura 43, se muestra el peso de la ceniza de cascara de guaba y café en este caso se está trabajando con el 6% de adición es decir 3% de guaba y 3% de café.

Figura 44

Peso de la muestra de suelo

Nota. En la figura 44, se muestra el proceso del pesado de la muestra de suelo para realizar el ensayo de CBR ya con las adiciones respectivas de ceniza.

Figura 45 *Mezclado de la muestra de suelo con ceniza*

Nota. En la figura 45, se evidencia el proceso de mezclado de la muestra de suelo con la adición de 8% de ceniza para posteriormente tener que realizar el ensayo de CBR.

Figura 46Cuarteo de la muestra de suelo

Nota. En la figura 46, se evidencia el proceso de cuarteo de la muestra de suelo con las adiciones de 6% cenizas 3% de guaba y 3% de café.

Figura 47

Ensayo CBR con adición de ceniza del 10%

Nota. En la figura 47, se evidencia el proceso del ensayo de CBR con la adición de 10% de ceniza en cantidades de 5% de guaba y 5% de café.

Figura 48

Ensayo CBR con adición de ceniza del 12%

Nota. En la figura 48, se evidencia el proceso del ensayo de CBR con la adición de 12% de ceniza en cantidades de 6% de guaba y 6% de café, en este caso se realiza el proceso de enrasado para posterior tener que pesar dicha muestra de CBR.

Figura 49

Ensayo CBR con adición de ceniza del 12%

Nota. En la figura 49, se evidencia el proceso del ensayo de CBR con la adición de 12% de ceniza, donde se realiza el proceso de pesado de la muestra compactada de CBR.

Figura 50

Ensayo de penetración de la muestra de CBR con el 6% de ceniza

Nota. En la figura 50, se evidencia el proceso del ensayo de penetración de la muestra patrón de CBR con la adición del 6% de ceniza 3% de guaba y 3% de café, la cual consiste en aplicar un punzonamiento sobre la superficie del molde mediante un pistón normalizado, todos estos pasos se realizan siguiendo las pautas de la Normativa ASTM 1883.

Figura 51

Ensayo de penetración de la muestra de CBR con el 8% de ceniza

Nota. En la figura 51, se evidencia el proceso del ensayo de penetración de la muestra patrón de CBR con la adición del 8% de ceniza 4% de guaba y 4% de café, todos estos pasos se realizan siguiendo las pautas de la Normativa ASTM 1883.

Figura 52

Ensayo de penetración de la muestra de CBR con el 10% de ceniza

Nota. En la figura 52, se evidencia el proceso del ensayo de penetración de la muestra patrón de CBR con la adición del 10% de ceniza 5% de guaba y 5% de café, todos estos pasos se realizan siguiendo las pautas de la Normativa ASTM 1883.

Figura 53

Ensayo de penetración de la muestra de CBR con el 12% de ceniza

Nota. En la figura 53, se evidencia el proceso del ensayo de penetración de la muestra patrón de CBR con la adición del 12% de ceniza 6% de guaba y 6% de café, todos estos pasos se realizan siguiendo las pautas de la Normativa ASTM 1883.

Figura 54Contenido de humedad de la muestra patrón de CBR

Nota. En la figura 54, se evidencia el proceso de ensayo para determinar el contenido de humedad de la muestra compactada de CBR, todos estos pasos se realizan bajo la normativa MTC E 108.

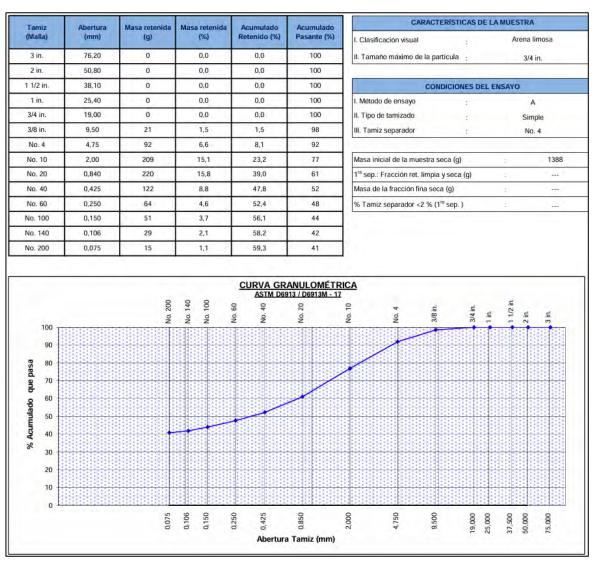
III. RESULTADOS

3.1. Resultados de objetivo general

Determinar la influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante

Con las adiciones de ceniza en 6%, 8%, 10% y 12% de cáscara de guaba y café respecto a la muestra patrón se obtuvieron un contenido de aire en estado fresco de 2% para las tres primeras adiciones y 1.9% para la última adición de ceniza; el concreto en su estado endurecido la resistencia a la compresión fue de 160.48, 167.01 kg/cm², 170.88 kg/cm², 174.15 kg/cm² y 184.66 kg/cm², resistencia a la flexión de 0.26 kg/cm², 0.29 kg/cm², 0.31 kg/cm² y 0.35 kg/cm².

3.2. Resultados del objetivo específico 1:


Determinar las principales características físicas y mecánicas del suelo a nivel de subrasante

Según el Manual de carreteras en su sección de suelos y pavimentos se hizo un total de seis calicatas en diferentes progresivas (1+050, 1+750, 2+450, 3+600, 4+550 y 5+900), esto con el objetivo de identificar el terreno más desfavorable y conocer cómo influye las adiciones de ceniza de cáscara de guaba y café en sus diferentes porcentajes de adición en las propiedades de la subrasante.

3.2.1. Análisis granulométrico

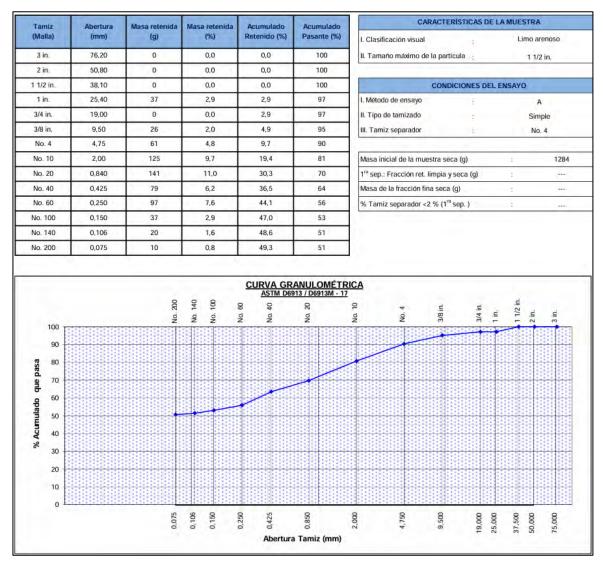

Las mediciones resultantes de la granulometría del suelo se muestran en las siguientes figuras:

Figura 55Determinación en laboratorio del análisis granulométrico de suelos mediante tamizado de la Calicata nº 01

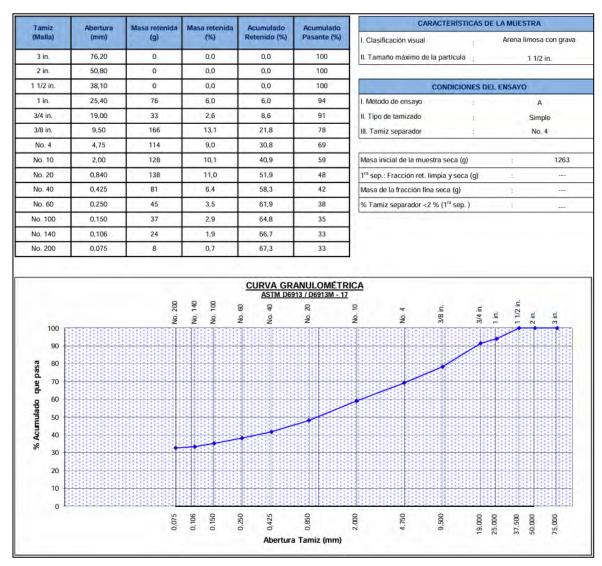

Nota. En la figura 55, se presentan los resultados del análisis granulométrico por tamizado de la calicata nº 01, donde se observa que en la malla nº 200 se obtuvo un retenido de 59.3% que representa más del 50% de granulares gruesos y un pasante de 41% que representa más del 12% de finos, en la malla nº 4 un pasante de 92% que representa más del 50% de arenas; de lo anterior podemos clasificarlo a la muestra como arena limosa (SM).

Figura 56Determinación en laboratorio del análisis granulométrico de suelos mediante tamizado de la Calicata nº 02


Nota. En la figura 56, se presentan los resultados del análisis granulométrico por tamizado de la calicata nº 02, donde se observa que en la malla nº 200 se obtuvo un pasante de 51% que representa más del 50% de finos y un Límite Líquido de 40% que representa menor del 50% de limos y arcillas; de lo anterior podemos clasificarlo a la muestra como limo arenoso (ML).

Figura 57Determinación en laboratorio del análisis granulométrico de suelos mediante tamizado de la Calicata nº 03

Nota. En la figura 57, se presentan los resultados del análisis granulométrico por tamizado de la calicata nº 03, donde se observa que en la malla nº 200 se obtuvo un retenido de 67.3% que representa más del 50% de granulares gruesos y un pasante de 33% que representa más del 12% de finos, en la malla nº 4 un pasante de 69% que representa más del 50% de arenas; de lo anterior podemos clasificarlo a la muestra como arena limosa con grava (SM).

Figura 58Determinación en laboratorio del análisis granulométrico de suelos mediante tamizado de la Calicata n^a 04

Nota. En la figura 58, se presentan los resultados del análisis granulométrico por tamizado de la calicata nº 04, donde se observa que en la malla nº 200 se obtuvo un retenido de 67.7% que representa más del 50% de granulares gruesos y un pasante de 32% que representa más del 12% de finos, en la malla nº 4 un pasante de 74% que representa más del 50% de arenas; de lo anterior podemos clasificarlo a la muestra como arena limosa con grava (SM).

Figura 59Determinación en laboratorio del análisis granulométrico de suelos mediante tamizado de la Calicata nº 05

Tamiz	Abertura	Masa retenida	Masa retenida	Acumulado	Acumulado	CARACTERÍST	ICAS DE LA	A MUESTRA
(Malla)	(mm)	(g)	(%)	Retenido (%)	Pasante (%)	I. Clasificación visual	4:	Limo
3 in.	76,20	0	0,0	0,0	100	II. Tamaño máximo de la partícula	:	3/8 in.
2 in.	50,80	0	0,0	0,0	100			
1 1/2 in.	38,10	0	0,0	0,0	100	CONDICIO	NES DEL E	NSAYO
1 in.	25,40	0	0,0	0,0	100	I. Método de ensayo		А
3/4 in.	19,00	0	0,0	0,0	100	II. Tipo de tamizado		Simple
3/8 in.	9,50	0	0,0	0,0	100	III. Tamiz separador	1	No. 4
No. 4	4,75	3	0,4	0,4	100			
No. 10	2,00	3	0,4	8,0	99	Masa inicial de la muestra seca (g)	: 857
No. 20	0,840	3	0,4	1,2	99	1 ^{ra} sep.: Fracción ret. limpia y seca	a (g)	;
No. 40	0,425	5	0,6	1,8	98	Masa de la fracción fina seca (g)		-:
No. 60	0,250	6	0,7	2,5	98	% Tamiz separador <2 % (1 ^{ra} sep.)	:
No. 100	0,150	8	0,9	3,4	97			
No. 140	0,106	6	0,7	4,1	96			
No. 200	0,075	3	0,3	4,4	96			
140		No. 200		No. 40	No. 20	No. 4 No. 4 3/8 in.	3/4 in.	1 1/2 in. 2 in. 3 in.
100	announce of	STREET,		Table 988	SE IN PURISI			
	********	ACT OF THE PERSON AS						
90								
70 60 50 50								
% Acumulado que pasa % 00 00 00 00 00 00 00 00 00 00 00 00 0								
% Warmulado due pasa % Warmulado due basa % 30 % 30 % 30 % 30 % 30 % 30 % 30 % 3								
80 80 70 60 60 80 40 40 80 80 80 80 80 80 80 80 80 80 80 80 80								
80 80 70 60 60 60 50 40 40 30 20		0,0075	0,106	0,280	0.850	4.750	000/81	37.500 50.000 75.000

Nota. En la figura 59, se presentan los resultados del análisis granulométrico por tamizado de la calicata nº 05, donde se observa que en la malla nº 200 se obtuvo un pasante de 96% que representa más del 50% de finos y un Límite Líquido de 47% que representa menor del 50% de limos y arcillas; de lo anterior podemos clasificarlo a la muestra como limo (ML).

Figura 60Determinación en laboratorio del análisis granulométrico de suelos mediante tamizado de la Calicata nº 06

amiz	Abertura	Masa retenida	Masa retenida	Acumulado	Acumulado	CAR	ACTERISTI	CAS DI	E LA ML	JESTR	A
Malla)	(mm) (g) (%)	(%)	Retenido (%)	Pasante (%)	I. Clasificación visual		ž		Li	mo	
3 in.	76,20	0	0,0	0,0	100	II. Tamaño máximo de la	a partícula	4		3/4	B in.
2 in.	50,80	0	0,0	0,0	100						
1/2 in.	38,10	0	0,0	0,0	100		CONDICION	NES DE	L ENSA	YO	
1 in.	25,40	0	0,0	0,0	100	I. Método de ensayo		:		- 1	A
/4 in.	19,00	0	0,0	0,0	100	II. Tipo de tamizado :			Sir	mple	
/8 in.	9,50	0	0,0	0,0	100	III. Tamiz separador				N	D. 4
No. 4	4,75	3	0,4	0,4	100						
lo. 10	2,00	3	0,4	0,8	99	Masa inicial de la mues	tra seca (g)		:		857
lo. 20	0,840	3	0,4	1,2	99	1 ^{ra} sep.: Fracción ret. lin	mpia y seca	(g)	- 3		
lo. 40	0,425	5	0,6	1,8	98	Masa de la fracción fina	seca (g)		-:		***
lo. 60	0,250	6	0,7	2,5	98	% Tamiz separador <2	% (1 ^{ra} sep.))	-		
0. 100	0,150	8	0,9	3,4	97						
0. 140	0,106	6	0,7	4,1	96						
o. 200	0,075	3	0,3	4,4	96	l o					
		200	140	ASTM D69	ANULOMÉTR 913 / D6913M - 17	<u> </u>	ú	Ľ		2 in.	
		0. 200	0. 100	ASTM D69	913 / D6913M - 17 ≅	6 4	/8 in.	/4 in.	in.	1/2 in. in.	i.
100		No. 200	No. 140	ASTM D69	913 / D6913M - 17	<u> </u>	3/8 in.	3/4 in.	e ;	1 1/2 in. 2 in.	3 ii.
100		No. 200	No. 140	ASTM D69	913 / D6913M - 17 ≅	6 4	3/8 in.	3/4 in.	e e	1 1/2 in. 2 in.	3 in.
90		No. 200	No. 140	ASTM D69	913 / D6913M - 17 ≅	6 4	3/8 in.	3/4 in.	.u.	1 1/2 in.	3 in.
90		No. 200	No. 140	ASTM D69	913 / D6913M - 17 ≅	6 4	3/8 in.	3/4 in.	L.	1 1/2 in.	3 10.
90		No. 200	No. 140	ASTM D69	913 / D6913M - 17 ≅	6 4	3/8 in.	3/4 in.	S	1 1/2 in. 2 in.	3 iii.
90		No. 200	No. 140	ASTM D69	913 / D6913M - 17 ≅	6 4	3/8 in.	3/4 in.		1 1/2 in.	3 in.
90		No. 200	Na 140	ASTM D69	913 / D6913M - 17 ≅	6 4	3/8 in.	3/4 in.	<u>u</u>	1 1/2 in.	3 in.
90		₩ No. 200	Na 140	ASTM D69	913 / D6913M - 17 ≅	6 4	3/8 in.	3/4 in.	<u>-</u>	1 1/2 in.	3 in.
90 80 70 60 50		No. 200	No. 140	ASTM D69	913 / D6913M - 17 ≅	6 4	3/8 in.	3/4 in.	<u></u>	1 1/2 in.	3 11.
90 - 80 80 70 - 60 60 50 40 80 30		No. 200	No. 140	ASTM D69	913 / D6913M - 17 ≅	6 4	3/8 in.	3/4 in.		1 1/2 in.	3
90 90 80 80 70 60 50 40 20 20		No. 200	No. 140	ASTM D69	913 / D6913M - 17 ≅	6 4	3/8 in.	3/4 in.	<u>II</u>	1 1/2 in. 2 in.	
90 - 80 80 70 - 60 60 50 40 80 30		No. 200	No. 140	ASTM D69	913 / D6913M - 17 ≅	6 4	3/8 in.	3/4 in.		11/2 in.	
90 90 80 80 70 60 50 40 20 20				ASTM Des	213 / D6913M - 17	No. 10					
90 90 80 80 70 60 60 80 40 80 30 10 10		0.075 No. 200		ASTM D69	913 / D6913M - 17 ≅	6 4	9.500 • 3.8 in.			31,500 50,000 2 in.	75,000

Nota. En la figura 60, se presentan los resultados del análisis granulométrico por tamizado de la calicata nº 06, donde se observa que en la malla nº 200 se obtuvo un pasante de 96% que representa más del 50% de finos y un Límite Líquido de 43% que representa menor del 50% de limos y arcillas; de lo anterior podemos clasificarlo a la muestra como limo (ML).

3.2.2. Clasificación de suelos

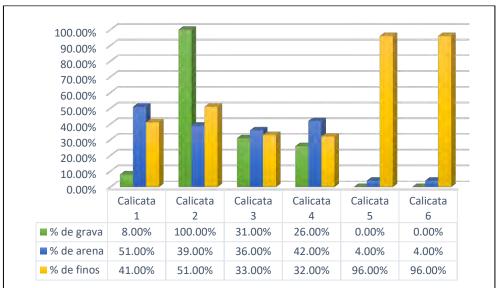
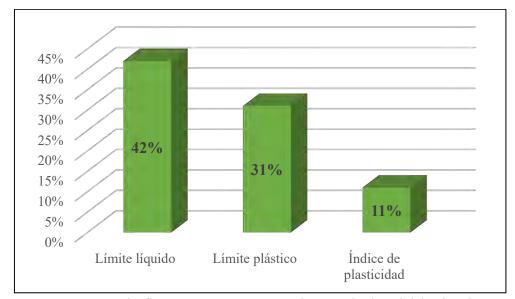

Dentro de la clasificación de suelos podemos encontrar a la clasificación SUCS, AASHTO, los límites de consistencia y el contenido de humedad.

Tabla 4 *Resumen de clasificación del suelo*

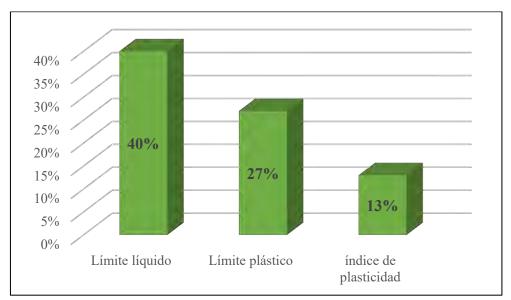
	Calicata 1	Calicata 2	Calicata 3	Calicata 4	Calicata 5	Calicata 6
SUCS	SM	ML	SM	SM	ML	ML
AASHTO	A-7-5	A-6	A-2-4	A-2-4	A-7-5	A-7-6
% de grava	8.00	100.00	31.00	26.00	0.00	0.00
% de arena	51.00	39.00	36.00	42.00	4.00	4.00
% de finos	41.00	51.00	33.00	32.00	96.00	96.00
LL	42	40	40	38	47	43
LP	31	27	30	28	35	27
LP	11	13	10	10	12	16
Contenido Humedad	15.60	17.91	12.51	16.15	27.56	27.34

Nota. En la tabla 4, se presentan los resultados obtenidos para nuestras seis calicatas respecto a la clasificación SUCS se obtuvo para la C1 un suelo de arena limosa, C2 limo arenoso, C3 y C4 fue de arena limosa con graba y para C4 y C5 un suelo limoso; respecto a la clasificación AASHTO se obtuvieron para C1, C2, C5 y C6 suelos arcillosos, C3 y C4 grava y arena limosa o arcilla, su contenido de humedad del suelo en su estado natural para las seis calicatas fueron de 15.60, 17.91, 12.51, 16.15, 27.56 y 27.34%, también se muestra el resultado de gravas, arenas y finos que pasan por el tamiz 200 y por último se evidencia los resultados de los límites de consistencia como son el límite líquido, limite plástico y el índice de plasticidad.

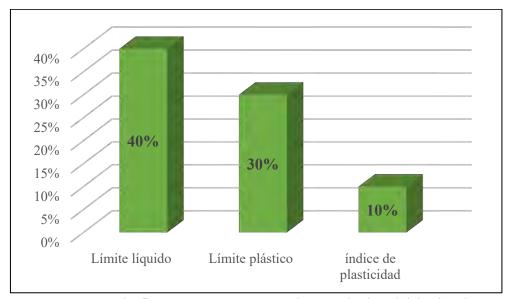

Figura 61
Resumen de los componentes de la muestra

Nota. En la figura 61, se presentan los resultados de cada muestra que pasa por el tamiz nº 200, para así poder ver los componentes que esta tiene como es el caso de los finos, arenas y las gravas.

Figura 62


Límite de consistencia de la calicata 01

Nota. En la figura 62, se presentan los resultados del límite de consistencia de la calicata 01, donde se observa que dicho material tiene un límite líquido de 42%, limite plástico de 31 y el índice de plasticidad de 11%.


Figura 63

Límite de consistencia de la calicata 02

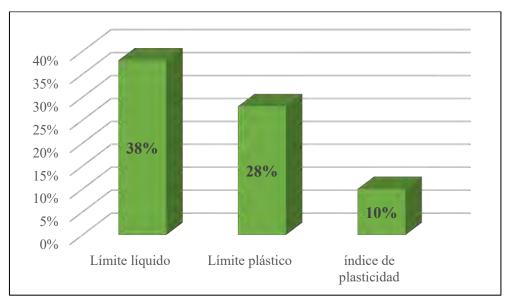
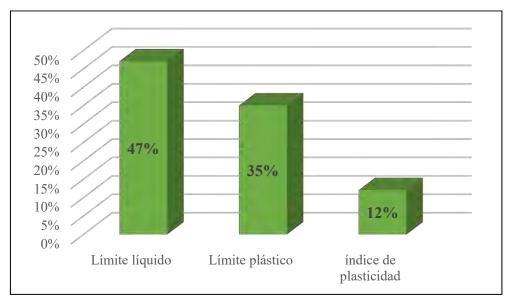
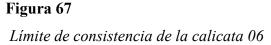
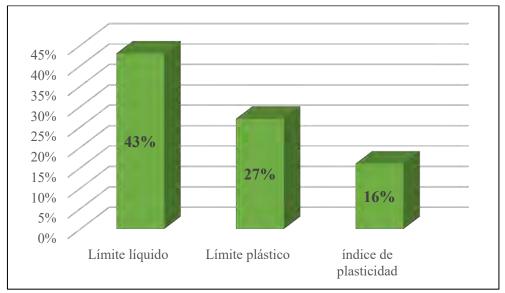

Nota. En la figura 63, se presentan los resultados del límite de consistencia de la calicata 02, donde se observa que dicho material tiene un límite líquido de 40%, limite plástico de 27 y el índice de plasticidad de 13%.

Figura 64 *Límite de consistencia de la calicata 03*

Nota. En la figura 64, se presentan los resultados del límite de consistencia de la calicata 03, donde se observa que dicho material tiene un límite líquido de 40%, limite plástico de 30 y el índice de plasticidad de 10%.


Figura 65 *Límite de consistencia de la calicata 04*


Nota. En la figura 65, se presentan los resultados del límite de consistencia de la calicata 04, donde se observa que dicho material tiene un límite líquido de 38%, limite plástico de 28 y el índice de plasticidad de 10%.


Figura 66

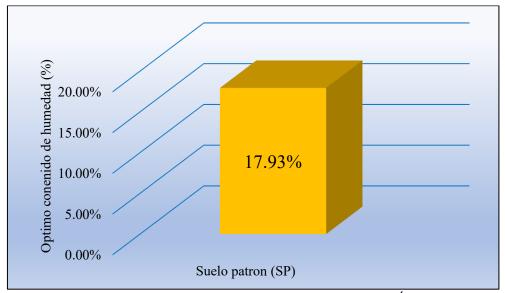
Límite de consistencia de la calicata 05

Nota. En la figura 66, se presentan los resultados del límite de consistencia de la calicata 05, donde se observa que dicho material tiene un límite líquido de 47%, limite plástico de 35 y el índice de plasticidad de 12%.

Nota. En la figura 67, se presentan los resultados del límite de consistencia de la calicata 06, donde se observa que dicho material tiene un límite líquido de 43%, limite plástico de 27 y el índice de plasticidad de 16%.

3.2.3. Proctor modificado

Para conocer el grado de compactación es necesario relacionar el contenido de humedad y la densidad seca, con ello se obtendrá una curva de compactación.


 Tabla 5

 Resumen del Proctor modificado del suelo natural

Descripción del suelo	Nº de ensayo	Óptimo contenido de humedad (%)	Máxima densidad seca (gr/cm³)
Cuala matuán (CD)	1	18.00	1.682
Suelo patrón (SP)	2	17.85	1.689
Valor final		17.93%	1.686gr/cm ³

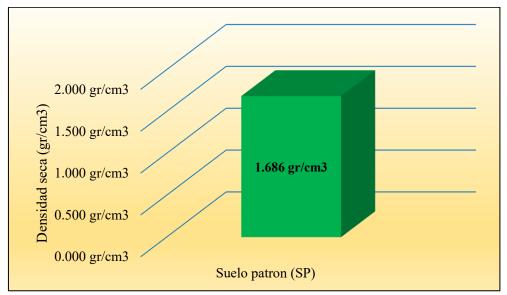

Nota. En la tabla 5, se presentan los resultados obtenidos del ensayo del Proctor modificado en su estado natural, donde se muestra el Óptimo contenido de humedad y la máxima densidad seca.

Figura 68Óptimo Contenido de Humedad de la calicata 06

Nota. En la figura 68, se presentan los resultados del Óptimo contenido de humedad de la calicata 06 de la muestra de suelo en su estado natural, la cual se obtiene un resultado de 17.93%.

Figura 69 *Máxima Densidad Seca de la calicata 06*

Nota. En la figura 69, se presentan los resultados de la Máxima Densidad Seca de la calicata 06 de la muestra de suelo en su estado natural, la cual se obtiene un resultado de 17.93%.

3.2.4. Capacidad de Soporte (CBR)

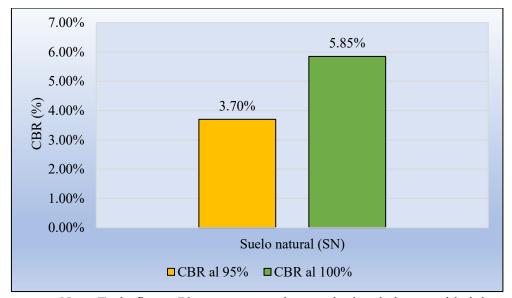

Para conocer el CBR de las muestras se hace la prueba donde se realiza una penetración de pistón en la muestra compactada, bajo velocidades uniformes por minuto, mediante un aparato medidor de expansión y con las muestras sumergidas en agua durante cuatro días para poder simular el estado crítico y la carga de presión de un supuesto pavimento.

Tabla 6Resumen del CBR del suelo natural

Descripción del suelo	CBR al 95%	CBR al 100%
Suelo natural (SN)	3.70	5.85

Nota. En la tabla 6, se presentan los resultados obtenidos del ensayo de soporte más conocido como el ensayo de CBR, dichos resultados son presentados en su estado natural, donde se muestra valores de CBR al 95 y 100%.

Figura 70Capacidad de soporte de CBR de la calicata 06

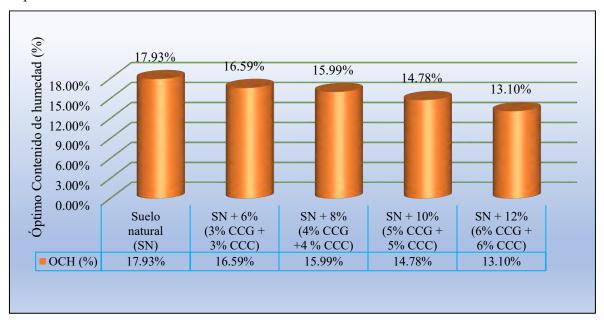
Nota. En la figura 70, se presentan los resultados de la capacidad de soporte de CBR de la calicata 06 de la muestra de suelo en su estado natural, la cual se obtiene dos resultados al 95 y al 100% que fueron de 3.70% y 5.85%.

3.3. Resultado del objetivo específico 2:

Determinar la influencia sobre las principales características mecánicas del suelo de subrasante con la adición de 6%, 8%, 10% y 12% de cáscara de guaba y café.

3.3.1. Proctor modificado con adiciones de ceniza

Para conocer el grado de compactación es necesario relacionar el contenido de humedad y la densidad seca, con ello se obtendrá una curva de compactación.


 Tabla 7

 Resumen del Proctor modificado del suelo natural

Descripción del suelo	Optimo contenido de humedad (%)	Máxima densidad seca (gr/cm³)
Suelo natural (SN)	17.93	1.686
SN + 6% (3% CCG + 3% CCC)	16.59	1.699
SN + 8% (4% CCG +4 % CCC)	15.99	1.772
SN + 10% (5% CCG + 5% CCC)	14.78	1.789
SN + 12% (6% CCG + 6% CCC)	13.10	1.819

Nota. En la tabla 7, se presentan los resultados obtenidos del ensayo del Proctor modificado con las adiciones de ceniza, donde se muestra el Óptimo contenido de humedad y la máxima densidad seca.

Figura 71Óptimo Contenido de Humedad con las adiciones de ceniza de la calicata 06

Nota. En la figura 71, se presentan los resultados del Óptimo contenido de humedad de la calicata 06 de la muestra de suelo con las adiciones de ceniza, se puede apreciar que a mayor incorporación del aditivo menor será el óptimo contenido de humedad, por ejemplo, al incorporar un 12% de ceniza (6% CCC + 6% CCG) la muestra natural se redujo de 17.93% a un 13.10%.

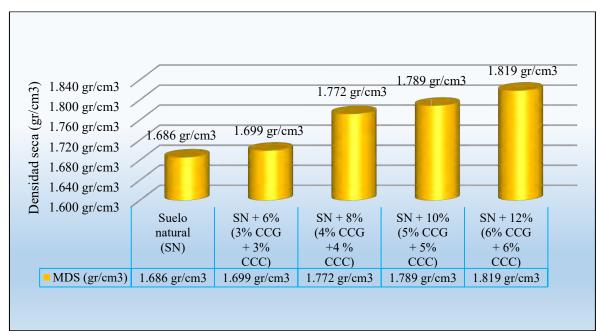


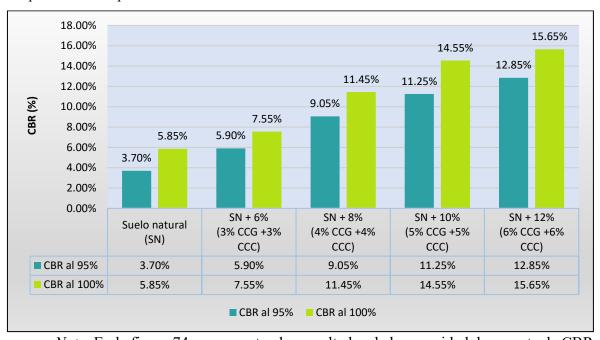
Figura 72

Máxima Densidad Seca con las adiciones de ceniza de la calicata 06

Nota. En la figura 72, se presentan los resultados de la máxima densidad seca de la calicata 06 con las adiciones de ceniza, se puede apreciar que la densidad es directamente proporcional a la adición de ceniza, es decir que a mayor dosificación resulta también mayor el valor de la densidad, por ejemplo, al incorporar un 12% de ceniza (6% CCC + 6% CCG) la muestra natural aumenta de 1.686 gr/cm³ a un 1.819gr/cm³.

3.3.2. Capacidad de Soporte (CBR) con las adiciones de ceniza

Para conocer el CBR de las muestras se hace la prueba donde se realiza una penetración de pistón en la muestra compactada, bajo velocidades uniformes por minuto, mediante un aparato medidor de expansión y con las muestras sumergidas en agua durante cuatro días para poder simular el estado crítico y la carga de presión de un supuesto pavimento.


Tabla 8Resumen del CBR del suelo natural

Descripción del suelo	CBR al 95%	CBR al 100%
Suelo natural (SN)	3.70	5.85
SN + 6% de ceniza (3% CCG + 3% CCC)	5.90	7.55
SN + 8% de ceniza (4% CCG + 4% CCC)	9.05	11.45
SN + 10% de ceniza (5% CCG + 5% CCC)	11.25	14.55
SN + 12% de ceniza (6% CCG + 6% CCC)	12.85	15.65

Nota. En la tabla 6, se presentan los resultados obtenidos del ensayo de CBR, son presentados en su estado natural, donde se muestra valores de CBR al 95 y 100%.

Figura 73

Capacidad de soporte de CBR con las adiciones de ceniza de la calicata 06

Nota. En la figura 74, se presentan los resultados de la capacidad de soporte de CBR de la calicata 06 de la muestra de suelo con las adiciones de ceniza, la cual se obtiene dos resultados de CBR al 95 y al 100%, donde se muestra que al realizarse la prueba de CBR se puede apreciar que tiene un efecto positivo de la CCC y CCG en el suelo arcilloso, donde el porcentaje de CBR es directamente proporcional a la cantidad de aditivo es decir que a mayor dosificación resulta también mayor el valor de CBR, por ejemplo con la adición de suelo natural se obtuvo un valor de CBR al 95% de 3.70% y al 100% de 5.85%, al incorporar un 12% de ceniza (6% CCC + 6% CCG) la muestra natural se obtuvo un valor de CBR al 95% de 12.85% y al 100% de 15.65%.

3.4. Resultado del objetivo específico 3:

Establecer el costo de la ceniza de cáscara de guaba y café en comparación con el estabilizador químico cemento.

Tabla 9Resumen del costo para la obtención de la ceniza de guaba y café

Itom	Descripción	Unidad	Cantidad	Costo Unitario	Costo parcial
Item	Descripcion	Uniuau	Cantidad	S/.	S/.
1	RECOLECCIÓN DE LA CÁSCARA				
1.1	Recolección de cáscara de guaba	GLB	1.00	0.83	0.83
1.2	Recolección de cáscara de café	GLB	1.00	0.83	0.83
2	SECADO DE LA CÁSCARA				
2.1	Secado de cáscara de guaba	GLB	1.00	4.67	4.67
2.2	Secado de cáscara de café	GLB	1.00	4.67	4.67
3	TRANSPORTE DE LA CÁSCARA				
3.1	Transporte de cáscara de guaba	GLB	1.00	1.67	1.67
3.2	Transporte de cáscara de café	GLB	1.00	1.67	1.67
4	QUEMADO DE LA CÁSCARA				
4.1	Quemado de cáscara de guaba	GLB	1.00	3.75	3.75
4.2	Quemado de cáscara de café	GLB	1.00	3.75	3.75
5	SACO PARA GUARDAR LA CENIZA				
5.1	Saco polipropileno tejido color blanco	Und	20.00	0.20	4.00
6	RECOLECCIÓN DE LA CENIZA				
6.1	Recolección de la ceniza de guaba y café	GLB	1.00	1.25	1.25
Costo total					S/ 27.09

Nota. En la tabla 9, se presenta el resultado referente al costo para la obtención de 42.5 kg de ceniza que se elaboró a base de la cáscara de guaba y café donde se muestra todos los gastos que se siguen hasta obtener dicho componente, para posterior tener que establecer una comparación con el costo de la bolsa de cemento.

IV. DISCUSIÓN

Del objetivo general, se pudo comprobar que el CBR al 95 y 100% M.D.S del suelo en su estado natural tuvo como resultado 3.70% y 5.85%, en sus adiciones de 6, 8, 10 y 12% de cáscara de ceniza de guaba y café, la que mejor participación entre sus dosificaciones establecidas fue la adición de 12% en sus proporciones de (6% CCG + 6% CCC) a la mezcla de suelo natural, con la que se obtuvieron CBR al 95 y 100% M.D.S de 12.85% y 15.65%, estos resultados se pueden comparar con los obtenidos por otros autores como Ormeño y Rivas (2020) en la que tuvieron el ensayo de CBR al 100% M.D.S de la muestra en su estado natural como resultado 4.30% pero al añadir 10%, 15%, 20% y 25% la que mejor participación entre sus dosificaciones establecidas fue la adición de 25%, con la que se obtuvieron CBR al 100% M.D.S de 23.70%; también se compara con la investigación de Breña (2022) en la que obtuvo como resultado para la muestra patrón para un CBR al 100% la M.D.S de 37.60%, con las dosificaciones del 5, 10, 15% de ceniza de cáscara de pacay, la que mejor aporte obtuvo fue la del 10%, obteniendose un CBR al 100% M.D.S de 49.30%; y por ultimo se compara con la investigación de Palacios y Villalobos (2021) en la que obtuvieron como resultado del ensayo de California Bearing Radio un CBR al 100% M.D.S de la muestra en su estado natural como resultado 4.80% pero al añadir 2%, 4% y 8% de ceniza de cal, la que mejor participación entre sus dosificaciones establecidas fue la adición de 8%, ya que se obtuvieron CBR al 100% M.D.S de 111.00%. Luego de realizar estas comparaciones se puede deducir que con las adiciones de ceniza se mejora la calidad de CBR pasando de un suelo de mala calidad a un suelo optimo y mejor.

Luego de desarrollar el primer objetivo específico, se ha obtenido como resultado ensayos para las propiedades físicas del suelo en su estado natural, en primer lugar, se determinó dos tipos de suelos según su clasificación SUCS los cuales son SM (arena limosa) y ML (limo arenoso) y con la clasificación ASSHTO corresponden a dos tipos diferentes los cuales son A-7-5 (suelos arcillosos) y A-2-4 (grava y arena limosa o arcilla), el contenido de humedad promedio fue de 18%, los límites de consistencia de LL= 42%, LP= 30% e IP= 12%; además respecto a las propiedades mecánicas del suelo en su estado natural fue OCH = 17.93%, MDS= 1.686 gr/cm3, el CBR al 95% y 100% fue de 3.70% y 5.855%, estos resultados se pueden comparar con los obtenidos por otros investigadores como Alvarez y Fuentes (2022) en la que obtuvieron como resultado en la clasificación SUCS un tipo de suelo CL (arcillas inorgánicas de baja plasticidad) y en la clasificación AASHTO fue A-7-6 (suelo limoso), el contenido de humedad promedio fue de 15%, los límites de consistencia

promedio fue LL= 45.4%, LP= 26.8% e IP= 18.6%, los ensayos de las propiedades mecánicas de suelo en su estado natural de dos calicatas las cuales fueron OCH = 23.6% y 21.4%, MDS= 1.633 gr/cm3 y 1.65 gr/cm3, los resultados de CBR al 95% fueron de 1.10% y 2.00; también se compara con la investigación de Galvez y Santoyo (2019) que obtuvieron como resultado en la clasificación SUCS un tipo de suelo CL (suelos arcillosos de baja plasticidad) y en la clasificación AASHTO fue A-6(4) (suelo arcilloso), el contenido de humedad promedio fue de 14%, los límites de consistencia fue LL= 36%, LP= 25% e IP= 11%, además se determinó también los ensayos de las propiedades mecánicas de suelo en su estado natural las cuales fueron OCH = 14.35%, MDS= 1.751 gr/cm3, los resultados de CBR al 95% fueron de 3.92; y por último se compara con la investigación de Quispe y Quispe (2022) que obtuvieron como resultado en la clasificación SUCS un tipo de suelo CL (suelos arcillosos de baja plasticidad) y en la clasificación AASHTO fue A-7-5(10) (suelo arcilloso), el contenido de humedad promedio fue de 13.49%, los límites de consistencia fue LL=41%, LP= 29% e IP= 12%, los ensayos de las propiedades mecánicas de suelo en su estado natural las cuales fueron OCH = 12.00%, MDS= 1.579 gr/cm3, los resultados de CBR al 95% fueron de 2.70%. Luego de realizar estas comparaciones se puede deducir que, es indispensable mejorar el suelo con adiciones de ceniza ya que el CBR en todos los casos vistos anteriormente da como resutado una subrasante de mala calidad.

Luego de desarrollar el segundo objetivo específico, la cual consistió en determinar las características mecánicas del suelo con las adiciones de 6%, 8%, 10% y 12% de ceniza cáscara de guaba y café, se ha obtenido como resultado que añadiendo (3% CCG + 3% CCC) una máxima densidad seca de 1.699 gr/cm3, óptimo contenido de humedad de 16.59%, el CBR al 95% y 100% fue de 5.90% y 7.55%, añadiendo (4% CCG + 4% CCC) una máxima densidad seca de 1.772 gr/cm3, un óptimo contenido de humedad de 15.99%, el CBR al 95% y 100% fue de 9.05% y 11.45%, añadiendo (5% CCG + 5% CCC) una máxima densidad seca de 1.789 gr/cm3, un óptimo contenido de humedad de 14.78% el CBR al 95% y 100% fue de 11.25% y 14.55% y añadiendo (6% CCG + 6% CCC) una máxima densidad seca de 1.819 gr/cm3, un óptimo contenido de humedad de 13.10%, el CBR al 95% y 100% fue de 12.85% y 15.65%, estos resultados también se compararan con los obtenidos por otros investigadores como Pintado y Siesquen (2021) donde al agregar 15%, 20% y 25% de ceniza de cáscara de café se obtuvo los siguientes resultados, incorporando 15% CCC se obtuvo una máxima densidad seca de 2.075 gr/cm3, óptimo contenido de humedad de 11.20%, CBR al 95 y 100% fueron de 23.30 y 44.50%, incorporando 20% CCC se obtuvo una máxima

densidad seca de 2.158 gr/cm3, óptimo contenido de humedad de 9.42%, CBR al 95 y 100% fueron de 22.30 y 60.40% y por último incorporando 25% CCC se obtuvo una máxima densidad seca de 2.133 gr/cm3, óptimo contenido de humedad de 10.40%, CBR al 95 y 100% fueron de 14.40 y 58.30%; también se compara con la investigación de Breña (2022) la cual consistio en determinar las características mecánicas del suelo con las adiciones de 5%, 10% y 15% de ceniza cáscara de pacay, se ha obtenido como resultado que añadiendo 5% CCP una máxima densidad seca de 2.129 gr/cm3, óptimo contenido de humedad de 8.60, el CBR al 95% y 100% fue de 32.20% y 41.40%, añadiendo 10% CCP una máxima densidad seca de 2.110 gr/cm3, un óptimo contenido de humedad de 8.90%, el CBR al 95% y 100% fue de 31.80% y 49.30%, añadiendo 15% CCP una máxima densidad seca de 2.093 gr/cm3, un óptimo contenido de humedad de 9.10% el CBR al 95% y 100% fue de 34.80% y 44.40%; por último se compara con la investigación de Rojas (2021) la cual consistio en determinar las caracteristicas mecánicas del suelo con las adiciones de 8%, 12% y 30% de ceniza de bagazo de caña de azúcar, se ha obtenido como resultado que añadiendo 8% CBCA una máxima densidad seca de 2.194 gr/cm3, óptimo contenido de humedad de 8.69, el CBR al 95% y 100% fue de 17.50% y 27.70%, añadiendo 12% CBCA una máxima densidad seca de 1.959 gr/cm³, un óptimo contenido de humedad de 15.10%, el CBR al 95% y 100% fue de 10.10% y 12.10%, añadiendo 30% CBCA una máxima densidad seca de 1.592 gr/cm³, un óptimo contenido de humedad de 19.80% el CBR al 95% y 100% fue de 6.00% y 9.80%. Luego de realizar estas comparaciones se puede deducir que todo porcentaje en proporciones adecuadas de adición de ceniza genera mejora en sus propiedades mecanicas del suelo.

Luego de desarrollar el tercer objetivo especifico, la cual consistio en establecer el costo de la ceniza de cáscara de guaba y café en comparación con el estabilizador químico (cemento), se ha obtenido como resultado que para la elaboración de 42.5 kg de ceniza a base de cáscara de guaba y café que equivale al peso de una bolsa de cemento, un costo de S/.27.09, siendo este menor en 19.13% al costo equivalente de una bolsa de cemento que es de S/.33.50, estos resultados también se compararán con los obtenidos por otros investigadores como Guerrero (2020), la cual al comparar el costo unitario por metro cubico de afirmado de la muestra patrón es de S/.56.13 y el costo unitario con el porcentaje óptimo de 4% CCC es de S/.54.81. Luego de realizar estas comparaciones se puede deducir que al usar la ceniza natural de cualquier componente que se encuentre en la zona es más rentable puesto que nos permite incrementar el CBR del afirmado y nos ayuda a economizar gastos en los proyectos.

V. CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

Luego de evaluar la influencia de ceniza de cáscara de guaba y café en sus diferentes porcentajes de adición, se concluye que la subrasante si fue mejorada, determinando que la adición del 12% de ceniza es la más óptima, debido a que se mejoran sus propiedades mecánicas aumentando su CBR en un 9.8%.

Respecto a las principales características físicas y mecánicas del suelo, se determinó respecto a sus propiedades físicas se trata de dos tipos de suelo arena limosa y limo arenoso, teniendo una clasificación SUCS de SM y LM y una clasificación AASHTO de A-7-5, A-6, A-2-4, A-7-5 y A-7-6; las propiedades mecánicas están expresadas con un valor de CBR al 95% y 100% de 3.70 % y 5.85%, una densidad máxima seca de 1.840 gr/cm³ y un óptimo contenido de humedad de 17.93 %.

Respecto a la influencia sobre las principales caracteristicas mecánicas del suelo con las adiciones respectivas, se determinó que con la incorporación del 3% CCG + 3% CCC se obtuvo una MDS de 1.699 gr/cm³, OCH de 16.59 % y un CBR al 95% y 100% de 5.90% y 7.55%; con la incorporación del 4% CCG + 4% CCC se obtuvo una MDS de 1.772 gr/cm³, OCH de 15.99% y un CBR al 95% y 100% de 9.05% y 11.45%, con la incorporación del 5% CCG + 5% CCC se obtuvo una MDS de 1.789 gr/cm³, OCH de 14.78% y un CBR al 95% y 100% de 11.25% y 14.25% y con la incorporación del 6% CCG + 6% CCC, se obtuvo una MDS de 1.819 gr/cm³, OCH de 13.10% y un CBR al 95% y 100% de 12.85% y 15.65%.

Se puede concluir que al usar la ceniza a base de cáscara de guaba y café, resulta ser más rentable en comparacion con el cemento ya que los costos para la obtencion de 42.5 kg es de S/.27.09 y para una bolsa de cemento con el mismo peso es de S/.33.50, siendo menor en 19.13%.

5.2. Recomendaciones

En la presente investigación al seleccionar ceniza de cáscara de guaba y café que iban desde un 6% hasta un 12%, en todas ellas se logra aumentar el CBR; para continuar con una futura investigación se recomienda incrementar mayor al 12% de incorporación de ceniza de guaba y café, para verificar si continúa aumentando el CBR, hasta poder obtener el valor óptimo.

Hacer un estudio en otro tipo de suelos para ver el efecto que causan las adiciones de ceniza de cáscara de guaba y café.

Estudiar el comportamiento de la adición de ceniza de cáscara de guaba y café en otros campos como en la elaboración de ladrillos, elaboración de morteros, concreto, pavimentaciones, elaboración de adobes, entre otros.

De nuestra investigacion se recomienda utilizar ceniza a base de cáscara de guaba y café, puesto que nos permite obtener mejoras sobre las características de subrasante y nos ayuda a economizar mayores gastos en los proyectos en comparacion con la utilización del cemento ya que son de menor costo.

VI. REFERENCIAS BIBLIOGRÁFICAS

- Alvarez Larreatigue, C. M., & Fuentes Salas, L. J. (2022). Ceniza de cáscara de café para mejora de la resistencia en subrasante con suelos arcillosos, Jaén. [Tesis de pregrado, Universidad César Vallejo]. Obtenido de https://hdl.handle.net/20.500.12692/95214
- Amena, S. (2021). Experimental study on the effect of plastic waste strips and waste brick powder on strength parameters of expansive soils. *Heliyon*, 7(11). doi:https://doi.org/10.1016/j.heliyon.2021.e08278
- Aybar Cárdenas, Y., & Villaroel Motta, F. J. (2022). *Incorporación de ceniza de cáscara de arroz para mejorar la estabilización del material de la subrasante, Pueblo Nuevo, Ica 2022.* [Tesis de pregrado,Universidad César Vallejo]. Obtenido de https://hdl.handle.net/20.500.12692/86924
- Banda Sánchez, D. R., & Paz Castro, J. M. (2021). Estabilización de suelos adicionando ceniza de paja de Pino en la vía carrozable Yacancate-El Ape, provincia de Cutervo- Cajamarca 2021. [Tesis de pregrado, Universidad César Vallejo].

 Obtenido de https://hdl.handle.net/20.500.12692/89892
- Bravo Sánchez, J. C., & Saldaña Becerra, L. (2021). *Influencia de la ceniza de cascarilla de café para aumentar la resistencia a la compresión en una losa aligerada, Jaén 2021*. [Tesis pregrado,Universidad César Vallejo]. Obtenido de https://hdl.handle.net/20.500.12692/75310
- Breña, L. (2022). Aplicación de ceniza de cáscara de pacay para mejorar la subrasante, carretera del sector de Alto Vaquería—Chanchamayo-Junín 2022. [Tesis de pregrado, Universidad César Vallejo]. Obtenido de https://hdl.handle.net/20.500.12692/109136
- Ccansaya Maldonado, R., & Tello Vargas, A. J. (2022). Análisis comparativo entre los métodos de estabilización por sustitución y por adición de cal de obra, para el mejoramiento de una subrasante arcillosa en la carretera Canta Huayllay KM 57-59. [Tesis de pregrado,Pontificia Universidad Católica del Perú]. Obtenido de http://hdl.handle.net/20.500.12404/23352

- Coronel Bances, Y. A., & Guerra Flores, N. J. (2022). Estabilidad de suelos adicionando ceniza de cáscara de arroz en camino rural La Lima de Huarango San Ignacio 2022. [Tesis de pregrado, Universidad César Vallejo]. Obtenido de https://hdl.handle.net/20.500.12692/114909
- Escobar Blas, G. E., & Reyes Asto, D. A. (2022). *Influencia de la ceniza de café y cáscara de huevo para la estabilización de subrasante de un pavimento flexible del tramo Santa Elena El Carmelo, Virú, 2022.* [Tesis de grado, Universidad Privada del Norte]. Obtenido de https://hdl.handle.net/11537/31294
- Ezema, N. M., Adinna, B., & Anayo, C. (2022). Effect of sugarcane bagasse ash and plantain leaf ash on geotechnical properties of clay soil from Efab Estate, Awka, Anambra State. *Nigerian Journal of Technology*, *41*(6), 949-954. doi:10.4314/njt.v41i6.4
- Galarza Alvarez, J. P. (2022). *Aplicación de Ceniza Organica en la Estabilizacion de Sub-Rasantes Arcillosas*. [Tesis de pregrado, Universidad Peruana los Andes]. Obtenido de https://hdl.handle.net/20.500.12848/4403
- Galvez Reyes, P. M., & Santoyo Villegas, J. K. (2019). Estabilización de Suelos Cohesivos a Nivel de Subrasante con Ceniza de Cáscara de Arroz, Carretera Yanuyacu Bajo Señor Cautivo. [Tesis de pregrado, Universidad Nacional de Jaén]. Obtenido de http://repositorio.unj.edu.pe/handle/UNJ/232
- Gil Santa Cruz, A., & García Sobrino, J. (2022). Influencia de las cenizas de cáscara de café en las propiedades física mecánicas del suelo en las vías de U.V.

 Casuerinas, U.V. Señor de la Justicia (Sector Norte), U.V. Héctor Aurich Soto (Sector Norte), distrito de Ferreñafe, Lambayeque, 2021. [Tesis de grado,Universidad Nacional José Faustino Sánchez Carrión]. Obtenido de http://repositorio.unjfsc.edu.pe/handle/UNJFSC/5775
- Gonzales Perez, Y. M. (2022). Estudio de la influencia de las cenizas de carbón en las propiedades mecánicas de un suelo arcilloso con fines de pavimentación. [Tesis de grado, Universidad Señor de Sipán]. Obtenido de https://hdl.handle.net/20.500.12802/10340

- Gutiérrez Rodríguez, W. Á. (2023). Ensayo granulométrico de los suelos mediante el método del tamizado. *Ciencia Latina Revista Científica Multidisciplina*, 7(2). doi:https://doi.org/10.37811/cl_rcm.v7i2.5834
- Kishor, R., Singh, V. P., & Srivastava, R. K. (2022). Mitigation of Expansive Soil by Liquid Alkaline Activator Using Rice Husk Ash, Sugarcane Bagasse Ash for Highway Subgrade. *International Journal of Pavement Research and Technology*, 15(4), 915-930. doi:https://doi.org/10.1007/s42947-021-00062-w
- Laos Elera, C. G. (2022). Efecto de las cenizas de la biomasa de palma de aceitera en la estabilización de suelos arcillosos a nivel de subrasante, Huánuco 2022. [Tesis de grado, Universidad Nacional Hermilio Valdizan]. Obtenido de https://hdl.handle.net/20.500.13080/8320
- Marin Abanto, N. K. (2023). Influencia de la Aplicación de Cloruro de Sodio en la Estabilización de Suelos Arcillosos para Uso como Subrasante Mejorada del Pavimento de la Carretera Cajamarca Huacariz 2021. [Tesis pregrado,Universidad Nacional de Cajamarca]. Obtenido de http://hdl.handle.net/20.500.14074/5793
- Ministerio de Transportes y Comunicaciones (MTC). (2014). Manual de carreteras suelos geología, geotecnia y pavimentos. Obtenido de http://transparencia.mtc.gob.pe/idm_docs/P_recientes/4515.pdf
- Ministerio de Transportes y Comunicaciones (MTC). (2016). *Manual de ensayo de materiales*. Obtenido de https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/manuales.html
- Montejo Rodolfo, R., Raymundo Juárez, J. E., & Chávez Ancajima, J. S. (2020).

 Materiales alternativos para estabilizar suelos: el uso de ceniza de cáscara de arroz en vías de bajo tránsito de Piura. *ZHOECOEN*, *12*(1), 131-140. Obtenido de https://doi.org/10.26495/tzh.v12i1.1251
- Munirwan, R. P., Taha, M. R., Mohd Taib, A., & Munirwansyah, M. (2022). Shear Strength Improvement of Clay Soil Stabilized by Coffee Husk Ash. *Applied Sciences*, *12*(11), 5542. doi:https://doi.org/10.3390/app12115542

- Ormeño Moquillaza, E. A., & Rivas Vicente, N. E. (2020). Estudio experimental para determinar la influencia de la aplicación de Cenizas de Cáscara de Arroz (RHA) en la estabilización de una subrasante de suelo arcilloso de baja plasticidad en Chota- Cajamarca. [Tesis de pregrado, Universidad de Ciencias Aplicadas].

 Obtenido de http://hdl.handle.net/10757/653974
- Palacios Chuquiruna, R., & Villalobos Ascurra, J. G. (2021). Estabilización del suelo adicionando Cal para Mejorar el CBR de la carretera del Huito tramo km0+100 al km1+100, Jaén 2021. [Tesis de pregrado, Universidad César Vallejo]. Obtenido de https://hdl.handle.net/20.500.12692/80432
- Piedra Tineo, J. L., Vásquez Acosta, J. J., & Arriola Carrasco, G. G. (2021). Evaluación de la estabilidad de un suelo expansivo utilizando ceniza de cáscara de arroz, distrito de Jaén, Cajamarca, Perú. *INGENIERÍA: Ciencia, Tecnología e Innovación, 8*(2). doi:https://doi.org/10.26495/icti.v8i2.1914
- Quispe Chuquicusma, H., & Quispe Olivera, A. (2022). Estabilización de suelos arcillosos de subrasante adicionando ceniza de arroz y café para obras viales en Jaén 2022. [Tesis de pregrado, Universidad César Vallejo]. Obtenido de https://hdl.handle.net/20.500.12692/110943
- Ricardo Dennis , G. R. (2023). *Influencia de agregado de ceniza de pulpa de café para estabilización de la vía Chontalí Pachapiriana km 0 a km 9.5 km Jaén, 2022.* [Tesis de pregrado, Universidad Privada del Norte]. Obtenido de https://hdl.handle.net/11537/33586
- Rojas Gálvez, J. A. (2021). *Influencia de ceniza de caña en la subrasante de la trocha carrozable del centro poblado San Antonio, Cajamarca 2021*. [Tesis de pregrado, Universidad César Vallejo]. Obtenido de https://hdl.handle.net/20.500.12692/85763
- Ruiz Burga, F. (2023). Evaluación de la incorporación de polvo de piedra chancada en la subrasante deteriorada por deformación, carretera Chota Shitacucho. [Tesis de licenciatura, Universidad nacional Autónoma de Chota].
- Tamiru, M. (2023). Suitability of Enset Fiber with Coffee Husk Ash as Soil Stabilizer.

 *American Journal of Civil Engineering, 11(1), 1-8.

 doi:10.11648/j.ajce.20231101.11

- Thanappan, S., Khan, R., Chimdi, J., Eshete, H., Midekso, H., Amare, H., . . . Taeme, H. (2021). Coffee Husk Ash and Cement as Special Ingredients: Stability Analysis on Black Cotton Soil. *American Journal of Engineering Research (AJER)*, 10, 160-167.
- Torres Goicochea, J. (2022). Mejoramiento de las propiedades mecánicas de suelos arcillosos mediante la adición de ceniza de cascarilla de arroz para la pavimentación de la carretera Santa Rosa de Combayo, Cajamarca, 2021. [Tesis de pregrado, Universidad Privada del Norte]. Obtenido de https://hdl.handle.net/11537/31616
- Vargas, Y., Gutierrez, Y., & Rojas, J. (2020). Estabilización de afirmado con ceniza proveniente de desechos de cascarilla de café para aplicar en suelos de construcción de vías. [Tesis de licenciatura,Universidad Cooperativa de Colombia]. Obtenido de http://hdl.handle.net/20.500.12494/17462
- Zaika, Y., & Suryo, E. (2020). The durability of lime and rice husk ash improved expansive soil. *International Journal of GEOMATE*, 18(65), 171-178. doi:http://dx.doi.org/10.21660/2020.65.5539

AGRADECIMIENTO

A Dios, porque él es el dueño de todo, permitirme por llegar a cumplir una meta tan importante en mi vida y que sea para la gloria suya.

A mis amados padres por ser mi motivación, para culminar mi carrera profesional.

A mis hermanos porque siempre he contado con ellos, con respecto a lo económico.

A mi compañero de tesis Jhon Breiner por haber sido parte de esta investigación, por su paciencia y ánimo cuando estuve por momentos difíciles.

A mis asesores por su disposición y enseñanza, quienes nos orientaron para el desarrollo de la tesis.

A nuestros docentes quienes nos forjaron conocimientos aptos para la carrera de Ingeniería Civil

Mejía Seclén Abel Eduardo

Agradezco a Dios por darme la salud y sabiduría para culminar con éxito parte de mis objetivos trazados, que es la realización de mi tesis.

A mis amados padres: Segundo Vasquez y Luzbinda Perez, quienes son y serán mi motor y motivo de superación y por todo su apoyo incondicional, sus consejos que me brindaron constantemente tras el largo recorrido de mi carrera profesional.

A mis hermanos y familiares cercanos que con sus palabras de aliento me impulsaron alcanzar mis metas para seguir forjándome como un profesional de éxito, lleno de valores.

A mi asesor de tesis: Dr. Marco Antonio Martínez Serrano, por difundir su conocimiento, paciencia y sabiduría para la realización de este trabajo de investigación.

A la Universidad Nacional de Jaén, por impartirme nuevo conocimiento y llenar mi carrera profesional de sabiduría a través de sus docentes, proporcionándome educación de calidad y su constante búsqueda de la excelencia en sus alumnos, plana docente y administrativos quienes los conforman.

Vasquez Perez Jhon Breiner

DEDICATORIA

A Dios porque él es el dador de la vida y la salud, permitiéndome así, cumplir mis metas y objetivos en lo personal y profesional.

A mis amados padres; Manuel Mejía y Bertha Seclén, por el apoyo constante que, durante mis cinco años de mi carrera, que con sacrificio y amor me apoyaron en mi formación profesional. A su vez por su motivación y perseverancia fueron mi inspiración para seguir adelante.

A mis hermanos Lenin y Alejandro, ellos son el reflejo de varones ejemplares de cómo superarme en la vida.

Mejía Seclén Abel Eduardo

A Dios, que por medio de su gracia y misericordia he logrado concluir mi carrera y realizar con éxito el presente trabajo de investigación.

Con todo amor dedico este proyecto de tesis a mis padres: Segundo Vasquez y Luzbinda Perez, pues sin ellos no lo había logrado. Sus bendiciones a diario a lo largo de mi vida me llevan por el camino correcto. Pues les doy mi trabajo como símbolo de mi constante lucha que representa un escalón más y que forma parte de mi carrera como futuro profesional.

A mis hermanos y todos mis seres queridos, por su apoyo incondicional porque sus palabras de aliento me sirvieron para fortalecer mi conocimiento lleno de sabiduría.

Vasquez Perez Jhon Breiner

ANEXOS

Anexo 1. OPERACIONALIZACIÓN DE VARIABLES

Tabla 10 *Operalización de variables*

Variable	ariable Dimensión Indicadores Unidad		Unidad	Técnica de recolección de datos	Instrumento de recolección de datos
		Contenido de humedad	%	Observación	Guía de observación (MTC E 108)
		Granulometría	%	Observación	Guía de observación (MTC E 107)
		Límite líquido	%	Observación	Guía de observación (MTC E 110)
Variable dependiente: Características del	Propiedades físicas y mecánicas	Límite plástico	-	Observación	Guía de observación (MTC E 111)
suelo		Índice de plasticidad	-	Observación	Guía de observación (MTC E 111)
		Peso especifico	-	Observación	Guía de observación (MTC E 206)
		Proctor	%		Guía de observación (MTC E 115)
		CBR	%	Observación	Guía de observación (MTC E 132)
Variable independiente:		Al 6%	Kg	Observación	Guía de observación
Ceniza de café y guaba	Peso de las	Al 8%	Kg	Observación	Guía de observación
	cenizas	Al 10%	Kg	Observación	Guía de observación
		Al 12%	Kg	Observación	Guía de observación

Anexo 2. MATRIZ DE CONSISTENCIA

Tabla 11 *Matriz de consistencia*

TÍTULO	PROBLEMA	HIPÓTESIS	OBJETIVO GENERAL	TIPO Y DISEÑO DE INVESTIGACIÓN	TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DA DATOS	
Influencia de la ceniza de	La carretera que conecta los pueblos Las Delicias con el Centro Poblado Granadillas, es una vía la cual no se ha realizado mantenimiento a nivel de afirmado por más de 10 años, presentando en la actualidad muchos deterioros a nivel de subrasante.	La ceniza de cáscara de guaba y café mejora en 10% las características de subrasante, carretera Las Delicias – Granadillas, Jaén, 2024.	Determinar la influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, carretera las Delicias – Granadillas, Jaén, 2024	Esta Investigación es de tipo cuantitativa y diseño experimental	Técnica: observación. Instrumento: Normas de suelos	
cáscara de guaba y café sobre las	FORMULACIÓN DEL PROBLEMA	JUSTIFICACIÓN	OBJETIVOS ESPECÍFICOS	VARIABLES	MÉTODO DE ANÁLISIS DE DATOS Estadística descriptiva	
características de subrasante, carretera Las Delicias – Granadillas, Jaén, 2024	¿Cómo influye la ceniza de cáscara de guaba y café sobre las características de subrasante, carretera Las Delicias – Granadillas, Jaén, 2024?	Tiene como finalidad aportar nuevos conocimientos acera del uso de ceniza como materiales orgánicos que se encuentran en la zona, apoyando de esta manera a otras investigaciones, por cuanto contribuye como una de las alternativas económicamente y sustentables para solucionar un problema.	-Identificar las principales características físicas y mecánicas del suelo a nivel de subrasante de la carretera Las Delicias – GranadillasDeterminar la influencia sobre las principales características mecánicas del suelo de subrasante con la adición de 6%, 8%, 10% y 12% de cáscara de guaba y caféEstablecer el costo de la ceniza de cáscara de guaba y café en comparación con el estabilizador químico cemento	Dependiente: Características de subrasante Independientes: Ceniza de cáscara de café y guaba	POBLACIÓN Y MUESTRA Población: Está conformada por el suelo de los 6km de carretera que une el caserío las Delicias con el Centro Poblado Granadillas. Muestra: Estará compuesta por el material que se obtendrá de seis calicatas incorporando ceniza de cáscara de café y guaba al 6%, 8%, 10% y 12% respecto al peso de muestra del suelo.	

Anexo 3. VALIDACIÓN DE INSTRUMENTOS DE RECOLECCIÓN DE DATOS

IA	R	5	n	C
LABORATORI	O DE S	UELOS	/ PAVII	MENTOS

INFORME DE ENSAYO

DETERMINACIÓN EN EL LABORATORIO DEL CONTENIDO DE AGUA (HUMEDAD) DE MUESTRAS DE SUELO, ROCA Y MEZCLAS DE SUELO- AGREGADO- NTC 339.217 / MTC E 108 / ASTM D-2216

TESIS REGISTRO №

SOLICITANTE ENSAYADO POR

MATERIAL ASIST. LAB
CALICATA: MUESTRA FECHA

LOCALIDAD PROFUNDIDAD

DISTRITO PROVINCIA REGIÓN

DATOS	PRUEBA № 1	DATOS
Recipiente N°		
W1 = Masa del recipiente con el suelo húrnedo (g)		
W2 = Masa del recipiente con el suelo seco (g)		
Wc = Masa del recipiente (g)		
Ww = Masa del agua (g)		
Ws = Masa de las partículas sólidas (seco) (g)		
W= Contenido de humedad (Ww / Ws) x 100 (%)		
CONTENIDO DE HUMEDAD PROMEDIO		

OBSERVACIONES

* No se descartaron o encontraron materiales ajenos al suelo ensayado

* Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCIÓN: CALLE LA COLINA NRO. 381 (MONTEGRANDE- A 1 CDRA MCADO SOL DIVINO) CAJAMARCA - JAÉN - JAÉN

Jesushun Smith Pernandus Corres angEntErio Civil. REG. CIP. 244336

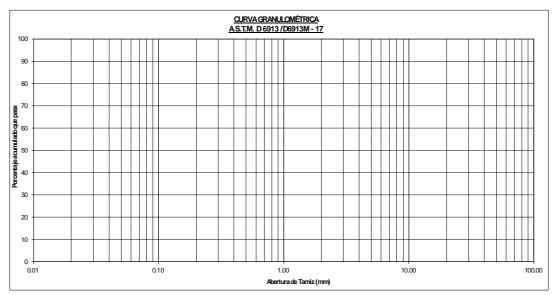
SHENJOE CHINCHAY JUCA INGENIERO CIVIL REG. CIP. 243337

REPORTE DE ENSAYO

DETERMINACIÓN EN LABORATORIO DEL ANÁLISIS GRANULOMÉTRICO DE SUELOS MEDIANTE TAMIZADO ASTM D6913 / D6913M -

17

TESIS REGISTRO N°


SOLICITANTE ENSAYADO POR
MATERIAL ASIST. LAB

CALICATA: MUESTRA FECHA
LOCALIDAD PROFUNDIDAD

DISTRITO PROVINCIA REGIÓN

Tamiz (Malla)	Abertura (mm)	Masa retenida (g)	Masa retenida (%)	Acumulado retenido (%)	Acumulado pasante (%)
3 in	76.20				
2 in	50.80				
1 1/2 in	38.10				
1 in	25.40				
3/4 in	19.00				
3/8 in	9.50				
N°4	4.75				
№10	2.00				
№20	0.840				
N° 40	0.425				
№ 60	0.250				
№ 100	0.150				
Nº 140	0.106				
Nº 200	0.075				

	CARACTERÍSTICAS DE LA MUESTRA			
	I. Clasificación visual			
	II. Tamaño máximo de la partícula			
	CONDICIONES DE ENSAYO			
	I. Método de ensayo			
	II. Tipo de tamizado			
	III. Tamiz separador			
	Masa inicial de la muestra seca (g)			
	1ra sep. : Fraccción ret. Limpia y seca (g)			
	Masa de la fracción fina seca (g)			
	%Tamiz separador < 2%(1ra sep.)			
	DISTRIBUCIÓN GRANULOM	IÉTRICA		
% Grava		% Grava Gruesa		
		% Arena Gruesa		
% Arena		%Arena media		
		% Arena fina		
%Finos	_	-		

OBSERVACIONES

- * No se descartaron o encontraron materiales ajenos al suelo ensayado
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCIÓN: CALLE LA COLINA NRO. 381 (MONTECRANDE- A1 CORA MCADO SOL DIVINO) CAJAMARCA- JAÉN - JAÉN

Josephan Srich Persondes Cornes INGENIERO CIVIL REG. CIP. 244336

ROSIEN JOE CHINCHY JUCA INGENIERO CIVIL REG. CIP. 243337

REPORTE DE ENSAYO

DETERMINACIÓN EN EL LABORATORIO DEL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD DE SUELOS ASTM D4318-

17E1

TESIS REGISTRO N° SOLICITANTE ENSAYADO POR ASIST. LAB MATERIAL CALICATA: MUESTRA FECHA LOCALIDAD PROFUNDIDAD DISTRITO PROVINCIA REGIÓN

TARA №	1	2	3	Promedio
Wt+ M.Húmeda (gr)				
Wt+ M. Seca (gr)				
Wagua (gr)				
Wtara (gr)				
WM. Seca (gr)				
W(%)				
NGOLPES				

	LIMITE PLASTICO					
TARA №	4	5	Promedio			
Wt+ M.Húmeda (gr)						
Wt+ M. Seca (gr)						
Wagua (gr)						
Wtara (gr)						
WM. Seca (gr)						
W(%)						

TEMPERATURA DI	E SECADO
PREPARACION DE	MUESTRA
CONTENIDO DE F	HUMEDAD
AGUA USA	DA

LIMITE	
LIQUIDO (%)	
LIMITE	
PLASTICO (%)	
INDICE	
DE PLASTICIDAD (%)	

				DIAGRAN	/IA DE FLUIDEZ	Z			
	25%								
	24%								4
(%)	23%								\dashv
MEDAD	22%								-
CONTENDO DE HUMBDAD (%)	21%								\dashv
SONTEN	20%								\dashv
	19%								-
	18% 25 NUMERO DE GOLPES								

UNIPUNTO					
Nº GOLPES	FACTOR				
N	К				
20	0.974				
21	0.979				
22	0.985				
23	0.990				
24	0.995				
25	1.000				
26	1.005				
27	1.009				
28	1.014				
29	1.018				
30	1.022				

OBSERVACIONES

No se descartaron o encontraron materiales ajenos al suelo ensayado
 Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCIÓN: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCADO SOL DIVINO) CAJAMARCA - JAÉN - JAÉN

TITULO DE LA INVESTIGACIÓN:

Influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, carretera Las Delicias — Granadillas, Jaén,2024

.....

TÉCNICA: JUICIO DE EXPERTO:

- 1. La opinión que usted brinde es personal y sincera.
- 2. Marque con un aspa "X" dentro del Cuadro de Valoración, solo una vez porcada criterio, el que usted considere su opinión sobre el cuestionario.
- 1: Muy Malo
- 2: Malo
- 3: Regular
- 4: Bueno
- 5: Muy Bueno

N°	CRITERIOS	VALORES			;		
		1	2	3	4	5	
1	Claridad:			x			
	Esta formulado con el lenguaje apropiado y comprensible			Х			
2	Objetividad:						
	Permite medir hechos observables				Х		
3	Actualidad:						
	Adecuado al avance de la ciencia y la tecnología				Х		
4	Organización:						
	Presentación ordenada			Х			
5	Suficiencia:				x		
	Comprende los aspectos en cantidad y claridad				Χ.		
6	Pertinencia:				x		
	Permite conseguir datos de acuerdo a objetivos				Χ.		
7	Consistencia:				.,		
	Permite conseguir datos basados en modelos teóricos				Х		
8	Coherencia:				.,		
	Hay coherencia entre las variables, indicadores e ítems				Х		
9	Metodología:						
	La estrategia responde al propósito de la investigación				Х		
10	Aplicación:					х	
	Los datos permiten un tratamiento estadístico pertinente						

Muchas gracias por su respuesta.

Julio 2023

Juan Rojas Hermanii. CIP. 173504 NGENIER

Firma del Juez Experto

TITULO DE LA INVESTIGACIÓN:

Influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, carretera Las Delicias — Granadillas, Jaén,2024

.....

TÉCNICA: JUICIO DE EXPERTO:

- 1. La opinión que usted brinde es personal y sincera.
- 2. Marque con un aspa "X" dentro del Cuadro de Valoración, solo una vez porcada criterio, el que usted considere su opinión sobre el cuestionario.
- 1: Muy Malo
- 2: Malo
- 3: Regular
- 4: Bueno
- 5: Muy Bueno

N°	CRITERIOS		VAL	ORES	5	
14	CRITERIOS	1	2	3	4	5
1	Claridad: Esta formulado con el lenguaje apropiado y comprensible			х		
2	Objetividad: Permite medir hechos observables			х		
3	Actualidad: Adecuado al avance de la ciencia y la tecnología			х		
4	Organización: Presentación ordenada			х		
5	Suficiencia: Comprende los aspectos en cantidad y claridad			х		
6	Pertinencia: Permite conseguir datos de acuerdo a objetivos				х	
7	Consistencia: Permite conseguir datos basados en modelos teóricos				х	
8	Coherencia: Hay coherencia entre las variables, indicadores e ítems				х	
9	Metodología: La estrategia responde al propósito de la investigación				х	
10	Aplicación: Los datos permiten un tratamiento estadístico pertinente			х		

Muchas gracias por su respuesta.

Julio 2023

Firma del Juez Experto

TITULO DE LA INVESTIGACIÓN:

Influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, carretera Las Delicias — Granadillas, Jaén,2024

.....

TÉCNICA: JUICIO DE EXPERTO:

- 1. La opinión que usted brinde es personal y sincera.
- 2. Marque con un aspa "X" dentro del Cuadro de Valoración, solo una vez porcada criterio, el que usted considere su opinión sobre el cuestionario.
- 1: Muy Malo
- 2: Malo
- 3: Regular
- 4: Bueno
- 5: Muy Bueno

N°	CRITERIOS		VALORES			
IN	CRITERIOS	1	2	3	4	5
1	Claridad: Esta formulado con el lenguaje apropiado y comprensible			х		
2	Objetividad: Permite medir hechos observables					х
3	Actualidad: Adecuado al avance de la ciencia y la tecnología			х		
4	Organización: Presentación ordenada			х		
5	Suficiencia: Comprende los aspectos en cantidad y claridad				х	
6	Pertinencia: Permite conseguir datos de acuerdo a objetivos				х	
7	Consistencia: Permite conseguir datos basados en modelos teóricos			х		
8	Coherencia: Hay coherencia entre las variables, indicadores e ítems			х		
9	Metodología: La estrategia responde al propósito de la investigación				х	
10	Aplicación: Los datos permiten un tratamiento estadístico pertinente				х	

Muchas gracias por su respuesta.

Julio 2023

REG. CIP. 243337

Firma del Juez Experto

RESULTADO DE LA VALIDACIÓN DEL INSTRUMENTO (JUICIO DE EXPERTOS)

TÍTULO DE IA INVESTIGACIÓN:

Influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, carretera Las Delicias – Granadillas, Jaén,2024

INVESTIGADOR:

Bach. Mejía Seclén Abel Eduardo Bach. Vásquez Pérez Jhon Breiner

.....

El presente instrumento fue puesto a consideración de cuatro expertos, todos ellosprofesionales temáticos con amplia experiencia, según se detalla a continuación:

N°	JUECES EXPERTOS
1	Mg. Juan Alberto Contreras
2	Ing. Rosmen Joel Chinchay Julca
3	Ing. Juan Rojas Hernández

CRITERIOS	JUECES			TOTAL	
CRITERIOS	J1	J2	J3	TOTAL	
Claridad	3	3	3	9	
Objetividad	4	3	5	12	
Actualidad	3	3	3	9	
Organización	3	3	3	9	
Suficiencia	4	3	4	11	
Pertinencia	4	4	4	12	
Consistencia	3	4	3	10	
Coherencia	3	4	3	10	
Metodología	4	4	4	12	
Aplicación	5	3	4	12	
Total de opinión	36	34	36	106	

Total Máximo = (N° de criterios) x (N° de jueces) x (Puntaje máximo deRespuestas)

Total Máximo = 10*3*5 = 150Cálculo del coeficiente de validez:

> total de opinión validez = total Máximo

0,53 a menos	Validez Nula
0,54 a 0,59	Validez Baja
0,60 a 0,65	Válida
0,66 a 0,71	Muy Válida
0,72 a 0,99	Excelente Validez
1,00	Validez Perfecta

validez = 106/150 = 0.71

El coeficiente de los instrumentos	71, lo que lo califi	ca como muy v	álida por lo tanto	si se puede aplicar
•••••	 •••••	•••••	•••••	
•••••	 •••••			

Anexo 4. CERTIFICADOS DE INDECOPI

Registro de la Propiedad Industrial

Dirección de Signos Distintivos

CERTIFICADO Nº 00116277

La Dirección de Signos Distintivos del Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual – INDECOPI, certifica que por mandato de la Resolución Nº 014173-2019/DSD - INDECOPI de fecha 28 de junio de 2019, ha quedado inscrito en el Registro de Marcas de Servicio, el siguiente signo:

Signo

La denominación LABSUC LABORATORIO DE SUELOS Y PAVIMENTOS y logotipo (se reivindica colores), conforme al modelo

Distingue

Estudios de mecánica de suelos, concreto y asfalto

Clase

42 de la Clasificación Internacional.

Solicitud

0796363-2019

Titular

GROUP JHAC S.A.C.

Pais

Perú

Vigencia

28 de junio de 2029

Tomo

0582

Folio

091

MELONI GARCIA

LABORATORIO DESTIELOS Y PAVIMENTOS

ING. THONATANY HERRERA BARAHONA
INGENIERO CIVIL
INGENIERO CIVIL
CIP: 312615

Certificado

La Dirección de Acreditación del Instituto Nacional de Calidad – INACAL, en el marco de la Ley N° 30224, **OTORGA** el presente certificado de Acreditación a:

CALIBRATEC S.A.C.

Laboratorio de Calibración

En su sede ubicada en: Av. Chillón Lote 50 B Urb. Chacracerro, distrito de Comas, provincia de Lima y departamento de Lima.

Con base en la norma

NTP-ISO/IEC 17025:2017 Requisitos Generales para la Competencia de los Laboratorios de Ensayo y Calibración

Facultándolo a emitir Certificados de Calibración con Símbolo de Acreditación. En el alcance de la acreditación otorgada que se detalla en el DA-acr-06P-22F que forma parte integral del presente certificado llevando el mismo número del registro indicado líneas abajo.

Fecha de Acreditación: 26 de mayo de 2023 Fecha de Vencimiento: 25 de mayo de 2026

LABORATORIO DESTELOS Y PAVIMENTOS

ING. THONATAN), HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

PATRICIA AGUILAR RODRÍGUEZ

Directora (d.t.). Dirección de Acreditación - INACAL

Fecha de emisión: 19 de junio de 2023

Contrato N°: : 029-2023/INACAL-DA Registro N°: LC - 071

El presente certificado tiene validez con su correspondiente Alcance de Acreditación y cédula de notificación dado que el alcance puede estar sujeto a ampliaciones, reducciones, actualizaciones y suspensione temporales. El alcance y vigencia debe confirmarse en la página web www.inacal.gob.pe/acreditacion/categoria/acreditacios.y/ o través del código QR al momento de hacer uso del presente certificado.

La Dirección de Acreditación del INACAL es firmante del Acuerdo de Reconocimiento Multilateral (MLA) de Inter American Accreditation Cooperation (IAAC) e International Accreditation Forum (IAF) y del Acuerdo de Reconocimiento Multio con la International Laboratory Accreditation Cooperation (ILAC).

DA-acr-01P-02M Ver. 03

Cédula Nº : 159-2023-INACAL/DA

Anexo 5. CERTIFICADO DE DISEÑO DE MEZCLAS

EQUIPOS E INSTRUMENTOS

RUC: 20606479680

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN CA-LM-049-2023

1. Expediente

LABSUC LABORATORIO DE SUELOS Y

PAVIMENTOS S.A.C.

CAL. LA COLONIA Nº 316 - CAJAMARCA - JAEN

No indica

China

4. Instrumento calibrado BALANZA ELECTRÓNICA

OHAUS

Modelo NVT62012H

N° de serie 8341346465

Procedencia

Capacidad máxima: 6200 g

División de escala (d)

Div. de verificación (e)

Capacidad mínima

Clase de exactitud

5. Fecha de calibración 2023-05-17 Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento medición o a reglamento vigente.

CALIBRATEC S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que

El certificado de calibración sin firma sello carece de validez.

Identificación

977 997 385 - 913 028 622 913 028 623 - 913 028 624 O Av. Chillon Lote 50 B - Comas - Lima - Lima

ventascalibratec@gmail.com

CALIBRACIÓN DE EQUIPOS E INSTRUMENTOS

RUC: 20606479680

Área de Metrología Laboratorio de Masas CERTIFICADO DE CALIBRACIÓN CA-LM-049-2023

Página 2 de 4

6. Método de calibración:

La calibración se realiza por comparación directa entre las indiciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones siguiendo el procedimiento PC-001 "Procedimiento para la calibración de instrumentos de pesaje de funcionamiento no automático clase III y IIII (Edición 01) del INACAL - DM

7. Lugar de calibración

Laboratorio LABSUC LABORATORIO DE SUELOS Y PAVIMENTOS S.A.C.

8. Condiciones ambientales

A RECEIPTED TO THE RESERVE	Inicial	Final
Temperatura	29,1 °C	29,5 °C
Humedad relativa	69 %	68 %

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Certificado de calibración	
PESATEC	Juego de pesas de 1 mg a 2 kg de clase M1	1492-MPES-C-2022	
TOTAL WEIGHT	Pesa de 5 kg de clase M2	CM-4235-2022	

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- En el caso de ser necesario, ajustar la indicación en cero antes de cada medición.
- Se realizó el ajuste de las indicaciones de la balanza antes de la calibración. (Para la carga de 6200 g la balanza indicaba 6199,79 g)
- El valor de "e", capacidad mínima y la clase de exactitud han sido determinados por el fabricante.
- Los resultados declarados en el presente certificado, se relacionan solamente con el item calibrado indicado en la página 1.
- En coordinación con el cliente, la variación de temperatura es 5 °C
- Se ha considerado como coeficiente de deriva de temperatura a 0,00001 °C⁻⁺ según lo indicado en el manual de la balanza.
- El cliente no cuenta con pesas patrones para realizar el ajuste de la balanza.
- El cliente no cuenta con la información de los certificados anteriores para la balanza a calibrar. Por lo tanto, la contribución de la incertidumbre de la deriva de la balanza no será considerada.

RT03-F01

977 997 385 - 913 028 622

•913 028 623 - 913 028 624

O Av. Chillon Lote 50 B - Comas - Lima - Lima

ventascalibratec@gmail.com

CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

Área de Metrología Laboratorio de Masas CERTIFICADO DE CALIBRACIÓN CA-LM-049-2023

Página 3 de 4

11. Inspección Visual

Ajuste a cero	Tiene	Escala	No tiene
Oscilación libre	Tiene	Cursor	No tiene
Plataforma	Tiene	Nivelación	Tiene
Sistema de traba	No tiene	10	.01

12. Resultados de la medición

ENSAYO DE REPETIBILIDAD

Co. Co.	Co S MIRE C	ENSAY
C S Bah	Inicial	Final
emperatura	29,3 °C	29,6 °C
Carga L1	3 000,00	g all
	ΔL	E
g	g	g
3 000,0	0,06	-0,01
3 000,0	0,06	-0,01
3 000,0	0,07	-0,02
3 000,0	0,05	0,00
3 000,0	0,04	0,01
3 000,0	0,05	0,00
3 000,1	0,08	0,07
3 000,0	0,04	0,01
3 000,0	0,05	0,00
3 000,0	0,05	0,00
Dif Máx. End	ontrada	0,09
EMP		3,0

AC THE	Inicial	Final
Humedad	68,0 %	68,0 %
0 16 2	0 10	3
Carga L2	6 000,31	a s

Carga L2	6 000,31	g 5 2
1	ΔL	E
g	g	g
6 000,1	0,06	-0,22
6 000,0	0,05	-0,31
6 000,1	0,07	-0,23
6 000,0	0,06	-0,32
6 000,0	0,04	-0,30
6 000,1	0,07	-0,23
6 000,1	0,07	-0,23
6 000,1	0,06	-0,22
6 000,0	0,04	-0,30
6 000,0	0,04	-0,30
Dif Máx. Enco	ntrada	0,10
EMP		3,0

ENSAYO DE EXCENTRICIDAD

	-	Strate of the	Inicial	Final
2	8	Temperatura	29,6 °C	29,7 °C

20 20 20	Inicial	Final	
Humedad	67,0 %	67,0 %	

Pos.	Determinación del Error en Cero E₀			Determinación del Error Corregido Ec					
	C. mínima	na Ι ΔL Ε _ο		Carga L		I AL	E	Ec	
Carga	g	g	g	g	g	g	g	g	g
P1 P	10 9	1,0	0,06	-0,01	3. C. 21	2 000,0	0,06	-0,01	0,00
2	D 5	1,0	0,07	-0,02	0 149 0	2 000,0	0,07	-0,02	0,00
3	1,00	1.0	0,07	-0,02	2 000,00	2 000,1	0,05	0,10	0,12
-4	5 ST 5	01,0	0,07	-0,02	J. O . W	2 000,0	0,04	0,01	0,03
5	Ch ET	1,0	0,05	0,00	5 25	2 000,1	0,08	0,07	0,07
18 E	18 C 18 C	01 40	LABORATORIO D	× 0		Error máximo	permitido (±	:)	2,0

Jung 1 ING, JHONATAN) HERRERA BARAHONA INGENIERO CIVIL CIP: 312615

977 997 385 - 913 028 622

913 028 623 - 913 028 624

Av. Chillon Lote 50 B - Comas - Lima - Lima Pulla Ch

ventascalibratec@gmail.com

EQUIPOS E INSTRUMENTOS

RUC: 20606479680

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN CA-LM-049-2023

20 7 2 V	Inicial	Final	chi p all o	Inicial	Final
Temperatura	29,6 °C	29,7 °C	Humedad	67,0 %	67,0 %

20	Commal		Carga c	reciente			Carga d	lecreciente		EMD
80	Carga L	1	ΔL E Ec I		I ΔL E		E	Ec	- EMP	
25	g	g	g	g	g	g	g	g	g	g
E _o	1,00	1,0	0,06	-0,01					1 - 2 / 7 - 1	
-0	2,00	2,0	0,06	-0,01	© 0,00 S	2,0	9 0,09	-0,04	-0,03	01,0
30	600,00	600,0	0,05	0,00	0,01	600,1	0,08	0,07	0,08	2,0
2	1 200,00	1 200,0	0,06	-0,01	0,00	1 200,1	0,08	0,07	0,08	2,0
54	2 000,00	2 000,0	0,07	-0,02	-0,01	2 000,1	0,05	0,10	0,11	2,0
4	2 500,00	2 500,0	0,05	0,00	0,01	2 500,0	0,07	-0,02	-0,01	3,0
8	3 000,00	3 000,0	0,06	-0,01	0,00	3 000,1	0,05	0,10	0,11	3,0
20	3 500,00	3 500,0	0,04	0,01	0,02	3 500,1	0,06	0,09	0,10	3,0
XX.	4 000,00	4 000,1	0,07	0,08	0,09	4 000,1	0,06	0,09	0,10	3,0
0	5 000,31	5 000,1	0,08	-0,24	-0,23	5 000,1	0,04	-0,20	-0,19	3,0
5	6 200,31	6 200,1	0,07	-0,23	-0,22	6 200,1	0.07	-0,23	-0,22	3,0

L: Carga puesta sobre la plataforma de la balanza l: Lectura de indicación de la balanza

E: Error encontrado

EMP: Error máximo permitido

E₀: Error en cero Ec: Error corregido

ΔL: Carga incrementada

Incertidumbre expandida de medición

0.0047

Lectura corregida de la balanza

0,0000016

R: Indicación de la lectura de la balanza en g

13. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración.

FIN DEL DOCUMENTO

LABORATORIO DESCELOS Y PAVIMENTOS

977 997 385 - 913 028 622 913 028 623 - 913 028 624 Av. Chillon Lote 50 B - Comas - Lima - Lima

ventascalibratec@gmail.com

CALIBRACIÓN DE EQUIPOS E INSTRUMENTOS

RUC: 20606479680

Área de Metrología CA-F-045-2023 Laboratorio de Fuerza

Página 1 de 4

1. Expediente

0358

2. Solicitante

LABSUC LABORATORIO DE SUELOS Y

PAVIMENTOS S.A.C.

3. Dirección

CAL. LA COLONIA Nº 316 - CAJAMARCA - JAEN

4. Instrumento calibrado

MÁQUINA DE ENSAYO UNIAXIAL

(PRENSA CBR)

MarcaPERÜTESTModeloPT-CBRNº de serieM00002IdentificaciónNINGUNAProcedenciaPERÚ

 Intervalo de indicación
 0 kgf a 5000 kgf

 Resolución
 0,1 kgf / 0,1 kN

Clase de exactitud No indica Modo de fuerza Compresion

Indicador Digital

 Marca
 No indica
 Serie
 No indic

 Modelo
 No indica
 Resolución
 0,1 kgf

Transductor de Presión

Marca No indica

5. Fecha de calibración

0 60

No indica

35 B. C

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

CALIBRATEC S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

Fecha de Emisión

2023-05-26

LABORATORIO DESCELOS Y PAVIMENTOS

ING. THONATANY HERRERA BARAHONA
ING. DESCENERO CIVIL
GP: 312615

No indica

Jefe de Laboratorio

evisión 00

- 977 997 385 913 028 622 913 028 623 - 913 028 624
- Av. Chillon Lote 50 B Comas Lima Lima
- ventascalibratec@gmail.com
- CALIBRATEC SAC

CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

CERTIFICADO DE CALIBRACIÓN CA-F-045-2023

Área de Metrología Laboratorio de Fuerza

6. Método de calibración

La calibración se realiza por comparación directa entre el valor de fuerza indicada en el dispositivo indicador de la máquina a ser calibrada y la indicación de fuerza real tomada del instrumento de medición de fuerza patrón siguiendo la PC-032 "Procedimiento para la calibración de máquinas de ensayos uniaxiales" Edición 01 del INACAL - DM

7. Lugar de calibración

St. Stringer ,is ORLEGE BER Should h SAG 510 Laboratorio LABSUC LABORATORIO DE SUELOS Y PAVIMENTOS S.A.C.

8. Condiciones de calibración

	5 16 18 O	Inicial	Final
	Temperatura	29,1 °C	29,1 °C
9	Humedad relativa	68 %	68 %

LABSUC L, Condiciones de calibrac

Trazabilidad	Patrón utilizado	Certificado de calibración
PUCP	Celda de carga de 10 t con una incertidumbre de 34 kg	INF-LE N° 093-23 A/C

10. Observaciones

- El instrumento a calibrar no indica la clase, sin embargo cumple con el criterio para maquinas de ensayo uniaxiales de clase 1 según la norma UNE-EN ISO 7500-1. 1MEA-..... чента де ensayo unia

cun LABORATORIO DESCELOS Y PAVIMENTOS

ING. THOMATAN). HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

977 997 385 - 913 028 622 913 028 623 - 913 028 624 Av. Chillon Lote 50 B - Comas - Lima - Lima

oventascalibratec@gmail.com
CALIBRATEC SAC

60 800 CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

CERTIFICADO DE CALIBRACIÓN CA-F-045-2023 Área de Metrología Laboratorio de Fuerza

11. Resultados de medición

la di a a	-: 4- 4- 1-	Indicación del transductor de fuerza patrón						
Indicación de la máquina de ensayo		1ra Serie	2da Serie	3ra	Serie	4ta Serie Accesorios	Promedio	Error de medición
		Ascenso	Ascenso	Ascenso Descenso		Ascenso I	Ascenso	
%	kgf	kgf	kgf	kgf	kgf	kgf	kgf	kgf
10	500	501,16	501,16	502,17	Ja 200	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	501,5	-1,50
20	1000	1001,16	1001,16	1001,16		8, 8 <u>T</u>	1001,2	-1,16
30	1500	1502,16	1502,16	1502,16	13 D 18	10 mm 10	1502,2	-2,16
40	2000	2001,79	2002,19	2003,19	D/1100	A. 27, Ob.	2002,4	-2,39
50	2500	2501,23	2502,73	2501,23	Sec. 25. 12	160-00	2501,7	-1,73
60	3000	3003,30	3003,30	3004,30	Y	6 7 6	3003,6	-3,63
70	3500	3500,87	3499,87	3499,37	20 S	J. 44 9	3500,0	-0,04
80	4000	3999,47	3999,47	3999,97	2 2 m	8, Jan	3999,6	0,37
90	4500	4498,58	4498,58	4499,58	70, 70	N 25	4498,9	1,08
100	5000	4998.71	4998.21	4999.21	2. 2 St.	12 CE	4998.7	1.29

Indiana	ián do la						
Indicación de la máquina de ensayo		Indicación q	Repetibilidad b	Reversibilidad v	Resolución relativa a	Error con accesorios	Incertidumbre de medición relativa
%	kgf	%	%	%	%	%	%
10	500	-0,30	0,20	S 081	0,02	The same of	1,36
20	1000	-0,12	0,00	E My To Me	0,01	- P	0,81
30	1500	-0,14	0,00	J. 31 18	0,01	102 30	0,67
40	2000	-0,12	0,07	O. Va 17. Po	0,01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,61
50	2500	-0,07	0,06	S 2 5	0,00	3° = = 6°	0,58
60	3000	-0,12	0,03	2 C - 1/2 - 20	0,00	10 - Co	0,56
70	3500	0,00	0,04	9 00	0,00	200	0,55
80	4000	0,01	0,01	C. B. B. C.	0,00	- P	0,55
90	4500	0,02	0,02	200	0,00	0.2	0,54
100	5000	0,03	0.02	0 16 -0.	0,00	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.54

Clase de la	Valor máximo permitido (ISO 7500 - 1)							
escala de la maquina de ensayo	Indicación q %	Repetibilidad b %	Reversibilidad v %	Resolución relativa a %	Cero f0 %			
0,5	± 0,50	0,5	± 0,75	± 0,25	± 0,05			
391	±1,00	1,0	± 1,50	± 0,50	± 0,10			
2 3	± 2,00	2,0	± 3,00	± 1,00	± 0,20			
930	+3.00	2.0	+1.50	+150	10.30			

MÁXIMO ERROR RELATIVO DE CERO (fo)

0,00 %

LABORATORIO DE SCILOS Y PAVIMENTOS

ING. THONATAVI, HERRERA BARAHONA
INGENIERO CIVIL

3.5 - Lima - Lima

500

Revisión 00

977 997 385 - 913 028 622 913 028 623 - 913 028 624

. - Lima Av. Chillon Lote 50 B - Comas - Lima - Lima -11) -10)

ventascalibratec@gmail.com

CALIBRATEC SAC

CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

Área de Metrología Laboratorio de Fuerza CERTIFICADO DE CALIBRACIÓN CA-F-045-2023

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

FIN DEL DOCUMENTO

RT03-F01

- 977 997 385 913 028 622 913 028 623 - 913 028 624
- Av. Chillon Lote 50 B Comas Lima Lima
- ventascalibratec@gmail.com

BRAT

GCALIBRATEC SAC

CALIBRACIÓN DE EQUIPOS E INSTRUMENTOS

RUC: 20606479680

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN CA-LM-051-2023

ágina 1 de 4

1. Expediente 035

2. Solicitante LABSUC LABORATORIO DE SUELOS Y

PAVIMENTOS S.A.C.

3. Dirección CAL. COLONIA Nº 316 - CAJAMARCA - JAEN

China

4. Instrumento calibrado BALANZA ELECTRÓNICA

Marca OHAUS
Modelo NV622Z4

N° de serie 8341346598
Identificación No indica

Capacidad máxima: 620 g

División de escala (d) 0,01 g

Div. de verificación (e) 0,1 g

Capacidad mínima 0,2 g
Clase de exactitud

5. Fecha de calibración 2023-05-17

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

CALIBRATEC S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite

El certificado de calibración sin firma y sello carece de validez.

Fecha de Emisión

Procedencia

2023-05-26

LABORATORIO DESCELOS Y PAVIMENTOS

ING. HONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

Jefe de Laboratorio

Revisión 00

977 997 385 - 913 028 622 913 028 623 - 913 028 624 O Av. Chillon Lote 50 B - Comas - Lima - Lima

ventascalibratec@gmail.com

CALIBRATEC SAC

CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

Area de Metrología Laboratorio de Masas CERTIFICADO DE CALIBRACIÓN CA-LM-051-2023

6. Método de calibración:

La calibración se realiza por comparación directa entre las indiciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones siguiendo el procedimiento PC-001 "Procedimiento para la calibración de instrumentos de pesaje de funcionamiento no automático clase III y IIII (Edición 01) del INACAL - DM

7. Lugar de calibración

Laboratorio LABSUC LABORATORIO DE SUELOS Y PAVIMENTOS S.A.C.

8. Condiciones ambientales

E A TO THE PERSON AND THE	Inicial	Final
Temperatura	29,3 °C	29,6 °C
Humedad relativa	66 %	66 %

Trazabilidad	Patrón utilizado	Certificado de calibración
PESATEC	Juego de pesas de 1 mg a 2 kg de clase M1	1492-MPES-C-2022

10. Observaciones

- En el caso de ser necesario, ajustar la indicación en cero antes de cada medición.

 Se realizó el ajuste de las indicaciones de la balanza antes de la coliberación. Se realizó el ajuste de las indicaciones de la balanza antes de la calibración. (Para la carga de 620 g la balanza indicaba 619.74 q)
- El valor de "e", capacidad mínima y la clase de exactitud han sido determinados por el fabricante.
- Los resultados declarados en el presente certificado, se relacionan solamente con el item calibrado indicado en la página 1.
- En coordinación con el cliente, la variación de temperatura es 5 °C
- Se ha considerado como coeficiente de deriva de temperatura a 0,00001 °C⁻¹ según el procedimiento PC-001 "Procedimiento para la calibración de instrumentos de pesaje de funcionamiento no automático clase III y IIII (Edición 01) del INACAL - DM.
- El cliente no cuenta con pesas patrones para realizar el ajuste de la balanza.
- El cliente no cuenta con la información de los certificados anteriores para la balanza a calibrar. Por lo tanto, la contribución de la incertidumbre de la deriva de la balanza no será considerada.

LABSUC LABORATORIO DE SCIELOS Y PAVIMENTOS THONATAN J. HERRERA BARAHONA LunB

977 997 385 - 913 028 622

913 028 623 - 913 028 624

Av. Chillon Lote 50 B - Comas - Lima - Lima

ventascalibratec@gmail.com

CALIBRATEC SAC

RUC: 20606479680

Área de Metrología Laboratorio de Masas CERTIFICADO DE CALIBRACIÓN CA-LM-051-2023

11. Inspección Visual

Ajuste a cero	Tiene	Escala	No Tiene
Oscilación libre	Tiene	Cursor	No Tiene
Plataforma	Tiene	Nivelación	Tiene
Sistema de traba	No Tiene	10	8

12. Resultados de la medición

ENSAYO DE REPETIBILIDAD

Co. Table Co. Y	SO WILLIAM	ENSA
10.2 (BB)	Inicial	Final
emperatura	29,5 °C	29,7 °C
Carga L1	300,001	g ar
11111	ΔL	Е
g	g	g
300,00	0,006	-0,002
300,00	0,006	-0,002
300,01	0,005	0,009
300,00	0,007	-0,003
300,00	0,007	-0,003
300,01	0,008	0,006
300,01	0,009	0,005
300,01	0,008	0,006
300,00	0,004	0,000
300,00	0,005	-0,001
Dif Máx. End	ontrada	0,012
EMP		0.30

10 M	Inicial	Final
Humedad	65,0 %	65,0 %
0-16	S 0 26	7 0 V
Carna 12	600,001 c	to al

Carga L2	600,001	g 5 23
1	ΔL	E
g	g	g
600,01	0,008	0,006
600,01	0,007	0,007
600,00	0,003	0,001
600,01	0,007	0,007
600,01	0,008	0,006
600,01	0,007	0,007
600,00	0,004	0,000
600,01	0,007	0,007
600,01	0,008	0,006
600,01	0,009	0,005
Dif Máx. Enco	0,007	
EMP		0,30

ENSAYO DE EXCENTRICIDAD

	Inicial	Final
Temperatura	29,7 °C	29,6 °C

Jan 12 10	Inicial	Final
Humedad	63,0 %	65,0 %

Pos.	Determinación del Error en Cero E₀				Determinación del Error Corregido Ec				
Carga	C. mínima	l a	ΔL	E _o	Carga L	l a	ΔL	E	Ec
71. V	10 CE	0,10	0,006	-0,001	P D EX	200,00	0,007	-0,003	-0,002
2	880 000	0.10	0.008	-0,003	D 30 1	200.01	0,008	0.006	0.009
3	0,100	0,10	0,007	-0,002	200,001	200,01	0,005	0,009	0,011
-4	0 30 E	0,10	0,006	-0,001	30 0 20	200,00	0,004	0,000	0,001
5	CP 57 08	0,10	0,005	0,000	5 200	199,99	0,005	-0,011	-0,011
180	100	0: 40	N Q	0		Error máximo	permitido (±)	0,20

- 977 997 385 913 028 622 913 028 623 - 913 028 624
- Av. Chillon Lote 50 B Comas Lima Lima BEAT CH
- ventascalibratec@gmail.com
- CALIBRATEC SAC

RUC: 20606479680

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN CA-LM-051-2023

ENSAYO DE PESAJE

Or The North	Inicial	Final	Charles of the College	Inicial	Final
Temperatura	29,6 °C	29,8 °C	Humedad	65,0 %	65,0 %

300	Carral		Carga d	reciente		Carga decreciente				EMD
. 50	Carga L		ΔL	E	Ec	1	ΔL	E	Ec	EMP
5	g	g	g	g	g	g	g	g	g	g
E _o	0,100	0,10	0,006	-0,001				1000	1	
	0,200	0,20	0,006	-0,001	0,000	0,20	0,006	-0,001	0,000	0,10
500	60,000	60,00	0,004	0,001	0,002	60,00	0,005	0,000	0,001	0,20
80	120,000	120,00	0,005	0,000	0,001	120,01	0,005	0,010	0,011	0,20
200	150,000	150,00	0,006	-0,001	0,000	150,01	0,007	0,008	0,009	0,20
3	200,001	200,00	0,006	-0,002	-0,001	200,01	0,006	0,008	0,009	0,20
01/2	250,001	250,01	0,008	0,006	0,007	250,01	0,005	0,009	0,010	0,30
188	300,001	300,01	0,007	0,007	0,008	300,01	0,006	0,008	0,009	0,30
200	350,001	350,00	0,004	0,000	0,001	350,01	0,007	0,007	0,008	0,30
8	400,002	400,01	0,008	0,005	0,006	400,01	0,006	0,007	0,008	0,30
200	620,001	620,01	0,009	0,005	0,006	620,01	0,009	0,005	0,006	0,30

L: Carga puesta sobre la plataforma de la balanza

l: Lectura de indicación de la balanza

E: Error encontrado

EMP: Error máximo permitido

E₀: Error en cero Ec: Error corregido

ΔL: Carga incrementada

Incertidumbre expandida de medición

0.000045

Lectura corregida de la balanza

0,000012

R: Indicación de la lectura de la balanza en g

13. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración.

FIN DEL DOCUMENTO

HONATAN HERRERA BARAHONA INGENIERO CIVIL

- 977 997 385 913 028 622 913 028 623 - 913 028 624
- Av. Chillon Lote 50 B Comas Lima Lima
- ventascalibratec@gmail.com
- CALIBRATEC SAC

RUC: 20606479680

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN CA-LM-050-2023

1. Expediente

LABSUC LABORATORIO DE SUELOS Y

PAVIMENTOS S.A.C.

CAL. LA COLONIA Nº 316 - CAJAMARCA - JAEN

No indica

4. Instrumento calibrado **BALANZA ELECTRÓNICA**

OHAUS Modelo R21PE30

N° de serie 8640110596 Identificación

Procedencia China

Capacidad máxima: 30000 g

Div. de verificación (e) Capacidad mínima

Clase de exactitud

5. Fecha de calibración 2023-05-17 Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento medición o a reglamento vigente.

CALIBRATEC S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que

El certificado de calibración sin firma sello carece de validez.

División de escala (d)

- 977 997 385 913 028 622 913 028 623 - 913 028 624
- O Av. Chillon Lote 50 B Comas Lima Lima
- ventascalibratec@gmail.com
- CALIBRATEC SAC

CALIBRACIÓN DE EQUIPOS E INSTRUMENTOS

RUC: 20606479680

Área de Metrología Laboratorio de Masas CERTIFICADO DE CALIBRACIÓN CA-LM-050-2023

Página 2 de 4

6. Método de calibración:

La calibración se realiza por comparación directa entre las indiciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones siguiendo el procedimiento PC-001 "Procedimiento para la calibración de instrumentos de pesaje de funcionamiento no automático clase III y IIII (Edición 01) del INACAL - DM

7. Lugar de calibración

Laboratorio LABSUC LABORATORIO DE SUELOS Y PAVIMENTOS S.A.C.

8. Condiciones ambientales

A RECEIPTED TO THE RESERVE	Inicial	Final
Temperatura	29,3 °C	29,5 °C
Humedad relativa	67 %	68 %

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Certificado de calibración
PESATEC	Juego de pesas de 1 mg a 2 kg de clase M1	1492-MPES-C-2022
TOTAL WEIGHT	Pesa de 5 kg de clase M2	CM-4235-2022
TOTAL WEIGHT	Pesa de 10 kg de clase M2	CM-4188-2022
TOTAL WEIGHT	Pesa de 20 kg de clase M2	CM-4239-2022

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- En el caso de ser necesario, ajustar la indicación en cero antes de cada medición.
- Se realizó el ajuste de las indicaciones de la balanza antes de la calibración. (Para la carga de 30000 g la balanza indicaba 29992 g)
- El valor de "e", capacidad mínima y la clase de exactitud han sido determinados por el fabricante.
- Los resultados declarados en el presente certificado, se relacionan solamente con el item calibrado indicado en la página
- En coordinación con el cliente, la variación de temperatura es 5 °C
- Se ha considerado como coeficiente de deriva de temperatura a 0,00001 °C⁻¹ según el procedimiento PC-001
 "Procedimiento para la calibración de instrumentos de pesaje de funcionamiento no automático clase III y IIII (Edición 01) del INACAL DM.
- El cliente no cuenta con pesas patrones para realizar el ajuste de la balanza.
- El cliente no cuenta con la información de los certificados anteriores para la balanza a calibrar. Por lo tanto, la contribución de la incertidumbre de la deriva de la balanza no será considerada.

Revisión 00

ING: HONATAN) HERRERA BARAHONA
ING: HONATAN) HERRERA BARAHONA
INGENIERO CIVIL
INGENIERO CIVIL
INGENIERO STATE

RT03-F01

977 997 385 - 913 028 622

913 028 623 - 913 028 624

O Av. Chillon Lote 50 B - Comas - Lima - Lima

ventascalibratec@gmail.com

CALIBRATEC SAC

CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

Área de Metrología Laboratorio de Masas CERTIFICADO DE CALIBRACIÓN CA-LM-050-2023

11. Inspección Visual

Ajuste a cero	Tiene	Escala	No tiene
Oscilación libre	Tiene	Cursor	No tiene
Plataforma	Tiene	Nivelación	Tiene
Sistema de traba	No tiene	10 - JO	8 0.

12. Resultados de la medición

ENSAYO DE REPETIBILIDAD

P. C. San	Go Salley C	ENSAY
C/ 57 821	Inicial	Final
Temperatura	29,5 °C	29,6 °C
Carga L1	15 000,3	g al
	ΔL	E
g	g	g
15 000	0,5	0-0,3
15 000	0.70	-0,5
15 000	0,6	-0,4
15 000	0,4	-0,2
15 000	0,6	-0,4
15 000	0,7	-0,5
15 000	0,5	-0,3
15 000	0,7	-0,5
15 000	0,3	-0,1
15 000	0,7	-0,5
Dif Máx. End	contrada	0,4
EMP		20

C NO	Inicial	Final
Humedad	66,0 %	66,0 %
0-16-3	D. O. YES	20
Cama 12	30.001.2	0 5 0

Carga L2	30 001,2	g 5 2
1	ΔL	E
g	g	g
30 001	0,8	-0,5
30 001	0,9	-0,6
30 000	0,3	-1,0
30 000	0,4	-1,1
30 001	0,8	-0,5
30 000	0,3	-1,0
30 000	0,4	-1,1
30 000	0,5	-1,2
30 000	0,4	-1,1
30 000	0,4	
Dif Máx. Enco	ntrada	0,7
EMP		30

ENSAYO DE EXCENTRICIDAD

,		The May To be	Inicial	Final
2	8	Temperatura	29,6 °C	29,6 °C

120 12 10	Inicial	Final
Humedad	66,0 %	66,0 %

Pos.	Deter	minación de	el Error en Ce	ero E _o		Determinación del Error Corregido Ec				
Carga	C. mínima	l a	ΔL	E _o	Carga L	l a	ΔL	E	Ec	
P1 P	S CV	100	0,6	-0,1	12 12 1	10 000	0,5	5 0.0 V	0,1	
2	88° C T	100	0,5	0,0	0. 169 3	10 001	0,8	0,7	0,7	
3	100,0	100	0,6	-0,1	10 000,0	10 000	0,3	0,2	0,3	
4	0 10 5	100	0,5	0,0	50 0 X	10 000	0,4	0,1	0,1	
5	CP EF O	100	0,7	-0,2	57 630	10 000	0,4	0,1	0,3	
80 -	10 No.	Cr 28	N 0- 16	1 10		Error máximo	permitido (±)	20	

LABORATORIO DE STELOS Y PAVIMENTOS ONATAN). HERRERA BARAHONA INGENIERO CIVIL CIP: 312615

- 977 997 385 913 028 622 913 028 623 - 913 028 624
- Av. Chillon Lote 50 B Comas Lima Lima BEAT CHILD
- ventascalibratec@gmail.com
- CALIBRATEC SAC

RUC: 20606479680

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN CA-LM-050-2023

ENSAYO DE PESAJE

a to the	Inicial	Final	Chin Program C	Inicial	Final
Temperatura	29,6 °C	29,7 °C	Humedad	67,0 %	67,0 %

30	Commail		Carga o	creciente			Carga c	lecreciente		EMD
. 50	Carga L		ΔL	E	Ec		ΔL	E	Ec	EMP
5	g	g	g	g	g	g	g	g	g	g
E _o	100,0	100	0,6	-0,1						
7.0	200,0	200	0,6	-0,1	⊗ 0,0 €	200	9 0,7	-0,2	-0,1	010
500	3 000,0	3 000	0,4	0,1	0,2	3 000	0,7	-0,2	-0,1	10
30	6 000,3	6 000	0,7	-0,5	-0,4	6 000	0,5	0-0,3	-0,2	20
- F-4	7 500,3	7 500	0,6	-0,4	-0,3	7 500	0,40	-0,2	-0,1	20
3	10 000,0	10 000	0,7	-0,2	-0,1	10 000	0,5	0,0	0,1	20
012	12 000,0	12 000	0,4	0,1	0,2	12 000	0,6	-0,1	0,0	20
28	15 000,3	15 000	0,5	-0,3	-0,2	15 000	0,7	-0,5	-0,4	20
ALV.	20 001,2	20 001	0,7	-0,4	-0,3	20 000	0,7	-1,4	-1,3	20
5	25 001,5	25 001	0,8	-0,8	-0,7	25 000	0,6	-1,6	-1,5	30
-3	30 001,2	30 001	0,8	-0,5	-0,4	30 001	0,8	-0,5	-0,4	30

L: Carga puesta sobre la plataforma de la balanza

l: Lectura de indicación de la balanza

E: Error encontrado

EMP: Error máximo permitido

E₀: Error en cero Ec: Error corregido

ΔL: Carga incrementada

Incertidumbre expandida de medición

0.33

Lectura corregida de la balanza

R: Indicación de la lectura de la balanza en g

13. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración.

ONATAN HERRERA BARAHONA INGENIERO CIVIL CIP: 312515 und

- 977 997 385 913 028 622 913 028 623 - 913 028 624
- Av. Chillon Lote 50 B Comas Lima Lima
- ventascalibratec@gmail.com
- GCALIBRATEC SAC

CALIBRACIÓN DE EQUIPOS E INSTRUMENTOS

RUC: 20606479680

CERTIFICADO DE CALIBRACIÓN CA-LT-010-2023

Área de Metrología

Laboratorio de Temperatura

Página 1 de 7

1. Expediente: 358

2. Solicitante: LABSUC LABORATORIO DE SUELOS Y PAVIMENTOS

S.A.C.

3. Dirección: CALLE LA COLONIA NRO. 316 - CAJAMARCA- JAEN -

JAEN

4. Equipo: HORNO - ESTUFA

Marca: ARSON GROUPS

Modelo: HR 701 N° de serie: 202042

Procedencia: PERÜ

Identificación: NO INDICA

Ubicación: LABORATORIO DE MATERIALES

Este	cerund	auo	de	calibra	CIOH	docume	ııa	la
trazal	bilidad	a	los	patron	nes	nacional	es	0
intern	acional	es, o	que	realizan	las	unidades	de	la
medic	ción de	acue	erdo	con el S	ister	na Interna	cior	nal
de Ur	nidades	(SI).	5	- Br.	P	100	8	28
						500		

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

CALIBRATEC S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite:

El certificado de calibración sin firma y sello carece de validez.

Descripción	Dispositivo de control	Instrumento de medición
Intervalo de indicación	0 °C a 300 °C	0 °C a 300 °C
Resolución	1°C	1°C
Tipo	Digital	Digital

5. Fecha de calibración 2023-05-17

Fecha de Emisión

2023-05-31

LABORATORIO DESCRETOS Y PAVIMENTOS

ING. HONATAN). HERRERA BARAHONA
ING. SHONATAN. HERRERA BAR

Revisión 00 RT03-F01

- 977 997 385 913 028 622
- 913 028 623 913 028 624
- O Av. Chillon Lote 50 B Comas Lima Lima
- ventascalibratec@gmail.com
- CALIBRATEC SAC

CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

CERTIFICADO DE CALIBRACIÓN CA-LT-010-2023

Área de Metrología

Laboratorio de Temperatura

6. Método de calibración

La calibración se efectuó por comparación directa con termómetros calibrados que tiene trazabilidad a la Escala Internacional de Temperatura de 1990 (EIT 90), se utilizó el Procedimiento para la Calibración de Medios Isotérmicos con aire como Medio Termostático PC-018 2da edición. CALIB

7. Lugar de calibración

LABSUC LABORATORIO DE SUELOS Y PAVIMENTOS S.A.C.

8. Condiciones ambientales

My De Spender	Inicial	Final
Temperatura	28,8 °C	30,3 °C
Humedad relativa	71.0 %	71,0 %

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Certificado de calibración
LT-0417-2023	Termómetro digital con 10 sensores tipo K (CH01 al CH10) con incertidumbre en el orden de 0,15 °C a 0,16 °C	SAT

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.

 La periocidad de la calibración depende del uso mana de la calibración depende del uso mana del la calibración del la calibra La periocidad de la calibración depende del uso, mantenimiento y conservación del instrumento de medición.
 Antes de la calibración no se realizo algún tipo de ajuste.

 - La carga para la medición consistió de muestrascon muestras.

Me She could LABSUC
LABORATORIO DESCELOS Y PAMIMENTOS
MASTINOS THONATANY, HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

Revisión 00

977 997 385 - 913 028 622 913 028 623 - 913 028 624 O Av. Chillon Lote 50 B - Comas - Lima - Lima

ventascalibratec@gmail.com

GCALIBRATEC SAC

10 SAE Jordan

RUC: 20606479680

CERTIFICADO DE CALIBRACIÓN CA-LT-010-2023

Área de Metrología

Laboratorio de Temperatura

Temperatura ambiental promedio 29,4 °C
Tiempo de calentamiento y astalaira CERCHEC

De la			30	00	The C	P. P.	10° 0		80	1	2000	5	Página 3 de
Result	ados de la	medic	ión		0	de la	, D 3		FO 76	Of the			the state
empera	atura ambier	ntal prom	nedio	29.4°	C	- 0		4	35				
V 10 00	de calentam			1000		3	horas	200		300	1	The same	OF LAND
	lador se se		110°		- C	100	.0		50 18		100		10 Oct
Contac	nador se se	CO CH	5		- DATIO	A DET		DE 4400	0.4.5.00		200	5	P 0
8/	7	67 30	TEA				RABAJO			1.400)		- 30	
iempo	Term. del			11-02-11-00	11.00.000.000.000.000	-N LAS F	OSICION		MEDICIÓN			T.	T _{máx} - T _m
	equipo	-		L SUPE		-			LINFER		10	prom	
min	°C	1	2	3	4	5	6	7	8	9	10	°C	°C
00	109	106,2	107,4	107,0	108,0	107,3	112,4	112,5	112,5	112,3	112,7	109,8	6,5
02	110	107,0	108,1	107,7	108,7	108,1	113,3	113,3	113,3	113,0	113,4	110,6	6,4
04	110	ALC: NO STATE OF THE PARTY OF T	107,8	107,4	108,5	107,7	113,7	113,8	113,8	113,5	114,0	110,7	6,7
06	109	106,4		107,2	108,2	107,5	112,8	112,9	113,0	112,3	113,3	110,1	6,9
08	109	106,0	100	106,7	108,0	107,0	112,6	112,8	113,0	112,5	112,8	109,9	6,9
10	109	106,6	107,9	107,5	108,5	107,7	113,0	113,1	113,1	112,8	113,1	110,3	6,5
12	110	107,5	108,5	108,0	108,9	108,3	114,1	114,1	114,2	113,8	114,2	111,2	6,7
14	110	107,7	108,7	108,2	109,3	108,6	114,6	114,2	114,2	113,9	114,2	111,4	6,8
16	109	106,6	and the second second	E 10.100 A 9/5	108,3	107,6	112,9	113,0	113,0	112,7	113,4	110,3	6,8
18	110	106,7	107,7	107,2	108,2	107,5	113,2	113,3	113,3	113,0	113,4	110,3	6,7
20	110	107,3	108,3	177 3 Cu	108,3	108,1	113,6	113,7	113,7	113,5	113,7	110,8	6,4
22	109	106,9	108,2	- Page 1	108,8	108,0	113,3	113,3	113,3	113,0	113,4	110,6	6,5
24	109	106,2	107,8	107,3	107,9	107,6	112,7	112,8	113,0	112,4	112,8	110,0	6,7
26	109	106,4	107,5	106,9	107,8	107,4	112,6	112,7	112,9	112,5	113,0	110,0	6,6
28	110	107,4	108,3	107,8	108,9	108,4	113,5	113,6	113,7	113,4	113,8	110,9	6,4
30	110	107,2	108,6	108,0	109,1	108,3	113,9	114,1	114,1	113,8	114,2	111,1	6,9
32	110	107,5	108,8	108,3	109,4	108,6	113,6	113,8	113,7	113,4	114,0	111,1	6,5
34	109	106,9	108,2	107,7	108,8	108,0	113,3	113,4	113,4	113,2	113,6	110,6	6,7
36	109	106,1	107,5	107,0	108,1	107,3	112,5	112,6	112,7	112,3	112,6	109,9	6,5
38	110	107,2	107,0	106,6	107,5	107,0	113,1	113,3	113,3	113,0	113,1	110,1	6,8
40	109	106,9	107,5	107,0	108,2	107,4	113,4	113,6	113,6	113,3	113,6	110,4	6,7
42	109	106,2	107,4	106,8	108,0	107,2	112,6	112,7	112,9	112,6	112,9	109,9	6,7
44	110	107,3	108,5		109,1	108,3	113,4	113,5	113,4	113,1	113,4	110,8	6,1
46	110	106,9	108,2	107,7	108,9	108,1	113,1	113,2	113,2	112,9	113,3	110,5	6,4
48	110	107,1	108,4	107,9	109,0	108,2	113,3	113,4	113,4	113,1	113,4	110,7	6,3
50	109	106,8	108,0	107,5	108,6	107,8	113,0	113,1	113,1	112,8	113,2	110,4	6,4
52	109	106,0	107,3	106,8	107,9	107,1	112,3	112,5	112,7	112,4	112,6	109,8	6,6
54	111	107,7	108,0	107,5	108,7	107,6	113,7	113,8	113,8	113,5	114,0	110,8	6,5
56	110	107,6	108,5	108,0	109,1	107,5	113,6	113,9	114,0	113,7	114,1	111,0	6,6
58	110	107,0	108,1	107,6	108,6	107,1	113,0	113,1	113,1	112,8	113,2	110,4	6,2
60	109	106,5	107,8	107,4	106,9	106,9	112,7	112,7	112,9	112,4	112,8	109,9	6,3
Se 10	PROM	106,9	108,0	107,4	108,4	107,7	113,2	113,3	113,3	113,0	113,4	110,5	N 18 .
	. máxima	107,7	108,8	108,3	109,4	108,6	114,6	114,2	114,2	113,9	114,2	3	v
	. minima	106,0	107,0	106,6	106,9	106,9	112,3	112,5	112,5	112,3	112,6	18	
0,1	DTT	1,7	1,8	1,8	2,5	1,7	2,3	1,7	1,8	1,6	1,6	- C.	

Revisión 00

LABORATORIO DESDELOS Y PAVIMENTOS ING. JHONATAN) HERRERA BARAHONA INGENIERO CIVIL CIP: 312615

- 977 997 385 913 028 622
- 913 028 623 913 028 624
- o ventascalibratec@gmail.com

 ☐ CALIBRATEC SAC Av. Chillon Lote 50 B - Comas - Lima - Lima

CERTIFICADO DE CALIBRACIÓN CA-LT-010-2023

Área de Metrología Laboratorio de Temperatura

PARÁMETROS	Valor °C	Incertidumbre °C
Máxima Temperartura medida	114,6	0,4
Mínima Temperatura medida	106,0	0,3
Desviación de Temperatura en el Tiempo	2,5	O,15
Desviación de Temperatura en el Espacio	6,5	0,1
Estabilidad medida	1,25	9 0,05
Uniformidad medida	6.9	0.2

: Promedio de la temperatura en una posición de medición durante el tiempo de calibración. Promedio de las temperaturas en la diez posiciones de medición para un instante dado.

Temperatura máxima. T MAX J MING : Temperatura mínima.

Desviación de Temperatura en el Tiempo.

Para cada posición de medición su **"desviación de temperatura en el tiempo"** DTT está dada por la diferencia entre la máxima y la mínima temperatura en dicha posición.

Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

Incertidumbre expandida de las indicaciones del termómetro propio del Medio Isotermo :

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una calibración.

La uniformidad es la máxima diferencia medida de temperatura entre las diferentes posiciones espaciales para un mismo instante de tiempo.

La Estabilidad es considerada igual a ± 1/2 DTT.

Durante la calibración y bajo las condiciones en que ésta ha sido hecha, el medio isotermo CUMPLE con los límites especificados de temperatura

LABORATORIO DESTELOS Y PAVIMENTOS

ING. THONATAN). HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

Revisión 00

- 977 997 385 913 028 622
- 913 028 623 913 028 624
- O Av. Chillon Lote 50 B Comas Lima Lima
- oventascalibratec@gmail.com
 CALIBRATEC SAC


Área de Metrología

Laboratorio de Temperatura

CERTIFICADO DE CALIBRACIÓN CA-LT-010-2023

Página 5 de 7

DISTRIBUCIÓN DE LOS SENSORES DEL EQUIPO

Los sensores 5 y 10 están ubicados en el centro de sus respectivos niveles. CHIMP Los sensores del 1 al 5 están ubicados a 1.5 cm por encima de la carga más alta.

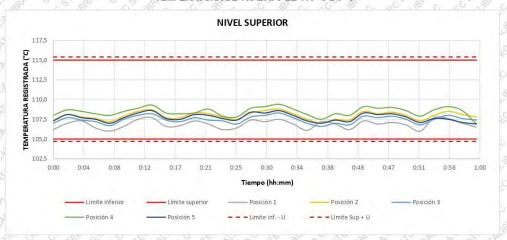
Los sensores del 6 al 10 están ubicados a 1.5 cm por encima de la carga más alta. 59.0 sensores del 6 al 10 están ubicados a 1.5 cm por debajo de la parrilla inferior
Los sensores del 1 al 4 y 6 al 9 están ubicados 5 cm de las paredes laterales y a 5 cm del frente y fondo del equipo.

Incertidumbre Los sensores del 6 al 10 están ubicados a 1.5 cm por debajo de la parrilla inferior

Los sensores del 1 al 4 y 6 al 9 están ubicados E an 3 de la parrilla inferior

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estandar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

Revisión 00


- 977 997 385 913 028 622 913 028 623 - 913 028 624
- Tante SAC Av. Chillon Lote 50 B - Comas - Lima - Lima
- oventascalibratec@gmail.com
 CALIBRATEC SAC

Área de Metrología Laboratorio de Temperatura

CERTIFICADO DE CALIBRACIÓN CA-LT-010-2023

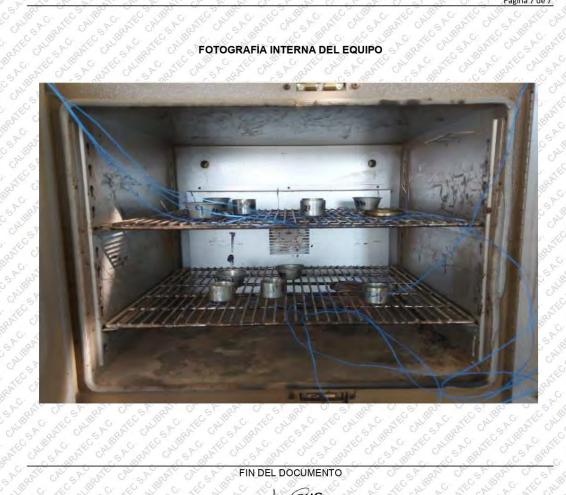
TEMPERATURA DE TRABAJO DE 110 °C ± 5 °C

LABORATORIO DESCELOS Y PAVIMENTOS

ING. HONATIAN) HERRERA BARAHONA
INGENIERO CIVIL
INGENIERO CIVIL
INGENIERO SI 312815

Revisión 00

- 977 997 385 913 028 622 913 028 623 - 913 028 624
- and the same O Av. Chillon Lote 50 B - Comas - Lima - Lima oventascalibratec@gmail.com
 CALIBRATEC SAC



ECS.A.C ECSAC MBRATE

RUC: 20606479680

Área de Metrología Laboratorio de Temperatura CERTIFICADO DE CALIBRACIÓN

CALIE

FIN DEL DOCUMENTO

Con Market St. C. Revisión 00

- 977 997 385 913 028 622 913 028 623 913 028 624
- oventascalibratec@gmail.com

CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

INFORME DE VERIFICACION CA-IV-097-2023

1. Expediente 0358

LABSUC LABORATORIO DE SUELOS Y PAVIMENTOS S.A.C. 2. Solicitante

CAL. LA COLONIA N° 316 - CAJAMARCA - JAEN 3. Dirección

4. Instrumento de medición EQUIPO DE LÍMITE LÍQUIDO

(Cazuela Casagrande)

PERUTEST Marca

Modelo PT-CC

Número de Serie

ANALÓGICO

Código de Identificación NO INDICA

5. Fecha de Verificación 2023-05-17

Fecha de Emisión

2023-05-26

LABORATORIO DESCIELOS Y PAVIMENTOS

ING. THONATANY, HERRERA BARAHONA
ING. BIOLOGIA (P. 312615)

Jefe de Laboratorio

977 997 385 - 913 028 622 913 028 623 - 913 028 624 Av. Chillon Lote 50 B - Comas - Lima - Lima

oventascalibratec@gmail.com
CALIBRATEC SAC

CA-IV-097-2023

agatto sac

Aller He Sale THE SAC 6. Método de Verificación

La Verificación se realizó tomando las medidas del instrumento, según las especificaciones de la norma internacional ASTM D4318 "Standard Test Methods for Liquid Limit, Plastic Limit and Plastic Index of Soils."

7. Lugar de Verificación

Laboratorio LABSUC LABORATORIO DE SUELOS Y PAVIMENTOS S.A.C. Children Co

8. Condiciones ambientales

erificación	PLE CHEST CONTRACTOR	LIBERTY CALLS	BULL OF STREET
LABSUC LABOR	ATORIO DE SUELOS Y PAVI	MENTOS S.A.C.	SHIPPING OF SON
s ambientales	ALC CHIEF A CHIEF COLLEGE	LEBRIE CHITTAG	SALLANTE SALLERA
William C. M.	Will by the Will C.	Inicial	Final
CE BEN	Temperatura	28,4 °C	28,6°C
ALL CALL SAGE	Humedad Relativa	66 %	66 %
A ME CAU	AC ONTE ONLY SACONTER OF	SA WATE CHE	S.A. RATE ON SAU
referencia	ALIE O THE WIFE OF	to the o the	Will be File by

JCL .diciones ambientale South State State

THE POST	Chill and William Chillians	Humedad Relativa	66 %	66 %	ATT CAT GA RS
C. 460 P	Patrones de referencia	LIBRIC SHE STEPLE	ON THE SHIP AS AS	E SHIPPER CHIEF	AC DE LECTE
BRITTE	Trazabilidad	Patrón	utilizado	Certificado d	e calibración
C SALIBBAN	METROIL		ITAL de 200 mm : INSIZE	1AD-08	45-2022
of Rife of	METROIL	C	METRO DIGITAL ECO	1AT-170	04-2022

10. Observaciones

MEC S.A.C

Se colocó una etiqueta autoadhesiva con la indicación de VERIFICACIÓN. CALIFRA

icación W. St. Halle St. C. LABSUC
LABORATORIO DESCIELOS Y PAVIMENTOS

ING. THOMATANA. HERRERA BARAHONA
INGENIERO CIVIL
GP.: 312615 SERO a of the factor ACCOMPANIES AND CHEER THE SALE SALE Land Children Charles and Control Control NG. CALIBRATEC S and the state of t

977 997 385 - 913 028 622 913 028 623 - 913 028 624

Co. Co. and Sho Av. Chillon Lote 50 B - Comas - Lima - Lima

oventascalibratec@gmail.com
CALIBRATEC SAC

CALIBRI

CA-IV-097-2023

Autorities of the State of the

RATEC SAC

A HERRIE SAE

ole of the state o ESAC CHURCHES AS ARRESTED A STATE A ST

TEC SAC

A Like Alle St. C.

The still to the time to the chi	P. W. Chris	A RIFE CALL A.C.	AL CHILLEN
11. Resultados	Saller O Lec	-CILBY C- TEC MILE	o The William
El equipo cumple con las especi	O'ST WAY	105 BEE . C.	The Contract
Fleguino cumple con las especi		ac cigillontac'	Alberta Comment of the Comment of th
er equipo editipic con las especi	incaciones tecino	as signification.	Lereby O
El equipo cumple com las especi	BEECH COST	E LES HERO.	SE CHIBRA CA
El egalgo cample com las especi	BEECH COST	DIMENSIONES DE LA BA	SE Ancho
El egalgo cample com las especi	SAC ONTE SALE	DIMENSIONES DE LA BA	

HERRAMIENTA DE RANURADO

Altura (mm)	Largo (mm)	Ancho (mm)
50,10	151,00	126,00
G. HELD BUILD BY BERTH	HERRAMIENTA DE RAI	NURADO
S. HERRIES BLIFF AS RAILE	EXTREMO CURVADO	1
Espesor		NURADO
Espesor (mm)	EXTREMO CURVADO	1

DIMENSIONES DE LA COPA

and on an appropriate	DIMENSIONES DE LA BAS	SE Ch By Co. C
Altura (mm) 50,10	Largo (mm)	Ancho (mm)
50,10	151,00	126,00
THE CHIEF AS THE CHI	HERRAMIENTA DE RAI	NURADO
Espesor (mm)	EXTREMO CURVADO	7
Espesor (mm)	Borde Cortante (mm)	Ancho (mm)
10,01	2,01 DIMENSIONES DE LA C	13,60 COPA
Diámetro de la copa (mm)	JAPE C. LC JAPE	C. AC. TIBLE
Diámetro de la copa	DIMENSIONES DE LA C	COPA Profundidad de la co
Diámetro de la copa (mm) 94,00	Espesor de la copa (mm) 2,00	Profundidad de la co

Herry Gulffert Criffe 51 Docum CALIBRA

The artic of the article of the artic ABOP ABOP LABORATORIO DESCIELOS Y PAVIMENTOS

ING. HONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615 on the design of the second TNG. GENERAL COP: 31 CALIBRATE SAC. OLIVE

BRATE SALES HERRES SA

S. S. A. C. S. A. L. S. A. C. S. A. L. B. S. A. C. S. A. L. S. A. L. S. A. C. S. A. L. S. A. C. S. A. L. S. A. C. S. A. L. S. A. L. S. A. C. S. A. L. S. A.

LES AC CANIBRATES ACTAINED ATTE LATES AND THE ACTAIN TH

Callegate Sale and the Sale of the Sale of

oventascalibratec@gmail.com
CALIBRATEC SAC

Anexo 6. ENSAYOS DE LABORATORIO ESTÁNDAR

DETERMINACIÓN EN LABORATORIO DEL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD DE SUELOS

ASTM D4318-17E1

M - 1

JAĖN

PROYECTO : "INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS : DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024".

MUESTRA

PROVINCIA

REGISTRO N° : LSP24 - MS - 1109

SOLICITANTE : BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

ENSAYADO POR ; JHONATAN H.

MATERIAL : NATURAL

ASIST LAB: : ARODY CIEZA.

CALICATA : C-1

FECHA : ABRIL - 2024

LOCALIDAD : LAS DELICIAS - GRANADILLAS

PROFUNDIDAD : 0.20 - 1.50

DISTRITO : JAÈN

REGION : CAJAMARCA

LÍMITE LÍQUIDO			
Prueba N°	1	2	3
N° de golpes	33	23	14
Masa del Recipiente (g)	39,80	33,50	39,30
Masa del Recipiente + Suelo Húmedo (g)	64,40	55,40	60,50
Masa del Recipiente + Suelo Seco (g)	57,30	48,90	54,00
Masa del Agua (g)	7,10	6,50	6,50
Masa del Suelo Seco (g)	17,50	15,40	14,70
Contenido de Humedad (%)	40,57	42,21	44,22

I. Método de ensayo de Límite Líquido	: A:Multipunto
II. Preparación de muestra:	: Húmedo

CARACTERÍSTICAS DE I	LA MUESTRA
Condición de la muestra	Alterada
amaño Max, de partícula	1 in.

LÍMITE PLÁSTICO				
Prueba N°	1	2		
Masa del Recipiente (g)	12,90	8,10		
Masa del Recipiente + Suelo Húmedo (g)	19,70	15,30		
Masa del Recipiente + Suelo Seco (g)	18,10	13,60		
Masa del Agua (g)	1,60	1,70		
Masa del Suelo Seco (g)	5,20	5,50		
Contenido de Humedad (%)	30,77	30,91		

RESULTADOS:

Limite Liquido	Limite Plástico	Índice de Plasticidad
42	31	11

OBSERVACIONES:

* No se descartaron o encontraron materiales ajenos al suelo ensayado

* Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL: 969577841 - 975421091 - 912493920

LABSUC LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH ARODI R. CIEZA ROMERO JEFE DE LABORATORIO LABORATORIO DESDELOS Y PAVIMENTOS

ING. HIONAIAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

DETERMINACIÓN EN LABORATORIO DE LA CLASIFICACIÓN DE SUELOS - SUCS (ASTM D2487 - 17e1) CLASIFICACIÓN DE SUELOS - AASHTO (ASTM D3282 - 18)

1NFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS - GRANADILLAS, JAÉN, 2024". REGISTRO Nº PROYECTO : LSP24 - MS - 1109 BACH, MEJÍA SECLÉN ABEL EDUARDO SOLICITANTE ENSAYADO POR JHONATAN H. MATERIAL NATURAL LAS DELICIAS - GRANADILLAS CAJAMARCA DISTRITO JAÈN PROVINCIA JAĖN REGION

Tam	Tamiz %	
Alternativo	mm	que Pasa
3 in.	76,20	100
2 in.	50,80	100
1 1/2 in.	38,10	100
1 in.	25,40	100
3/4 in.	19,00	100
3/8 in.	9,50	98
No. 4	4,75	92
No. 10	2,00	77
No. 20	0,840	61
No. 40	0,425	52
No. 60	0,250	48
No. 80	0,177	44
No. 100	0,150	42
No. 200	0,075	41

HUMEDAD DEL SUELO: ASTM D2216-19	
Porcentaje de Humedad (%)	15,60

D ₁₀ (0,01 mm)	0,00	D ₆₀ (0,01 mm)	0,78	D ₃₀ (0,01 mm)	0,03
Coeficiente de Curvatura (Cc)	ь	Coeficiente de Uniformidad (Cu)	æ	Retenido en tamiz 3 in	1.2

D	ISTRIBUC	ION GRANULOMETRI	CA	
% Grava	8	% Grava Gruesa	2	0
70 Grava	0	% Grava Fina	3.	8
		% Arena Gruesa	7	15
% Arena	51	% Arena Media	;	25
		% Arena fina	1	11
% Finos	41			

LÍMITES DE ATTERBERG: ASTM D4318-17		
Límite Líquido (LL) - %	42	
Límite Plástico (LP) - %	31	
Indice Plástico (IP) - %	11	

CLASIFICACIÓN DE SUELOS:	Símbolo de Grupo	
sucs	SM	
Shorten a.c.	Silty sand	
Nombre de Grupo	Arena limosa	

CLASIFICACIÓN DE SUELOS: Clasificación de Grupo Índice de Grupo AASHTO A-7-5 Clayey Soils Tipo habitual de material significativo REGULAR A DEFICIENTE Clasificación general como subrasante BACH ARODI R. CIEZA ROMERO

OBSERVACIONES:

No se descartaron o encontraron materiales ajenos al suelo ensayado

LABORATORIO DESDELOS Y PAVIMENTOS

ING. THONATAN) HERRERABARAHONA
INGENIERO CIVIL
CIP: 312615 Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCION: CALLE LA COLINA MRD. 381 (MONTEGRANDE- A 1 CORA MCDD SQL DIVINO) CAJAMARGA - JAEN - JAEN

CEL 969577841 - 975421091 - 912493920

INFORME DE ENSAYO

DETERMINACIÓN EN EL LABORATORIO DEL CONTENIDO DE AGUA (HUMEDAD) DE MUESTRAS DE SUELO, ROCA Y MEZCLAS DE SUELO - AGREGADO - NTC 339.217 / MTC E 108 / ASTM D-2216

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024". PROYECTO

LSP24 - MS - 1109

SOLICITANTE BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

ENSAYADO POR JHONATAN H.

MATERIAL NATURAL ARODY CIEZA.

ASIST LAB :

ABRIL - 2024

DISTRITO

MUESTRA M - 1

PROFUNDIDAD 0.20 - 1.50

LOCALIDAD LAS DELICIAS - GRANADILLAS

JAÈN

PROVINCIA JAÈN REGION

CAJAMARCA

DATOS	PRUEBA No.1	PRUEBA No.2
Recipiente No	82	68
W1 - Masa del recipiente con el espécimen húmedo (g)	984,7	995,8
W2 - Masa del recipiente con el espécimen seco (g)	869,9	878,2
Wc - Masa del recipiente (g)	130,25	128,9
Ww - Masa del agua (g)	114,72	117,56
Ws - Masa de las particulas solidas (seco) (g)	739,68	749,28
W - Contenido de humedad (Ww / Ws)x100 (%)	15,51	15,69
PROMEDIO CONTENIDO DE HUMEDAD (%)		15,60

OBSERVACIONES:

DIRECCION: CALLE LA COLINA NRO, 301 IMONTEGRANDE. A 1 CURA MICOS SOL DIVINO) DAJAMARCA - JAEN - JAEN

CEL, 369677841 - 975421091 - 912493920

BACH, ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS ING. THONATAN) HERRERA BARAHONA INGENIERO CIVIL CIP: 312615

^{*}No se descartaron o encontraron materiales ajenos al suelo ensayado

^{*} Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DETERMINACIÓN EN LABORATORIO DEL ANÁLISIS GRANULOMÉTRICO DE SUELOS MEDIANTE TAMIZADO

ASTM D6913 / D6913M - 17

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS - GRANADILLAS, JAÉN, 2024".

REGISTRO Nº PROYECTO

MUESTRA

PROVINCIA

LSP24 - MS - 1109

BACH, MEJÍA SECLÉN ABEL EDUARDO BACH, VASQUEZ PEREZ JHON BREINER SOLICITANTE

ENSAYADO POR

JHONATAN H.

MATERIAL

FECHA

CALICATA

NATURAL C-2

M-1

ABRIL - 2024

LOCALIDAD

No. 100

No. 140

No. 200

0,150

0,106

0,075

LAS DELICIAS - GRANADILLAS

PROFUNDIDAD

0.20 - 1.50

JAĖN

Tamiz (Malla)	Abertura (mm)	Masa retenida (g)	Masa retenida (%)	Acumulado Retenido (%)	Acumulado Pasante (%)
3 in.	76,20	0	0,0	0,0	100
2 in.	50,80	0	0,0	0,0	100
1 1/2 in.	38,10	0	0,0	0,0	100
1 in.	25,40	37	2,9	2,9	97
3/4 in.	19,00	0	0,0	2,9	97
3/8 in.	9,50	26	2,0	4,9	95
No. 4	4,75	61	4,8	9,7	90
No. 10	2,00	125	9,7	19,4	81
No. 20	0,840	141	11,0	30,3	70
No. 40	0,425	79	6,2	36,5	64
No. 60	0,250	97	7,6	44,1	56

2,9

1,6

8,0

47,0

48,6

49,3

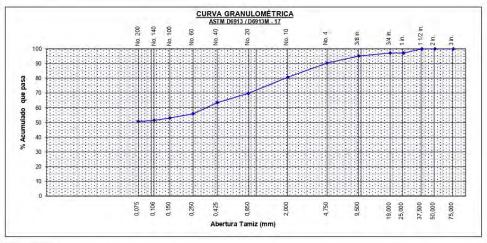
53

51

51

37

20


10

a diameter to be desired a second and a second		
 Tamaño máximo de la partícula 	1.8	1 1/2 in.

CARACTERISTICAS DE LA MUESTR

CONDICIONES DEL ENSAYO				
I. Método de ensayo	(1)	Α		
II. Tipo de tamizado	1	Simple		
III. Tamiz separador		No. 4		

Masa inicial de la muestra seca (g)	2	1284
1 st sep.: Fracción ret. limpia y seca (g)	- 1) = C
Masa de la fracción fina seca (g)	- :	-
% Tamiz separador <2 % (1 ^{ra} sep.)		-

OBSERVACIONES: * No se descartaron o encontraron materiales ajenos al suelo ensayado * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCION, CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL 969577841 975421091 - 912493920

LABSUC LABORATORIO DE SUBLOS Y PAVIMENTOS

BACH ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

LABORATORIO DESCELOS Y PAVIMENTOS ING-THONATAN) HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

DETERMINACIÓN EN LABORATORIO DEL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD DE SUELOS

ASTM D4318-17E1

M - 1

JAĖN

PROYECTO : "INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS : DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024".

MUESTRA

PROVINCIA

REGISTRO N° : LSP24 - MS - 1109

SOLICITANTE

BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

MATERIAL : NATURAL

ENSAYADO POR ; JHONATAN H.

. Introlog

ASIST LAB : : ARODY CIEZA.

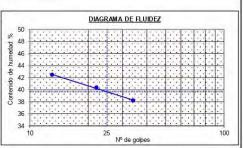
CALICATA : C-2

FECHA : ABRIL - 2024

LOCALIDAD : LAS DELICIAS - GRANADILLAS

PROFUNDIDAD : 0.20 - 1.50

DISTRITO : JAÈN


REGION : CAJAMARCA

Li	MITE LÍQUIDO		
Prueba N°	1	2	3
N° de golpes	34	22	13
Masa del Recipiente (g)	38,50	17,60	17,90
Masa del Recipiente + Suelo Húmedo (g)	60,20	48,90	50,10
Masa del Recipiente + Suelo Seco (g)	54,20	39,90	40,50
Masa del Agua (g)	6,00	9,00	9,60
Masa del Suelo Seco (g)	15,70	22,30	22,60
Contenido de Humedad (%)	38,22	40,36	42,48

I. Método de ensayo de Límite Líquido	: A:Multipunto
II. Preparación de muestra:	Húmedo

CARACTERÍSTICAS DE I	LA MUESTRA
Condición de la muestra	Alterada
Tamaño Max, de partícula	1 in.

LÍMITE PLÁSTICO				
Prueba N°	1	2		
Masa del Recipiente (g)	27,80	28,30		
Masa del Recipiente + Suelo Húmedo (g)	32,60	33,70		
Masa del Recipiente + Suelo Seco (g)	31,60	32,50		
Masa del Agua (g)	1,00	1,20		
Masa del Suelo Seco (g)	3,80	4,20		
Contenido de Humedad (%)	26.32	28,57		

RESULTADOS:

Limite Liquido	Limite Plástico	Índice de Plasticidad
40	27	13

OBSERVACIONES:

* No se descartaron o encontraron materiales ajenos al suelo ensayado

* Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARGA - JAEN - JAEN

CEL: 969577841 - 975421091 - 912493920

LABSUC LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH, ARODI R. CIEZA ROMERO JEFE DE LABORATORIO LABORATORIO DESDELOS Y PAVIMENTOS

ING. THONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

DETERMINACIÓN EN LABORATORIO DE LA CLASIFICACIÓN DE SUELOS - SUCS (ASTM D2487 - 17e1) CLASIFICACIÓN DE SUELOS - AASHTO (ASTM D3282 - 18)

1NFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS - GRANADILLAS, JAÉN, 2024". REGISTRO Nº PROYECTO LSP24 - MS - 1109 BACH, MEJÍA SECLÉN ABEL EDUARDO SOLICITANTE ENSAYADO POR JHONATAN H. MATERIAL : NATURAL LOCALIDAD LAS DELICIAS - GRANADILLAS DISTRITO JAÈN PROVINCIA JAĖN REGION CAJAMARCA

Tamiz		% Acumulado
Alternativo	mm	que Pasa
3 in.	76,20	100
2 in.	50,80	100
1 1/2 in.	38,10	100
1 in.	25,40	97
3/4 in.	19,00	97
3/8 in.	9,50	95
No. 4	4,75	90
No. 10	2,00	81
No. 20	0,840	70
No. 40	0,425	64
No. 60	0,250	56
No. 80	0,177	53
No. 100	0,150	51
No. 200	0,075	51

HUMEDAD DEL SUELO: ASTM D2216-19			
Porcentaje de Humedad (%)	17,91		

D ₁₀ (0,01 mm)	0,00	D ₆₀ (0,01 mm)	0,33	D ₃₀ (0,01 mm)	0,01
Coeficiente de Curvatura (Cc)	Ь	Coeficiente de Uniformidad (Cu)	(m)	Retenido en tamiz 3 in	137

D	ISTRIBUCI	IÓN GRANULOMÉTRI	CA	
% Grava	10	% Grava Gruesa	2	3
70 Grava	10	% Grava Fina	3	7
% Arena	-	% Arena Gruesa	2	9
	39	% Arena Media	:	17
		% Arena fina	1	13
% Finos	51			

LÍMITES DE ATTERBERG: ASTM D4318-17		
Límite Líquido (LL) - %	40	
Límite Plástico (LP) - %	27	
Indice Plástico (IP) - %	13	

CLASIFICACIÓN DE SUELOS:	Símbolo de Grup
sucs	ML
	Sandy silt
Nombre de Grupo	Limo arenoso

CLASIFICACIÓN DE SUELOS:
AASHTO
Clasificación de Grupo
A-6
4
Clayey Soils
Suelos Arcillosos

RO
Clasificación general como subrasante
RO
Clasificación de Grupo
A-6
4
Clayey Soils
Suelos Arcillosos
REGULAR A DEFICIENTE

BACH, ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

OBSERVACIONES:

* No se descartaron o encontraron materiales ajenos al suelo ensayado

* Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

LABORATORIO DESDELOS Y PAVIMENTOS

ING-HONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

CEL 969577841 = 975421091 - 912493920

DIRECCION: CALLE LA COLINA MRD. 381 (MONTEGRANDE- A 1 CORA MCDD SQL DIVINO) CAJAMARGA - JAEN - JAEN

INFORME DE ENSAYO

DETERMINACIÓN EN EL LABORATORIO DEL CONTENIDO DE AGUA (HUMEDAD) DE MUESTRAS DE SUELO, ROCA Y MEZCLAS DE SUELO - AGREGADO - NTC 339.217 / MTC E 108 / ASTM D-2216

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024". PROYECTO

LSP24 - MS - 1109

SOLICITANTE BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

ENSAYADO POR JHONATAN H.

MATERIAL NATURAL ARODY CIEZA.

ASIST LAB :

ABRIL - 2024

DISTRITO

MUESTRA M - 1

PROVINCIA

0.20 - 1.50

LOCALIDAD LAS DELICIAS - GRANADILLAS

JAÈN

PROFUNDIDAD REGION

CAJAMARCA

DATOS	PRUEBA No.1	PRUEBA No.2
Recipiente No	55	12
W1 - Masa del recipiente con el espécimen húmedo (g)	976,3	985,7
W2 - Masa del recipiente con el espécimen seco (g)	846,3	855,7
Wc - Masa del recipiente (g)	123,5	126,7
Ww - Masa del agua (g)	130,03	130,04
Ws - Masa de las particulas solidas (seco) (g)	722,77	728,96
W - Contenido de humedad (Ww / Ws)x100 (%)	17,99	17,84
PROMEDIO CONTENIDO DE HUMEDAD (%)	- 4	17.91

JAÈN

OBSERVACIONES:

DIRECCION: CALLE LA COLINA NRO, 301 IMONTEGRANDE. A 1 CURA MICOS SOL DIVINO) DAJAMARCA - JAEN - JAEN

CEL, 369677841 - 975421091 - 912493920

BACH ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

LABORATORIO DE SOELOS Y PAVIMENTOS

^{*}No se descartaron o encontraron materiales ajenos al suelo ensayado

Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DETERMINACIÓN EN LABORATORIO DEL ANÁLISIS GRANULOMÉTRICO DE SUELOS MEDIANTE TAMIZADO

ASTM D6913 / D6913M - 17

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS - GRANADILLAS, JAÉN, 2024".

REGISTRO Nº PROYECTO

LSP24 - MS - 1109

BACH, MEJÍA SECLÉN ABEL EDUARDO BACH, VASQUEZ PEREZ JHON BREINER SOLICITANTE

ENSAYADO POR

JHONATAN H.

MATERIAL

NATURAL

ASIST LAB :

ARODY CIEZA.

CALICATA

JAĖN

ABRIL - 2024

No. 200

0,075

DISTRITO

MUESTRA

PROVINCIA

FECHA PROFUNDIDAD

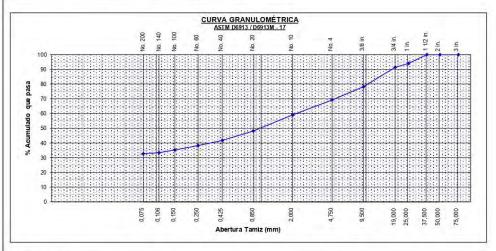
0.20 - 1.50

LOCALIDAD : LAS DELICIAS - GRANADILLAS

JAÈN

REGION

CAJAMARCA


Tamiz (Malla)	Abertura (mm)	Masa retenida (g)	Masa retenida (%)	Acumulado Retenido (%)	Acumulado Pasante (%)
3 in.	76,20	Ó	0,0	0,0	100
2 in.	50,80	0	0,0	0,0	100
1 1/2 in.	38,10	0	0,0	0,0	100
1 in.	25,40	76	6,0	6,0	94
3/4 in.	19,00	33	2,6	8,6	91
3/8 in.	9,50	166	13,1	21,8	78
No. 4	4,75	114	9,0	30,8	69
No. 10	2,00	128	10,1	40,9	59
No. 20	0,840	138	11,0	51,9	48
No. 40	0,425	81	6,4	58,3	42
No. 60	0,250	45	3,5	61,9	38
No. 100	0,150	37	2,9	64,8	35
No. 140	0,106	24	1,9	66.7	33

0,7

CARACTERISTI	CAS E	DE LA MUESTRA
I. Clasificación visual	3	Arena limosa con grava
II. Tamaño máximo de la partícula	8	1 1/2 in.

CON	DICIONES DEL E	NSAYO	
I. Método de ensayo		A	
II. Tipo de tamizado	120	Simple	
III. Tamiz separador	133	No. 4	

Masa inicial de la muestra seca (g)		1263
1 ⁸ sep.: Fracción ret. limpia y seca (g)	1.1	-
Masa de la fracción fina seca (g)		-
% Tamiz separador <2 % (1 ^{ra} sep.)	- 8	

67,3

OBSERVACIONES:

° No se descartaron o encontraron materiales ajenos al suelo ensayado ° Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) GAJAMARCA - JAEN - JAEN

CEL: 969577841 - 975421091 - 912493920

LAB SUC LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS

ING. HONATAN). HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

DETERMINACIÓN EN LABORATORIO DEL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD DE SUELOS

ASTM D4318-17E1

M - 1

JAĖN

PROYECTO : "INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS : DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024".

MUESTRA

PROVINCIA

REGISTRO N° : LSP24 - MS - 1109

SOLICITANTE : BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

ENSAYADO POR ; JHONATAN H.

MATERIAL : NATURAL

ASIST LAB : : ARODY CIEZA.

CALICATA : C-3

DISTRITO

FECHA : ABRIL - 2024

LOCALIDAD : LAS DELICIAS - GRANADILLAS

JAÈN

PROFUNDIDAD : 0.20 - 1.50

. LAG DELIGIAG - GIVANADIEEAG

REGION : CAJAMARCA

LÍMITE LÍQUIDO			
Prueba N°	1	2	3
N° de golpes	35	24	15
Masa del Recipiente (g)	37,00	36,70	36,10
Masa del Recipiente + Suelo Húmedo (g)	58,30	57,40	56,50
Masa del Recipiente + Suelo Seco (g)	52,40	51,40	50,30
Masa del Agua (g)	5,90	6,00	6,20
Masa del Suelo Seco (g)	15,40	14,70	14,20
Contenido de Humedad (%)	38,31	40,82	43,66

I. Método de ensayo de Límite Líquido	: A:Multipunto
II. Preparación de muestra:	Húmedo

CARACTERÍSTICAS DE I	LA MUESTRA
Condición de la muestra	Alterada
Tamaño Max, de partícula	1 in.

LÍMITE PLÁSTICO			
Prueba N°	1	2	
Masa del Recipiente (g)	13,40	13,70	
Masa del Recipiente + Suelo Húmedo (g)	20,10	20,90	
Masa del Recipiente + Suelo Seco (g)	18,60	19,20	
Masa del Agua (g)	1,50	1,70	
Masa del Suelo Seco (g)	5,20	5,50	
Contenido de Humedad (%)	28,85	30,91	

RESULTADOS:

Limite Liquido	Limite Plástico	Índice de Plasticidad
40	30	10

OBSERVACIONES:

* No se descartaron o encontraron materiales ajenos al suelo ensayado

* Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL: 969577841 - 975421091 - 912493920

LABSUC LABORATOR O DE SUPLOS Y PAVIMENTOS

BACH, ARODI R. CIEZA ROMERO JEFE DE LABORATORIO LABORATORIO DESDELOS Y PAVIMENTOS

ING. THONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312515

DETERMINACIÓN EN LABORATORIO DE LA CLASIFICACIÓN DE SUELOS - SUCS (ASTM D2487 - 17e1) CLASIFICACIÓN DE SUELOS - AASHTO (ASTM D3282 - 18)

, 1NFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024", REGISTRO Nº PROYECTO LSP24 - MS - 1109 BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER SOLICITANTE ENSAYADO POR JHONATAN H. MATERIAL NATURAL LOCALIDAD : LAS DELICIAS - GRANADILLAS DISTRITO JAÈN PROVINCIA JAĖN REGION CAJAMARCA

Tamiz		% Acumulado
Alternativo	mm	que Pasa
3 in.	76,20	100
2 in.	50,80	100
1 1/2 in.	38,10	100
1 in.	25,40	94
3/4 in.	19,00	91
3/8 in.	9,50	78
No. 4	4,75	69
No. 10	2,00	59
No. 20	0,840	48
No. 40	0,425	42
No. 60	0,250	38
No. 80	0,177	35
No. 100	0,150	33
No. 200	0,075	33

HUMEDAD DEL SUELO: ASTM D2216-19	
Porcentaje de Humedad (%)	12,51

D ₁₀ (0,01 mm)	0,00	D ₆₀ (0,01 mm)	2,17	D ₃₀ (0,01 mm)	0,09
Coeficiente de Curvatura (Cc)	l=-	Coeficiente de Uniformidad (Cu)	(m)	Retenido en tamiz 3 in	7.5

D	ISTRIBUC	ON GRANULOMETRI	CA	
% Grava	31	% Grava Gruesa	2	9
70 Grava	31	% Grava Fina	3	22
	% Arena 36	% Arena Gruesa	2	10
% Arena		% Arena Media	;	17
		% Arena fina	1	9
% Finos	33	- 5		

LÍMITES DE ATTERBERG: A	STM D4318-17
Límite Líquido (LL) - %	40
Límite Plástico (LP) - %	30
Indice Plástico (IP) - %	10

CLASIFICACIÓN DE SUELOS:	Símbolo de Grupo
sucs	SM
Augusta and a con-	Silty sandwith gravel
Nombre de Grupo	Arena limosa con grava

CLASIFICACIÓN DE SUELOS:	Clasificación de Grupo	Índice de Grupo
AASHTO	A-2-4	0
C S Y PAVIMENTOSipo habitual de material significativo	Silty or Clayey Gravel and Sand	
OS Y PAVIMENTO Sipo nabitual de material significativo	Grava y Arena Limo	sa o Arcillosa
Clasificación general como subrasante	EXCELENTE	BUENA

JEFE DE LABORATORIO

OBSERVACIONES:

* No se descartaron o encontraron materiales ajenos al suelo ensayado

Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

LABORATORIO DE SCELOS Y PAVIMENTOS

ING. HIGHANATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP; 312615

DIRECCION: CALLE LA COLINA MRD. 381 (MONTEGRANDE- A 1 CORA MCDD SQL DIVINO) CAJAMARGA - JAEN - JAEN

CEL 969577841 - 975421091 - 912493920

INFORME DE ENSAYO

DETERMINACIÓN EN EL LABORATORIO DEL CONTENIDO DE AGUA (HUMEDAD) DE MUESTRAS DE SUELO, ROCA Y MEZCLAS DE SUELO - AGREGADO - NTC 339.217 / MTC E 108 / ASTM D-2216

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024". PROYECTO

LSP24 - MS - 1109

SOLICITANTE BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

ENSAYADO POR JHONATAN H.

MATERIAL NATURAL ARODY CIEZA.

ASIST LAB :

ABRIL - 2024

LOCALIDAD LAS DELICIAS - GRANADILLAS MUESTRA M - 1

PROFUNDIDAD

0.20 - 1.50

DISTRITO JAÈN

PROVINCIA JAÈN REGION

CAJAMARCA

DATOS	PRUEBA No.1	PRUEBA No.2
Recipiente No	11	P-9
W1 - Masa del recipiente con el espécimen húmedo (g)	990,2	989,6
W2 - Masa del recipiente con el espécimen seco (g)	894,0	893,0
Wc - Masa del recipiente (g)	121,3	124,7
Ww - Masa del agua (g)	96,20	96,58
Ws - Masa de las particulas solidas (seco) (g)	772,70	768,32
W - Contenido de humedad (Ww / Ws)x100 (%)	12,45	12,57
PROMEDIO CONTENIDO DE HUMEDAD (%)	- A	12,51

OBSERVACIONES:

DIRECCION: CALLE LA COLINA NRO, 301 IMONTEGRANDE. A 1 CURA MICOS SOL DIVINO) DAJAMARCA - JAEN - JAEN

CEL, 369677841 - 975421091 - 912493920

BACH ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS

ING. HONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

^{*}No se descartaron o encontraron materiales ajenos al suelo ensayado

^{*} Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DETERMINACIÓN EN LABORATORIO DEL ANÁLISIS GRANULOMÉTRICO DE SUELOS MEDIANTE TAMIZADO

ASTM D6913 / D6913M - 17

. "INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS " DE SUBRASANTE, CARRETERA LAS DELICIAS - GRANADILLAS, JAÉN, 2024". PROYECTO

LSP24 - MS - 1109

BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

MATERIAL

NATURAL

ASIST LAB :

ARODY CIEZA.

CALICATA

M-1 FECHA ABRIL - 2024

LOCALIDAD

Tamiz (Malla)

3 in.

2 in.

1 1/2 in.

1 in.

3/4 in

3/8 in.

No. 4

No. 10

No. 20

No. 60

No. 100

No. 140

LAS DELICIAS - GRANADILLAS

Masa retenida

(a)

0

0

68

108

128

139

126

88

53

46

25

C-4

PROFUNDIDAD

REGION

CAJAMARCA

DISTRITO JAÈN

Abertura (mm)

76,20

50,80

38,10

25,40

19.00

9,50

4,75

2.00

0.840

0,425

0,250

0,150

0,106

PROVINCIA

Acumulado Retenido (%)

0,0

0,0

0,0

0.0

5.8

15,0

25,9

37.7

48.4

56,0

60,5

64.4

66,6

Masa rete (%)

0,0

0,0

0,0

0.0

5.8

9,2

10,9

11.9

10.7

7,5

4,5

3,9

2,2

MUESTRA

JAÈN

Acumulado Pasante (%)

100

100

100

100

94

85

74

62

52

44

40

36

33

CARACTERÍSTICAS DE LA MUESTRA Clasificación visual

II. Tamaño máximo de la partícula

	CONDICIONES DEL	NSAYO
I. Método de ensayo	12	A
II. Tipo de tamizado		Simple
m Time	40	122012

Masa inicial de la muestra seca (g)	- 1	1172
1 ⁸ sep.: Fracción ret, limpia y seca (g)		-
Masa de la fracción fina seca (g)		-
N Tania ana andre 20 N (48 and 1		

No se descartaron o encontraron materiales ajenos al suelo ensayado
 Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CORA MODO SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL 969577841 - 975421091 - 912493920

LABSUC LABORATOR DE SUPLOS Y PAVIMENTOS

of and BACH ARODI R. CIEZA ROMERO JEFE DE LABORATORIO LABORATORIO DESDELOS Y PAVIMENTOS

ING. THONATAN HERRERA BARAHONA
INGENIERO CIVIL
INGENIERO CIVIL
CIP: 312615

DETERMINACIÓN EN LABORATORIO DEL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD DE SUELOS

ASTM D4318-17E1

M - 1

JAĖN

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024".

REGISTRO N° : LSP24 - MS - 1109

BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER SOLICITANTE

CALICATA

DISTRITO

ENSAYADO POR ; JHONATAN H.

MATERIAL : NATURAL

ASIST LAB : : ARODY CIEZA.

: C-4

FECHA : ABRIL - 2024

LOCALIDAD : LAS DELICIAS - GRANADILLAS

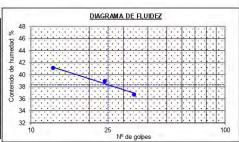
JAÈN

PROFUNDIDAD : 0.20 - 1.50

REGION

MUESTRA

PROVINCIA


. Método de ensayo de Límite Líquido : A:Multip	unto

: CAJAMARCA

LÍMITE LÍQUIDO			
Prueba N°	1	2	3
N° de golpes	34	24	13
Masa del Recipiente (g)	38,60	37,10	37,80
Masa del Recipiente + Suelo Húmedo (g)	61,70	60,30	60,80
Masa del Recipiente + Suelo Seco (g)	55,50	53,80	54,10
Masa del Agua (g)	6,20	6,50	6,70
Masa del Suelo Seco (g)	16,90	16,70	16,30
Contenido de Humedad (%)	36,69	38,92	41,10

CARACTERÍSTICAS DE	LA MUESTRA
Condición de la muestra	Alterada
Tamaño Max, de partícula	1 in.

LÍMITE PLÁSTICO				
Prueba Nº	1.4	2		
Masa del Recipiente (g)	17,60	8,90		
Masa del Recipiente + Suelo Húmedo (g)	24,60	15,70		
Masa del Recipiente + Suelo Seco (g)	23,10	14,20		
Masa del Agua (g)	1,50	1,50		
Masa del Suelo Seco (g)	5,50	5,30		
Contenido de Humedad (%)	27,27	28,30		

RESULTADOS:

Limite Liquido	Limite Plástico	Índice de Plasticidad
38	28	10

OBSERVACIONES:

No se descartaron o encontraron materiales ajenos al suelo ensayado

Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL: 969577841 - 975421091 - 912493920

BACH ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS

INGENICADO CIVIL
CIP: 312615

DETERMINACIÓN EN LABORATORIO DE LA CLASIFICACIÓN DE SUELOS - SUCS (ASTM D2487 - 17e1) CLASIFICACIÓN DE SUELOS - AASHTO (ASTM D3282 - 18)

1NFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS REGISTRO Nº PROYECTO LSP24 - MS - 1109 DE SUBRASANTE, CARRETERA LAS DELICIAS - GRANADILLAS, JAÉN, 2024". BACH, MEJÍA SECLÉN ABEL EDUARDO SOLICITANTE ENSAYADO POR JHONATAN H. MATERIAL : NATURAL MUESTRA LOCALIDAD : LAS DELICIAS - GRANADILLAS DISTRITO JAÈN PROVINCIA JAĖN REGION CAJAMARCA

Tam	Tamiz % Acu	
Alternativo	mm	que Pasa
3 in.	76,20	100
2 in.	50,80	100
1 1/2 in.	38,10	100
1 in.	25,40	100
3/4 in.	19,00	94
3/8 in.	9,50	85
No. 4	4,75	74
No. 10	2,00	62
No. 20	0,840	52
No. 40	0,425	44
No. 60	0,250	40
No. 80	0,177	36
No. 100	0,150	33
No. 200	0,075	32

HUMEDAD DEL SUELO: ASTM D2216-19				
Porcentaje de Humedad (%)	16,15			

D ₁₀ (0,01 mm)	0,00	D ₆₀ (0,01 mm)	1,66	D ₃₀ (0,01 mm)	0,09
Coeficiente de Curvatura (Cc)	Ь	Coeficiente de Uniformidad (Cu)	(m)	Retenido en tamiz 3 in	12

D	ISTRIBUC	IÓN GRANULOMÉTRI	CA	
% Grava	26	% Grava Gruesa	1	6
70 Grava	20	% Grava Fina	3	20
		% Arena Gruesa	7	12
% Arena	42	% Arena Media	:	18
200		% Arena fina	1	12
% Finos	32			

LÍMITES DE ATTERBERG: ASTM D4318-17		
Límite Líquido (LL) - %	38	
Límite Plástico (LP) - %	28	
Indice Plástico (IP) - %	10	

CLASIFICACIÓN DE SUELOS:	Símbolo de Grupo	
sucs	SM	
The state of the s	Silty sandwith gravel	
Nombre de Grupo	Arena limosa con grava	

CLASIFICACIÓN DE SUELOS: Clasificación de Grupo Índice de Grupo AASHTO A-2-4 Silty or Clayey Gravel and Sand Tipo habitual de material significativo Grava y Arena Limosa o Arcillosa BACH ARODI R. CIEZA ROMERO JEFE DE LABORATORIO Clasificación general como subrasante EXCELENTE A BUENA

OBSERVACIONES:

No se descartaron o encontraron materiales ajenos al suelo ensayado

Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

LABORATORIO DESTELOS Y PAVIMENTOS

ING. HONATANY HERRERA BARAHONA
INGENIERO CIVIL
(IP: 312615

DIRECCION: CALLE LA COLINA NRO, 381 (MONTEGRANDE- A 1 CORA MODO SOLIDIVINO) CAJAMARGA - JAEN - JAEN -

CEL 969577841 - 975421091 - 912493920

INFORME DE ENSAYO

DETERMINACIÓN EN EL LABORATORIO DEL CONTENIDO DE AGUA (HUMEDAD) DE MUESTRAS DE SUELO, ROCA Y MEZCLAS DE SUELO - AGREGADO - NTC 339.217 / MTC E 108 / ASTM D-2216

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024". PROYECTO

LSP24 - MS - 1109

SOLICITANTE BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

ENSAYADO POR JHONATAN H.

MATERIAL NATURAL ARODY CIEZA.

ASIST LAB :

ABRIL - 2024

C-4

DISTRITO

MUESTRA M - 1

PROVINCIA

PROFUNDIDAD 0.20 - 1.50

LOCALIDAD LAS DELICIAS - GRANADILLAS

JAÈN

REGION

CAJAMARCA

DATOS	PRUEBA No.1	PRUEBA No.2
Recipiente No	C-4	255
W1 - Masa del recipiente con el espécimen húmedo (g)	987,3	977,0
W2 - Masa del recipiente con el espécimen seco (g)	866,9	858,2
Wc - Masa del recipiente (g)	123,5	120,8
Ww - Masa del agua (g)	120,36	118,80
Ws - Masa de las particulas solidas (seco) (g)	743,44	737,40
W - Contenido de humedad (Ww / Ws)x100 (%)	16,19	16,11
PROMEDIO CONTENIDO DE HUMEDAD (%)	The state of the s	16,15

JAÈN

OBSERVACIONES:

DIRECCION: CALLE LA COLINA NRO, 301 IMONTEGRANDE. A 1 CURA MICOS SOL DIVINO) DAJAMARCA - JAEN - JAEN

CEL, 369577841 - 975421091 - 912493920

LAB SUC
LABORATORIO DE SURIOS Y PAVIMENTOS

BACH-ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

SUC FLOS Y PAVIMENTOS ING. THONATAN) HERRERA BARAHONA INGENIERO CIVIL CIP: 312615

^{*}No se descartaron o encontraron materiales ajenos al suelo ensayado

^{*} Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DETERMINACIÓN EN LABORATORIO DEL ANÁLISIS GRANULOMÉTRICO DE SUELOS MEDIANTE TAMIZADO

ASTM D6913 / D6913M - 17

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS - GRANADILLAS, JAÉN, 2024".

REGISTRO Nº PROYECTO

LSP24 - MS - 1109

BACH, MEJÍA SECLÉN ABEL EDUARDO BACH, VASQUEZ PEREZ JHON BREINER SOLICITANTE

ENSAYADO POR

JHONATAN H.

MATERIAL

NATURAL C-5

CALICATA LOCALIDAD

No. 200

0,075

MUESTRA

FECHA PROFUNDIDAD REGION

ABRIL - 2024 0.20 - 1.50

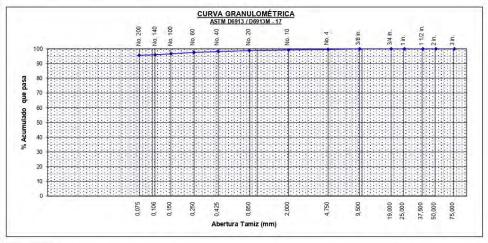
LAS DELICIAS - GRANADILLAS

PROVINCIA

JAĖN

M-1

CAJAMARCA


Tamiz (Malla)	Abertura (mm)	Masa retenida (g)	Masa retenida (%)	Acumulado Retenido (%)	Acumulado Pasante (%)
3 in.	76,20	0	0,0	0,0	100
2 in.	50,80	0	0,0	0,0	100
1 1/2 in.	38,10	0	0,0	0,0	100
1 in.	25,40	0	0,0	0,0	100
3/4 in.	19,00	0	0,0	0,0	100
3/8 in.	9,50	0	0,0	0,0	100
No. 4	4,75	3	0,4	0,4	100
No. 10	2,00	3	0,4	0,8	99
No. 20	0,840	3	0,4	1,2	99
No. 40	0,425	5	0,6	1,8	98
No. 60	0,250	6	0,7	2,5	98
No. 100	0,150	8	0,9	3,4	97
No. 140	0,106	6	0,7	4,1	96

0,3

. Clasificación visual		Limo
I. Tamaño máximo de la partícula	2	3/8 in.

CON	DICIONES DEL E	NSAYO	
I. Método de ensayo	(2)	A	
II. Tipo de tamizado		Simple	
III. Tamiz separador		No. 4	

Masa inicial de la muestra seca (g)	1	857
1 st sep.: Fracción ret. limpia y seca (g)) = C
Masa de la fracción fina seca (g)	- : -	-
% Tamiz separador <2 % (1 ^{ra} sep.)	- 8 -	

OBSERVACIONES: * No se descartaron o encontraron materiales ajenos al suelo ensayado * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCION, CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL 969577841 975421091 - 912493920

LAB SUC LABORATORIO DE SUFLOS Y PAVIMENTOS BACH, ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS

ING. HIONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

DETERMINACIÓN EN LABORATORIO DEL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD DE SUELOS

ASTM D4318-17E1

M - 1

JAĖN

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024".

MUESTRA

PROVINCIA

REGISTRO N° : LSP24 - MS - 1109

SOLICITANTE

CALICATA

BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER ENSAYADO POR ; JHONATAN H.

MATERIAL : NATURAL

: ARODY CIEZA.

: C-5 LOCALIDAD : LAS DELICIAS - GRANADILLAS FECHA : ABRIL - 2024 PROFUNDIDAD

DISTRITO JAÈN

: 0.20 - 1.50 : CAJAMARCA REGION

Li	MITE LÍQUIDO		
Prueba N°	1	2	3
N° de golpes	34	25	13
Masa del Recipiente (g)	37,90	36,70	36,90
Masa del Recipiente + Suelo Húmedo (n)	59.50	57.20	59.20

CONDICIONES DEL ENSATO		
I. Método de ensayo de Límite Líquido	: A:Multipunto	
II. Preparación de muestra:	: Húmedo	

Prueba N	1	.2	2
N° de golpes	34	25	13
Masa del Recipiente (g)	37,90	36,70	36,90
Masa del Recipiente + Suelo Húmedo (g)	59,50	57,20	59,20
Masa del Recipiente + Suelo Seco (g)	52,70	50,60	51,80
Masa del Agua (g)	6,80	6,60	7,40
Masa del Suelo Seco (g)	14,80	13,90	14,90
Contonido do Humadad (9/1)	AE OE	47.40	10.00

CARACTERÍSTICAS DE	LA MUESTRA
Condición de la muestra	Alterada
Tamaño Max, de partícula	1 in.

LÍMITE PLÁSTICO				
Prueba N°	11	2		
Masa del Recipiente (g)	37,10	36,50		
Masa del Recipiente + Suelo Húmedo (g)	44,10	43,70		
Masa del Recipiente + Suelo Seco (g)	42,30	41,80		
Masa del Agua (g)	1,80	1,90		
Masa del Suelo Seco (g)	5,20	5,30		
Contenido de Humedad (%)	34.62	35,85		

RESULTADOS:

Limite Liquido	Limite Plástico	Índice de Plasticidad
47	35	40

OBSERVACIONES:

No se descartaron o encontraron materiales ajenos al suelo ensayado

Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARGA - JAEN - JAEN

CEL: 969577841 - 975421091 - 912493920

LABSUC LABORATORYO DE SUPLOS Y PAVIMENTOS

BACH ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

LABORATORIO DESTELOS Y PAVIMENTOS

ING. HONATANI, HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

DETERMINACIÓN EN LABORATORIO DE LA CLASIFICACIÓN DE SUELOS - SUCS (ASTM D2487 - 17e1) CLASIFICACIÓN DE SUELOS - AASHTO (ASTM D3282 - 18)

, 1INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024", REGISTRO Nº PROYECTO LSP24 - MS - 1109 BACH, MEJÍA SECLÉN ABEL EDUARDO SOLICITANTE ENSAYADO POR JHONATAN H. MATERIAL : NATURAL LAS DELICIAS - GRANADILLAS DISTRITO JAÈN PROVINCIA JAĖN REGION CAJAMARCA

Tamiz		% Acumulado
Alternativo	mm	que Pasa
3 in.	76,20	100
2 in.	50,80	100
1 1/2 in.	38,10	100
1 in.	25,40	100
3/4 in.	19,00	100
3/8 in.	9,50	100
No. 4	4,75	100
No. 10	2,00	99
No. 20	0,840	99
No. 40	0,425	98
No. 60	0,250	98
No. 80	0,177	97
No. 100	0,150	96
No. 200	0,075	96

HUMEDAD DEL SUELO: ASTM D2216-19		
Porcentaje de Humedad (%)	27,56	

D ₁₀ (0,01 mm)	0,00	D ₆₀ (0,01 mm)	0,00	D ₃₀ (0,01 mm)	0,00
Coeficiente de Curvatura (Cc)	Ь	Coeficiente de Uniformidad (Cu)	()	Retenido en tamiz 3 in	1.2

D	ISTRIBUC	ON GRANULOMÉTRI	CA	
% Grava	0	% Grava Gruesa	2	0
70 Grava	U	% Grava Fina	3	0
		% Arena Gruesa	2	1
% Arena	4	% Arena Media	*	_ 1
		% Arena fina	1	2
% Finos	96	- 5		

LÍMITES DE ATTERBERG: ASTM D4318-17		
Límite Líquido (LL) - %	47	
Límite Plástico (LP) - %	35	
Indice Plástico (IP) - %	12	

CLASIFICACIÓN DE SUELOS:	Símbolo de Grupo
sucs	ML
	Silt
Nombre de Grupo	Limo

CLASIFICACIÓN DE SUELOS:
AASHTO
Clayey Soils
Suelos Arcillosos
Suelos Arcillosos
BACH-ARDDI R. CIEZA ROMERO
JEFE DE LABORATORIO

OBSERVACIONES:

* No se descartaron o encontraron materiales ajenos al suelo ensayado

* Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

LABORATORIO DESCELOS PPAVIMENTOS

ING. HONAITANÍ, HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

DIRECCION: CALLE LA COLINA MRO, 381 (MONTEGRANDE- A 1 CORA MCDO SOL DIVINO) CAJAMARDA- JAEN- JAEN

CEL 969577841 - 975421091 - 912493920

INFORME DE ENSAYO

DETERMINACIÓN EN EL LABORATORIO DEL CONTENIDO DE AGUA (HUMEDAD) DE MUESTRAS DE SUELO, ROCA Y MEZCLAS DE SUELO - AGREGADO - NTC 339.217 / MTC E 108 / ASTM D-2216

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024". PROYECTO

MUESTRA

PROVINCIA

LSP24 - MS - 1109

SOLICITANTE BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

ENSAYADO POR JHONATAN H.

MATERIAL NATURAL ASIST LAB :

ARODY CIEZA.

DISTRITO

ABRIL - 2024

LOCALIDAD LAS DELICIAS - GRANADILLAS JAÈN

PROFUNDIDAD 0.20 - 1.50 REGION CAJAMARCA

DATOS	PRUEBA No.1	PRUEBA No.2
Recipiente No	99	100
W1 - Masa del recipiente con el espécimen húmedo (g)	991,2	988,7
W2 - Masa del recípiente con el espécimen seco (g)	803,0	801,4
Wc - Masa del recipiente (g)	121,3	120,8
Ww - Masa del agua (g)	188,21	187,30
Ws - Masa de las particulas solidas (seco) (g)	681,69	680,60
W - Contenido de humedad (Ww / Ws)x100 (%)	27.61	27.52

JAÈN

OBSERVACIONES:

PROMEDIO CONTENIDO DE HUMEDAD (%)

DIRECCION: CALLE LA COLINA NRO, 301 IMONTEGRANDE. A 1 CURA MICOS SOL DIVINO) DAJAMARCA - JAEN - JAEN

CEL, 369577841 - 975421091 - 912493920

BACH, ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

LABORATORIO DE SUELOS Y PAVIMENTOS THONATANI, HERRERA BARAHONA INGENIERO CIVIL CIP: 312615

27,56

^{*}No se descartaron o encontraron materiales ajenos al suelo ensayado

^{*} Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DETERMINACIÓN EN LABORATORIO DEL ANÁLISIS GRANULOMÉTRICO DE SUELOS MEDIANTE TAMIZADO

ASTM D6913 / D6913M - 17

. "INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS E DE SUBRASANTE, CARRETERA LAS DELICIAS - GRANADILLAS, JAÉN, 2024". PROYECTO

LSP24 - MS - 1109

BACH. MEJÍA SECLÉN ABEL EDUARDO -BACH. VASQUEZ PEREZ JHON BREINER

MATERIAL

No. 140

No. 200

0,106

0,075

NATURAL

ASIST LAB : FECHA

ARODY CIEZA.

CALICATA

C-6

M-1

ABRIL - 2024

LOCALIDAD

LAS DELICIAS - GRANADILLAS

DISTRITO JAÈN PROVINCIA

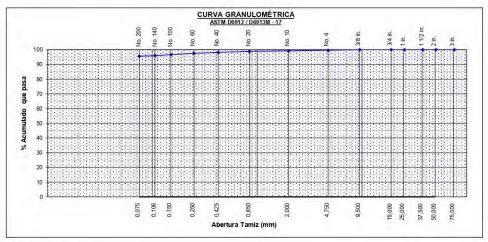
MUESTRA

JAÈN

REGION

CAJAMARCA

Tamiz (Malla)	Abertura (mm)	Masa retenida (g)	Masa retenida (%)	Acumulado Retenido (%)	Acumulado Pasante (%)
3 in.	76,20	0	0,0	0,0	100
2 in.	50,80	0	0,0	0,0	100
1 1/2 in.	38,10	0	0,0	0,0	100
1 in.	25,40	0	0,0	0,0	100
3/4 in.	19,00	0	0,0	0,0	100
3/8 in.	9,50	0	0,0	0,0	100
No. 4	4,75	3	0,4	0,4	100
No. 10	2,00	3	0,4	0,8	99
No. 20	0,840	3	0,4	1,2	99
No. 40	0,425	5	0,6	1,8	98
No. 60	0,250	6	0,7	2,5	98
No. 100	0.150	8	0.9	3.4	97


0,7

0,3

. Clasificación visual	٥	Limo
II. Tamaño máximo de la partícula		3/8 in.

CON	DICIONES DEL E	NSAYO
I. Método de ensayo	9	A
II. Tipo de tamizado		Simple
III. Tamiz separador		No. 4

Masa inicial de la muestra seca (g)		857
1 ⁸ sep.: Fracción ret, limpia y seca (g)	:	-
Masa de la fracción fina seca (g)	1	-
% Tamiz separador <2 % (1 ^{ra} sep.)	1	(

96

OBSERVACIONES: * No se descartaron o encontraron materiales ajenos al suelo ensayado * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CORA MODO SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL: 969577841 - 975421091 - 912493920

LAB SUC LABORATOR ODE SUPLOS Y PAVIMENTOS

A com BACH, ARODI R. CIEZA ROMERO JEFE DE LABORATORIO LABORATORIO DESCELOS Y PAVIMENTOS

ING. THONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

DETERMINACIÓN EN LABORATORIO DEL LÍMITE LÍQUIDO, LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD DE SUELOS

ASTM D4318-17E1

M - 1

JAĖN

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024". PROYECTO

MUESTRA

PROVINCIA

REGISTRO Nº : LSP24 - MS - 1109

BACH. MEJÍA SECLÉN ABEL EDUARDO -SOLICITANTE BACH. VASQUEZ PEREZ JHON BREINER

; JHONATAN H. ENSAYADO POR

: NATURAL

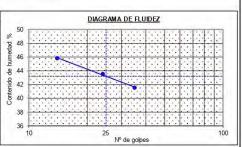
: ARODY CIEZA.

CALICATA : C-6 FECHA : ABRIL - 2024

: LAS DELICIAS - GRANADILLAS LOCALIDAD

PROFUNDIDAD : 0.20 - 1.50

JAÈN DISTRITO


: CAJAMARCA REGION

Li	MITE LÍQUIDO		
Prueba N°	1	2	3
N° de golpes	35	24	14
Masa del Recipiente (g)	27,80	36,50	37,10
Masa del Recipiente + Suelo Húmedo (g)	49,60	57,60	58,10
Masa del Recipiente + Suelo Seco (g)	43,20	51,20	51,50
Masa del Agua (g)	6,40	6,40	6,60
Masa del Suelo Seco (g)	15,40	14,70	14,40
Contenido de Humedad (%)	41,56	43,54	45,83

I. Método de ensayo de Límite Líquido	: A:Multipunto
II. Preparación de muestra:	Húmedo

CARACTERÍSTICAS DE	LA MUESTRA
Condición de la muestra	Alterada
amaño Max. de partícula	1 in.

LÍMITE PLÁSTICO						
Prueba N°	1	2				
Masa del Recipiente (g)	26,30	27,10				
Masa del Recipiente + Suelo Húmedo (g)	34,10	35,20				
Masa del Recipiente + Suelo Seco (g)	32,40	33,50				
Masa del Agua (g)	1,70	1,70				
Masa del Suelo Seco (g)	6,10	6,40				
Contenido de Humedad (%)	27,87	26,56				

RESULTADOS:

Limite Liquido	Limite Plástico	Índice de Plasticidad
43	27	16

OBSERVACIONES:

No se descartaron o encontraron materiales ajenos al suelo ensayado

Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL: 969577841 - 975421091 - 912493920

SUC PLOS Y PAVIMENTOS of any BACH ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS ING. THONATAN) HERRERA BARAHONA ING. SHONATAN) HERRERA BARAHONA ING. STATEBOOK ING. STATEBOOK

DETERMINACIÓN EN LABORATORIO DE LA CLASIFICACIÓN DE SUELOS - SUCS (ASTM D2487 - 17e1) CLASIFICACIÓN DE SUELOS - AASHTO (ASTM D3282 - 18)

1NFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS PROYECTO REGISTRO Nº : LSP24 - MS - 1109 DE SUBRASANTE, CARRETERA LAS DELICIAS - GRANADILLAS, JAÉN, 2024". BACH, MEJÍA SECLÉN ABEL EDUARDO -SOLICITANTE ENSAYADO POR JHONATAN H. MATERIAL NATURAL : LAS DELICIAS - GRANADILLAS CAJAMARCA DISTRITO JAÈN PROVINCIA JAĖN REGION

Tamiz		% Acumulado
Alternativo	mm	que Pasa
3 in.	76,20	100
2 in.	50,80	100
1 1/2 in.	38,10	100
1 in.	25,40	100
3/4 in.	19,00	100
3/8 in.	9,50	100
No. 4	4,75	100
No. 10	2,00	99
No. 20	0,840	99
No. 40	0,425	98
No. 60	0,250	98
No. 80	0,177	97
No. 100	0,150	96
No. 200	0,075	96

HUMEDAD DEL SUELO: ASTM D2216-19					
Porcentaje de Humedad (%)	27,34				

D ₁₀ (0,01 mm)	0,00	D ₆₀ (0,01 mm)	0,00	D ₃₀ (0,01 mm)	0,00
Coeficiente de Curvatura (Cc)	-	Coeficiente de Uniformidad (Cu)	(m)	Retenido en tamiz 3 in	1

D	STRIBUCI	ON GRANULOMÉTRI	CA	
% Grava	0	% Grava Gruesa	2	0
% Grava	0	% Grava Fina	3	0
	4	% Arena Gruesa	2	1
% Arena		% Arena Media	*	1
		% Arena fina	1	2
% Finos	96			

LÍMITES DE ATTERBERG: ASTM D4318-17					
Límite Líquido (LL) - %	43				
Límite Plástico (LP) - %	27				
Indice Plástico (IP) - %	16				

CLASIFICACIÓN DE SUELOS:	Símbolo de Grupo		
sucs	ML		
No. of the Control of	Silt		
Nombre de Grupo	Limo		

Clasificación de Grupo CLASIFICACIÓN DE SUELOS: Índice de Grupo AASHTO A-7-6 18 Clayey Soils Tipo habitual de material significativo REGULAR A DEFICIENTE Clasificación general como subrasante

BACH ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

OBSERVACIONES:

No se descartaron o encontraron materiales ajenos al suelo ensayado

LABORATORIO DESCIELOS Y PAVIMENTOS

ING. HONATAM HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615 Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

DIRECCION: CALLE LA COLINA MRO, 381 (MONTEGRANDE- A 1 CORA MCDO SOL DIVINO) CAJAMARDA- JAEN- JAEN.

CEL 969577841 - 975421091 - 912493920

INFORME DE ENSAYO

DETERMINACIÓN EN EL LABORATORIO DEL CONTENIDO DE AGUA (HUMEDAD) DE MUESTRAS DE SUELO, ROCA Y MEZCLAS DE SUELO - AGREGADO - NTC 339.217 / MTC E 108 / ASTM D-2216

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS – GRANADILLAS, JAÉN, 2024". PROYECTO

LSP24 - MS - 1109

SOLICITANTE BACH. MEJÍA SECLÉN ABEL EDUARDO - BACH. VASQUEZ PEREZ JHON BREINER

ENSAYADO POR JHONATAN H.

MATERIAL NATURAL ASIST LAB :

ARODY CIEZA.

ABRIL - 2024

MUESTRA

PROFUNDIDAD

0.20 - 1.50

LOCALIDAD LAS DELICIAS - GRANADILLAS DISTRITO JAÈN

PROVINCIA

REGION

CAJAMARCA

DATOS	PRUEBA No.1	PRUEBA No.2
Recipiente No	7	Ñ9
W1 - Masa del recipiente con el espécimen húmedo (g)	985,3	980,2
W2 - Masa del recipiente con el espécimen seco (g)	799,8	796,5
Wc - Masa del recipiente (g)	123,5	122,6
Ww - Masa del agua (g)	185,50	183,70
Ws - Masa de las particulas solidas (seco) (g)	676,30	673,90
W - Contenido de humedad (Ww / Ws)x100 (%)	27,43	27,26
PROMEDIO CONTENIDO DE HUMEDAD (%)		27,34

JAÈN

OBSERVACIONES:

DIRECCION: CALLE LA COLINA NRO, 301 IMONTEGRANDE. A 1 CURA MICOS SOL DIVINO) DAJAMARCA - JAEN - JAEN

CEL, 369677841 - 975421091 - 912493920

LAB SUC LABORATORYO DE SUPLOS Y PAVIMENTOS

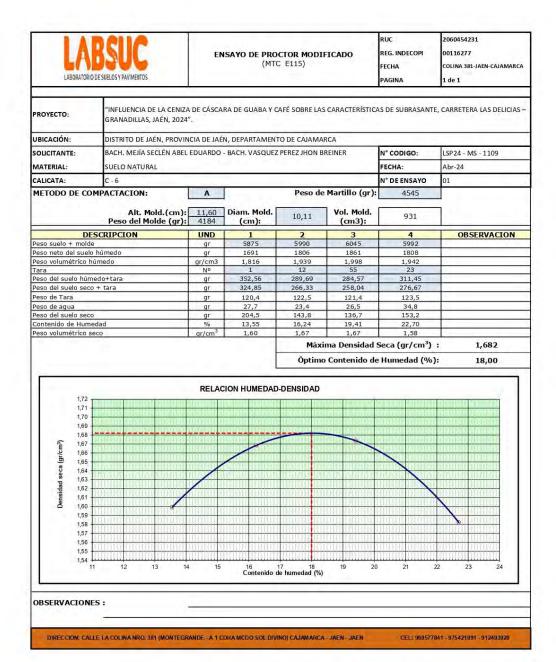
BACH, ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

LABORATORIO DESCELOS Y PAVIMENTOS
ING-HONATAN/ HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

^{*}No se descartaron o encontraron materiales ajenos al suelo ensayado

^{*} Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de LABSUC

Anexo 7. ENSAYOS DE LABORATORIO ESPECIALES


TESIS: "INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS — GRANADILLAS, JAÉN, 2024".

ANEXOS LSP24 - MS - 1109

ABRIL - 2024

SOLICITANTE: BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

SUELO PATRON

LABS/UC
LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS

ING. HONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

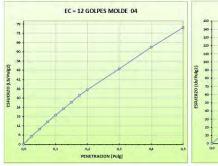
LABSUC ALEITRO IN HEIST PATAGERS	CBR DE LOS SUELOS (MTC E132)	RUC RES. INDECO PI FECHA PAGINA	2060454231 00116277 CO LINA 281-JAEN-CAJAMARCA 1 de 1
PROYECTO:	"INFLUENCIA DE LA CENTRA DE CÁSCARA DE GUABA Y CARÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRE	TERA LAS DELICIAS - GRANADILLAS, JAÉN, 2	024".
UBICACIÓN:	"INFILIACIO DE LA CENCA DE CASCARA DE GUARA Y CAFÉ SOBRE LASCARACTERISTICAS DE SUBRASANTE, CARRE DETRITO DE SAÉN, PROVINCIA DE SAÉN, DE FARTAMENTO DE CADAMARCA	TERA LAS DELICIAS - GRANADILLAS, JAÉN, 2	0.24*.
		TERA LAS DELICIAS – GRANADILLAS, JAÉN, 2	024°. ISP24 - MS - 1109
UBICACIÓN:	DETRICO DE MÁN, PROVINCIA DE SAÍN, DE PARTAMENTO DE CANMARCA		

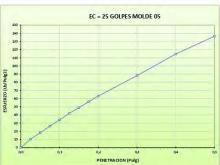
					COMPACTACION							
DESCRIPCION	UNIDAD		ENSAYOS									
NUMERO MOLDE	No		141									
N* Capas	No	5				\$			5			
N*Golpes x Capa	No	NO SATURADO		-		25			55			
Condición de Muestra				SATURADO	NO SA	NO SATURADO		NO SATURADO		SATURADO		
P, Homedo + Moide	(91)	11702.0		11956.0)1906,0		12138.0	12042.0		12315.0		
Pesa Malde (gr)	(gr)	7901.0		7901.0	7852.0		7852.0	7763.0		7763.0		
Peso Humedo	(gr)	\$801.0 4035.0		4055.0	40	4074.0		4279.0		4552.0		
Volumen del Molde	(011.5)	234	1.60	2241,60	225	2256.50 2256.50		2247.40		2247.40		
Densiead Hilmoda	(gr/cm3)	.1.6	1,896 1,809		13	805.	1,899	1,904		2 0 25		
					CONTENDO DE HUME	DAO						
P.Húmedo + Tara	(9)	250 69	354,58	248.78	298.58	302.56	508,26	305,56	\$10,25	326,56		
Peso Deco + Tara	(gr)	216.52	228.56	208.86	256.86	260,30	25454	263,50	267,68	276,56		
Peso Agua	(97)	84.37	36.02	40,42	41.72	42.26	48.72	42.06	42.57	50.00		
Peso Tara	(91)	26.55	28.57	29.54	24,58	26,95	23.56	30.25	31,25	32.69		
P. Muestra Seca	197)	169.97	199.99	178,82	232,28	238.94	230,98	233,25	235.43	243.67		
Contenid o de Humedad	5	18,09%	18,01%	22,60%	17.96%	18.06%	21,09%	18,03%	18.01%	20,50%		
CHumedad Promedio	*	18.	05%	22.50%	18.	01%	21,09%	-18	02%	20,50%		
DENSIDAO SECA	(gr/cm3)	1,4	136	1,475	1)	550	1.569	1,	613	1,681		

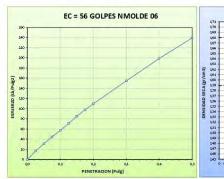
TE	MPO	NUMERO DE MOLDE Nº 4		NUMERO DE MOLDE Nº 4 NUMERO DE MOLDE Nº 5)A	UMERO DE MOLDE N	6
AGUANI	NADO	LECTURA	HRCH	AMIENTO	LECTURA	HINCH	AMIENTO	LECTURA	HINCH	AMIENTO
(Hs)	(Das)	DEFORM	(mm)	(8)	DEFORME	(mm)	(%)	DEFORM.	(mm)	(%)
0	0	0,000	0,000	0.00	0.000	0.000	0.00	0.000	0.000	0.00
24	1)	0,089	1.261	1.79	0.088	2,159	1.71	0.081	2.087	1,63
48	2/	0,092	2.337	1.85	0.687	2.210	1,75	0.089	2,108	1.67
72	3	0,095	2,415	1.92	0,090	2.286	1,81	0.084	2.134	1.55
96	4.	0,099	1919	2.00	-0.091	2.311	1.83	0.087	2.210	175

				EN	SAYO CARGA - PENET	HACION				
PENETRI	ACION		MOLDE Nº84			M OLDE Nº 05			MOLDE Nº 05	
(rom)	Coop	CARGA	ESF	WERZO	CARGA	ESP	FUERZO	CARGA	EST	FUERZO
Admit	(brid)	KG.	(Kg/Cm2)	(Lb Page)	KG.	(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pv/ga
0.00	0,000	9,00	0.00	,0,00	0,00	0.00	0,00	0,00	0.00	0.90
0,64	0.025	7,10	0.37	5.24	14,10	0.78	10,41	22,80	1.18	16.83
1.27	0.050	13,50	0,70	9.97	24,70	1,28	18 24	42,20	2.18	31.16
1.91	0,078	19.70	1.02	14.84	35,60	1.84	25.28	60.50	3.13	.44,67
254	0,106	25,60	1.32	18.90	46,00	2,38	33 96	77.40	400	57_14
3.18	0.125	31,20	1.61	25,03	56,80	2,94	41,93	96,30	4.98	71.10
3.51	0,150	36,90	1.91	27,24	66,30	3,43	48,95	115.30	5.96	85,12
4,45	0,175	43,60	2.22	31.79	76,10	3.93	56,18	132,60	6,85	97,90
5,08	0,200	48,00	2.48	35,44	85,50	4,42	63,12	148,60	7.68	109.71
7.62	0,300	66,30	3.45	48,95	119,50	6.18	88.22	209.60	10,83	154.74
10.16	0.400	85,50	4,41	62.98	155.20	8.02	114,58	269,30	13,92	198.82
12.70	0,500	102.50	5.30	75.67	184.80	9.55	156.43	324.20	16,75	239.35

DIRECTION CALLE LA COLDIA NRO. 321 (MONTEGRANDE - A 1 CORA MODO SOL DIVINO) CAJAMARGA - JAEN - JAEN


LAB SUC
LABORATORIO DE SUPLOS Y PAVIMENTOS


BACH-ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO


LABORATORIO DESCELOS Y PAVIMENTOS

ING. THONATANY. HERRERA BARAHONA
ING. BNIERO CIVIL
CIP: 312615

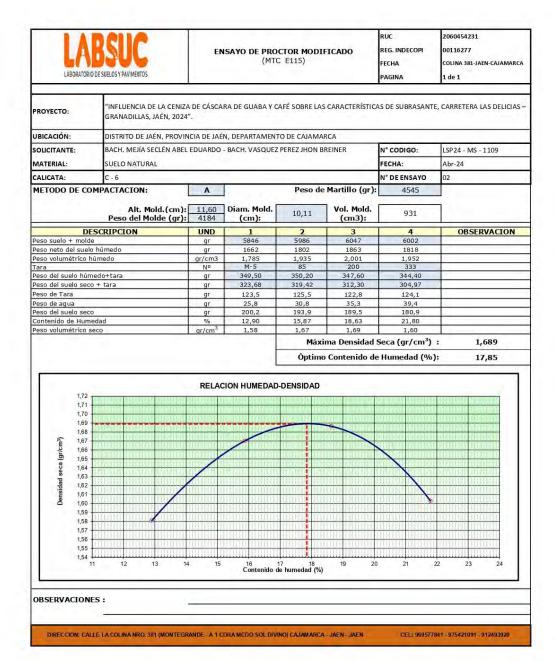
MOLDE	PENETRACION	PRESION APLICADA	PRESION PATRON	C.B.R.	DENSIDAD SECA
No.	(pulg)	CORREGIDA (Lb/pulg2)	(Lb/pulg Z)	4	(gr/cm3)
4	0.1	18,90	1000	1,89	1,48
.5	0.1	33,96	1000	3.40	1.57
6	0,1	57,14	1000	5.71	1,68

VALORES DEL ENSAYO DE PROCTOR MODIF	ICADO	VALOR C.B. R.		
DENSIDAD SECA MAXIMA (gr,cm3) :	1,682	C.B.R. Para el 95 % de la M.D.S. (0,1") =	3,80%	
CONTENIDO DE HUMEDAD OPTIMO (%)	18,00	C.B.R. Para el 100 % de la M.D.S. (0,17) =	5,70%	

PERIODO DE SUMERGIDO:	O4 DIAS
T D HOUSE OF CONTENTIONS.	

OBSERVACIONES

DIRECCION; CALLE LA COLINANRO, SS1 (MONTEGRANDE - A.1 CORA MODO SOL DIVINO) CAJAMARCA - JAEN - JAEN


GEL: 969577841 - 975421091 - 912459320

LAB SUC
LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH-ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DESOELOS Y PAVIMENTOS

ING. THONATAN J. HERRERA BARAHONA
ING. BINGENIERO CIVIL
CIP: 312615

LAB SUC
LABORATORIO DE SUBLOS Y PAVIMENTOS

BACH-ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

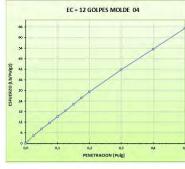
LABORATORIO DESCELOS Y PAVIMENTOS

ING. HONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

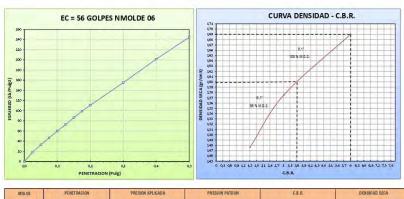
LA SUCCESSION OF THE SUCCESSIO	CBR DE LOSSUELOS (NTC E132)	RUC RES. INDECO PI FECHA PAGINA	2060454231 00116277 CO LINA 281-JAEN-CAJAMARCA 1 de 1
PROYECTO:	"INFLUENCIA DE LA CENIDA DE CÁSCARA DE GUARA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRE	TERA LAS DELICIAS - GRANADILLAS, JAÉN, 2	024".
UBICACIÓN:	INFULINCIA DE LA CINDA DE CASCANA DE GUARA Y CAFÉ SORME LASCARACTE RÉTICAS DE SUBRISANTE, CARRE DETERTO DE MÉU, FROMINCIA DE SAÍN, DE FAREAMENTO DE CALAMARCA.	TERA LAS DELICIAS - GRANADILLAS, JAÉN, 2	0.24*.
		TERA LAS DELICIAS — GRANADILLAS, JAÉN, 2	024°. ISP24 - MS - 1109
UBICACIÓN:	DETRITO DE SAÍN, FRONDESE DE ISAÍN, DE PARTAMENTO DE CAMMANCA		1

					COMPACTACION					
DESCRIPCION	UNIDAD					ENSAYOS				
NUMERO MOLDE	No	1			2			- 1		
N* Capas	No		5			5			5	
N*Golpes x Capa	No	12				25	25		55	
Condición de Muestra		NO SAT	TURADO	SATURADO	NO SA	TURADO	SATURADO	NO SA	TURADO	SATURADO
P, Homedo + Moide	(91)	115	36.0	11855.0	118	25,0	12012.0	121	35.0	12355.0
Pesa Molde (gr)	(0)	765	2.0	7852.0	177	52.0	7752.0	78	41/0	7841.0
Peso Humedo	(gr)	373	40	4003.0	40	79,0	4250.0	42	94.0	4514.0
Volumen del Molde .	(011.5)	221	5.50	2215.30	224	7,50	2247,50	223	6.10	2235 10
Densiead Hamodia	(gr/cm3)	1.6	86	1,807	- 0	311	1.895	2.0	920	2.019
					CONTENDO DE HUME	DAO				
P.Humedo + Tara	(9)	245.60	251,50	245,30	281.90	252.50	271,50	166,80	257.60	260.30
Peso Seco + Tara	(0)	212 50	217.00	206.20	243,40	227.40	231.00	230.50	223.60	223,30
Peso Agua	(97)	33.10	34.30	39.10	37,90	34.90	40.50	35.80	34.00	37.00
Peso Tara	(91)	27.55	25,38	81.26	32,36	30.85	31.56	29.86	33,20	32.74
P. Muestra Seca	197)	165,14	191.62	174.94	211.04	195.54	199.44	200.64	190,40	190,56
Contenid o de Humedad	\$	17,88%	17.90%	22,35%	17.96%	17.76%	20.31%	17.84%	17:86%	19,42%
C.Humedad Promedio	*	17.	89%	22,35%	17.	16%	20,51%	17.	85%	19,42%
DENSIDAO SECA	(gr/cm3)	-13	130	1,477	- 13	537	1.576	1)	528	1.690

TE	MPO	NUMERO DE MOLDE Nº 1		N	NUMERO DE MOLDE Nº 2			MUMERO DE MOLDE Nº 3		
#GLIMU	LADO .	LECTURA	HRCH	AMIENTO	LECTURA	HINCH	AMIENTO	LECTURA	HINCH	AMIENTO
(Hs)	(Das)	DEFORM	(mm)	(8)	DEFORM	(mm)	(%)	DEFORM.	(mm)	(3)
0	0	0,000	0,000	10.00	0.000	0.000	0.00	6,000	0.000	0.00
24	1)	0,092	2.337	1.85	0,088	2.235	1,77	0.084	2,134	1.65
48	2	0,095	2,413	1,92	0,090	2.286	1,81	0.085	2,159	171
72	3	0,097	2.454	1.96	0,092	2.337	1,85	0.088	2,235	177
96	4	0.098	2.489	1.98	0.095	2.413	1.92	0.089	2.261	179


				EN	SAYO CARGA - PENET	HACION				
PENETRI	ACION		MOLDE Nº 01			MOLDE Nº 02			MOLDE Nº 03	
and the same of th	Coop	CARGA	ESF	UERZO	CARGA	ESP	UERZO	CARGA	ESI	FUERZO
(mm)	(brid)	KG.	(Kg/Cm2)	Lb Pagz)	KG.	(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/PV/g2
0.00	0,000	9,00	0,00	,0,00	0.00	0.00	0,00	0,00	0.00	0.00
0,64	0.025	6,00	0.31	4.41	12,00	0.62	8.86	25,30	1,81	18.68
1.27	0,050	11,10	0,57	5:19	21,30	1,10	15,73	44,80	2.82	33.07
1.91	0,075	16.70	0.81	11.59	30,20	1.55	22,50	63.20	8,27	46.66
254	0,186	20,60	1.06	18.21	41,86	2,12	30.27	81,40	4.21	60.10
3.18	0.125	25,00	1.29	18.46	52,00	2,69	38,39	98,60	5.10	72.79
3.81	0,150	30,00	1.55	22,15	52,40	3.22	45,07	116,90	6,04	86.30
4,45	0,175	34,90	1,80	25.77	72,00	3,72	55,16	134,20	6,94	99.08
5,08	0,200	39,60	2.05	29.24	80.40	4.36	59,36	150,20	7.76	110.89
7.62	0,300	56,60	293	41.79	118,30	5.11	87,54	210,30	10,87	155,26
0.16	0.400	72.40	3.74	53,45	153,20	7.92	113,10	272,90	14,10	201,48
2,70	0.500	88.50	4.57	6534	183.20	9,47	15525	331.20	17.12	244 52

LAB SUC
LABORATORIO DE SURIOS Y PAVIMENTOS


BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABSUC
LABORATORIO DESDELOS Y PAVIMENTOS
LIMI
ING. THONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

JACKSUC JACKSUCHILIZYWARING	CBR DE LOS SUELOS (MTC E132)	RUC RES. IN DECO PI FECHA PAGINA	2060454231 00116277 CO UNA 281-JAEN-CAJAMÁRCA 1 de 1
PROYECTO:	INFLUENCIA DE LA CENZA DE CÁSCANA DE GUADA Y CAFÉ SOBRE LASCARACTERÍSTICAS DE SUBRASANTE, CARRE	TERA LAS DELICIAS - GRANADILLAS, JAÉN 2	024*.
Control and	I SA SETA TAK MANAGAN A PER MANAGAN A SA S		
UBICACIÓN:	DETRITO DE JAÉN, PROVINCIA DE JAÉN, DE PARTAMIENTO DE CAJAMARCA		
UBICACIÓN: SOLICITANTE:	DETRITO DE JAÉN, PROVINCIA DE JAÉN, DE PARTAM ENTO DE CAJAMARCA BACH, MEJÍN SICUÉN ABE LEBUARDO - BACH, VASQUEZ PEREZ JHON BRITINER	N' CODISO:	ISP24 - MS - 1109
		M* CO DISO:	ISP24 - MS - 1109 Abr-24

MOLDE	PENETRACION	PRESION APLICADA	PRESION PATRON	C.B.R.	DENSIDAD SECA
No.	(pulg)	CORREGIDA (Lb/pulg2)	(Lb/pulg Z)	*	(gr/cm3)
4	0.1	15.21	1000	1.52	1,48
.5	0.1	30.27	1000	3,03	1.58
6	0,1	60:10	1000	6,01	1,69

VALORES DEL ENSAYO DE PROCTOR M	DOIFICADO	VALOR C.B.R.		
DENSIDAD SECA MAXIMA (gr/cm3)	1,689	C.S.R. Para el 95 % de la M.D.S. (0.17) =	3,60%	
CONTENIDO DE HUMEDAD OPTIMO (%)	17,85	C.B.R. Para el 100 % de la M.D.S. (0,1")=	8,00%	

PERIODO DE SUMERGIDO:	04.0146

DIRECCION: CALLE LA COLINA NRO. 331 (MONTEGRANDE - A 1 CORA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN

GEL: 363577841 - 375421091 - 312459320

LAB SUC
LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH-ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DESOELOS Y PAVIMENTOS

ING. HONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

TESIS: "INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS — GRANADILLAS, JAÉN, 2024".

ANEXOS LSP24 - MS - 1109 ABRIL - 2024

SOLICITANTE: BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

6% (3% DE CCG + 3% DE CCC)

ENSAYO DE PROCTOR MODIFICADO (MTC E115)

2060454231 RUC REG. INDECOPI 00116277 FECHA COLINA 381-JAEN-CAJAMARCA PAGINA 1 de 1

PROYECTO:	"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍS GRANADILLAS, JAÉN, 2024".	STICAS DE SUBRASANTE,	CARRETERA LAS DELICIAS -
UBICACIÓN:	DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE CAJAMARCA		
SOLICITANTE:	BACH, MEJÍA SECLÉN ABEL EDUARDO - BACH. VASQUEZ PEREZ JHON BREINER	N° CODIGO:	LSP24 - MS - 1109
MATERIAL:	6% (3% DE CCG + 3% DE CCC)	FECHA:	Abr-24
CALICATA:	C - 6	N° DE ENSAYO	01

METODO DE COMPACTACION:	A		Peso de	Martillo (gr):	4545	
Alt. Mold.(cm): Peso del Molde (gr):		Diam. Mold. (cm):	10,11	Vol. Mold. (cm3):	930,82	
DESCRIPCION	UND	1	2	3	4	OBSERVACION
Peso suelo + molde	gr	5860	5970	6036	5985	
Peso neto del suelo húmedo	gr	1676	1786	1852	1801	
Peso volumétrico húmedo	gr/cm3	1,801	1,919	1,990	1,935	
Tara	No	55	22	126	35	
Peso del suelo húmedo+tara	gr	251,30	286,30	271,50	249,60	
Peso del suelo seco + tara	gr	237,65	265,00	249,13	225,19	pl.
Peso de Tara	gr	117,5	115,3	121,5	113,5	
Peso de agua	gr	13,6	21,3	22,4	24,4	
Peso del suelo seco	gr	120,1	149,7	127,6	111,7	
Contenido de Humedad	%	11,36	14,23	17,53	21,85	
Peso volumétrico seco	gr/cm ³	1,62	1,68	1,69	1,59	
			Máxi	ma Densidad Se	ca (gr/cm³) :	1,697
			A	Contaction de ti	1.1.001	22.00

Óptimo Contenido de Humedad (%): 16,55

OBSERVACIONES:

DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE : A 1 CORA MCDO SOL DINNO) CAJAMARCA - JAEI (- JAEI)

CEL: 969577841 - 975421091 - 912493920

LAB SUC LABORATORIO DE SUPLOS Y PAVIMENTOS BACH, ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

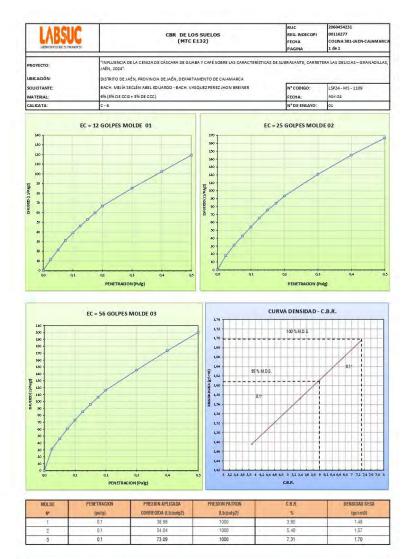
LABSUC LABORATORIO DESCELOS Y PAVIMENTOS ING. THONATAN HERRERA BARAHONA INGENIERO CIVIL CIP: 312615

LABSIC Carpanion desir is formation	CBR DE LOS SUELOS (MTC E132)	RUC REG. INDECOPI FECHA PAGINA	2060454231 00116277 COLINA 381-JAEN-CAJAMARC/ 1 de 1
PROYECTO:	"INPLUENCIA DE LA CENIZA DE CASCARA DE GUABA Y CAPÉ SOBRE LAS CARACTERÍSTIC JAÉN, 2024",	AS DE SUBRASANTE, CARRET	ERA LAS DELICIAS – GRANADILLAS,
UBICACIÓN:	DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE CAJAMARCA		
SOLICITANTE:	BACH, MEJÍA SECLÉN ABEL EDUARDO - BACH, VASQUEZ PEREZ JHON BREINER	N° CODIGO:	LSP24 - MS - 1109
MATERIAL:	6% (3% DE CCG+3% DE CCC)	FECHÁ:	Abr-24

				>(OMPACTACION						
DESCRIPCION	UNIDAD				ENSAYOS						
NUMERO MOLDE	No		1		2			3			
N° Capas	No		5	5			5				
N°Golpes x Capa	No	12		25			56				
Condicion de Muestra		NO SATURADO		SATURADO	NO SAT	TURADO	SATURADO	NO SATI	JRADO	SATURADO	
P, Hûmedo + Molde	(91)	11512,0		11744.0	11765.0		11935.0	12110.0		12310,0	
Pesa Malde (gr)	(gr)	7852,0		7852.0	7752.0		7752,0	7841.0		7841.0	
Peso Humedo	(gr)	3660,0		3892,0	401	4013,0		4269.0		4469,0	
Volumen del Molde	(cm3)	2215.30		2215,30	224	7,50	2247,50	2236	10	2236,10	
Densidad Humeda	(gr/cm3)	1.6	552	1,757	1.7	86	1,881	1.90	9	1,999	
				CONT	ENIDO DE HUM	DAD					
P.Humedo + Tara	(gr)	142,35	136.50	140,85	133.70	139,63	140.58	142.36	151.74	155,96	
Peso Seco + Tara	(gr)	127,48	122.31	122.74	119.99	123.91	124,46	127.48	135,40	137.78	
Peso Agua	(91)	14.87	14.19	18,11	13.71	15,72	16.12	14.88	16,34	18.18	
Peso Tara	(gr).	37.52	36.52	27,63	37.52	28,63	36,55	37,15	36,84	35,96	
P. Muestra Seca	(gr)	89,96	85,79	95,11	82,47	95,28	87,91	90,33	98,56	101.82	
Contenido de Humeda	8	16,53%	16,54%	19.04%	16,62%	16,50%	18,34%	16,47%	16,58%	17.86%	
C.Humedad Promedio	%	16,	53%	19,04%	16,	56%	18,34%	16,5	3%	17,86%	
DENSIDAD SECA	(gr/cm3)	1/	118	1,476	1,5	32	1,573	1,63	8	1,696	

					EXPANCION					
TIE	MPO	NUM	ERO DE MOLDE	Nº 1	NUM	ERO DE MOLDE	Nº 2	NUME	RO DE MOLDE Nº	3
ACUMULADO		LECTURA	LECTURA HINCHAMIENTO LECTURA HINCHAMIENTO LECTU		HINCHAMIENTO LECTURA		LECTURA	HINCH	AMIENTO	
(Hs)	(Dias)	DEFORM.	(mm)	(%)	DEPORM.	(mm)	(%)	DEFORM.	(mm)	(%
0	0	0.000	0.000	0.00	0.000	0.000	0,00	0.000	0.000	0,00
24	1	0.075	1,905	1.51	0.072	1.829	1.45	0.070	1,778	1.4
48	2	0,078	1,981	1.57	0,075	1,905	1.51	0.071	1.803	1,43
72	3	0.082	2,083	1.65	0,079	2,007	1.59	0.073	1.854	1.4
96	4.	0.085	2.159	1.71	0,080	2,032	1.61	0.075	1,905	1.5

				ENSAYO	CARGA-PENE	RACION				
PENETR	PENETRACION MOLDE Nº 01			MOLDE N° 02				MOLDE N° 03		
(mar)	Jones 1	GARGA	ESI	UERZO .	CARGA	CARGA ESFUERZO		CARGA	ESPUERZO	
(mm)	(pulg)	KG.	(Kg/Cm2)	(Lb/Puig2)	KG.	(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pulg2
0,00	0,000	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00
0.64	0,025	15,80	0.82	11.66	24,30	1,26	17,94	42,30	2,19	31,23
1,27	0,050	28,90	1.49	21,34	42.10	2,18	31.08	62,50	3,23	46.14
1,91	0.075	42,50	2,20	31,38	57,90	2.99	42,75	81,80	4.23	80.39
2,54	0,100	52.80	2,73	38,98	73.20	3.78	54,04	99,00	5.12	73.09
3.18	0,125	62,50	3,23	46,14	88,50	4.57	65.34	115,40	5,96	85,20
3.81	0,150	71.80	3.71	53,01	102,50	5,30	75.67	129.80	6,71	95,83
4,45	0,175	81,00	4.19	59,80	114.00	5.89	84,16	144.00	7.44	106,31
5.08	0,200	90.50	4,68	66,81	126,50	6,54	93,39	157.80	8.16	115,50
7,62	0.300	115.50	5.97	85,27	183,50	8.45	120.71	197.00	10,18	145,44
10.16	0,400	138,70	7.17	102,40	196.50	10.16	145,07	235.00	12,14	173,50
12,70	0,500	161.70	8,36	119.38	225.80	11.67	166,70	271.00	14.01	200,07


OBSERVACIONES:

LABORATORIO DE SUELOS Y PAVIMENTOS

BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DESSELOS Y PAMMENTOS

ING. THONATANY, HERRERA BARAHONA
ING. SHORNERO CIVIL
CIP: 312615

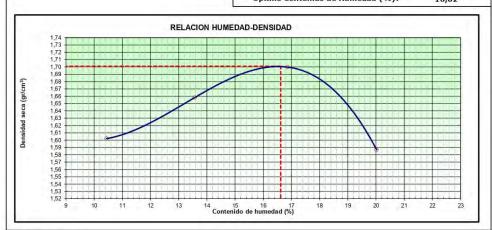
VALORES DEL ENSAYO DE PROCTOR MODIFICA	00	VALOR C.B.R.				
DENSIDAD SECA MAXIMA (gr/cm3)	1.697	C.B.R. Para el 95 % de la M.D.S. (0,1")=	6,00% 7,30%			
CONTENIDO DE HUMEDAD OPTIMO (%) :	16,55	C.B.R. Para el 100 % de la M.D.S. (0,1") =				

OBSERVACIONES :

LABSUC
LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABSUC
LABORATORIO DESDELOS Y PAVIMENTOS
ING. THONATAN HERRERA BARAHONA
INGENIERO CIVIL
(IP: 312615



ENSAYO DE PROCTOR MODIFICADO (MTC E115)

2060454231 RUC REG. INDECOPI 00116277 FECHA COLINA 381-JAEN-CAJAMARCA PAGINA 1 de 1

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS — PROYECTO: DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE CAJAMARCA UBICACIÓN: BACH. MEJÍA SECLÉN ABEL EDUARDO - BACH. VASQUEZ PEREZ JHON BREINER N° CODIGO: LSP24 - MS - 1109 SOLICITANTE: MATERIAL: 6% (3% DE CCG + 3% DE CCC) FECHA: Abr-24 N° DE ENSAYO CALICATA: 02

Alt. Mold.(cm): Peso del Molde (gr):		Diam. Mold. (cm):	10,11	Vol. Mold. (cm3):	930,82	
DESCRIPCION	UND	1	2	3	4	OBSERVACION
Peso suelo + molde	gr	5831	5937	6033	5957	
Peso neto del suelo húmedo	gr	1647	1753	1849	1773	
Peso volumétrico húmedo	gr/cm3	1,769	1,883	1,986	1,905	
Tara	No	5	C-1	44	AM	
Peso del suelo húmedo+tara	gr	261,30	257,30	248,30	237,50	
Peso del suelo seco + tara	gr	247,30	240,60	229,26	217,10	
Peso de Tara	gr	113,3	117,5	116,3	115,2	
Peso de agua	gr	14,0	16,7	19,0	20,4	
Peso del suelo seco	gr	134,1	123,1	113,0	101,9	
Contenido de Humedad	%	10,44	13,57	16,86	20,02	
Peso volumétrico seco	gr/cm ³	1,60	1,66	1,70	1,59	
			Máxi	ma Densidad Se	ca (gr/cm³) :	1,701
			Óptimo	Contenido de H	lumedad (%):	16.62

OBSERVACIONES:

DIRECCIONI CALLE LA COLINA NRO, 381 (MONTEGRANDE-À 1 CORA MICOS SOL DIMINO) CAJAMARCA - JAEN - JAEN

CEL 969577841 - 975421091 - 912493920

BACH, ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

SUC TELOS Y PAVIMENTOS ING. JHONATAN) HERRERA BARAHONA INGENIERO CIVIL CIP: 312615

JASSICO DO PRESTOS MUNICIPALINO.	CBR DELOS SUELOS (MTC E132)	RUC REG. INDECOPI FECHA PAGINA	2060454231 00116277 COLINA 381-JAEN-CAJAMARCA 1 de 1
PROYECTO:	'INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAPÉ SOBRE LAS CARACTERISTICAS DESUB	RASANTE, CARRETERA LAS DELICIAS —	GRANADILLAS, JAÉN, 2024".
UBICACIÓN:	DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE CAJAMARCA		
SOLICITANTE:	BACH, MEJÍA SECIÉN ABEL EDUARDO - BACH, VASQUEZ PEREZ JHON BREINER	N° CODIGO:	LSP24 - MS - 1109
MATERIAL:	6% (3% DE COG +3% DE COC)	FECHA:	Abr-24
CALICATA:	C-6	N° DE ENSAYO:	

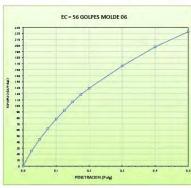
					COMPACTACION						
DESCRIPCION	UNIDAB					ENSAY08					
MUMERO MOLDE	No		4		5				6		
Nº Capas	Na		5		5			5			
NºGolpes x Capa	No		12	25				56			
Condicion de Muestra		NO SATURADO		SATURADO	NO SAT	NO SATURADO		NO SAT	URADO	SATURADO	
P. Humedo + Molde	(gr)	11696,0		11928.0	11993,0		12145,0	12184.0		12259.0	
Peso Molde (gr)	(gr)	7901.0		7901.0	7852.0		7852,0	7763.0		7763.0	
Peso Humedo	(gr)	3795.0		4027.0	414	1.0	4293,0	4421.0		4496.0	
Volumen del Molde	(cm3)	2241,60		2241,60	225	6,50	2256,50	224	7.40	2247.40	
Densidad Hümeda	(gricm3)	1.6	193	1,796	1.8	135	1.903	1.9	67	2,001	
				CON	TENIDO DE HUMEDI	AD .					
P Humedo + Tara	(gr)	152.30	148,63	162,35	147.20	161,30	163.50	155.80	148,60	174.30	
Peso Seco + Tara	(gr)	135,59	132.81	142.64	130,25	142.89	143,65	135.37	131.43	152,03	
Peso Agua	(91)	16.71	15.82	19.71	16,95	18,41	19,85	17.43	17.17	22.27	
Peso Tara	(gr)	35.26	37:56	38.63	28.69	31.62	35,74	32.86	28.56	25,86	
P. Muestra Seca	(91)	100,33	95.25	104,01	101.56	111,27	107,91	105.51	102,87	126,17	
Contenido de Humedad	%	15,68%	16,61%	18.95%	16,69%	16,55%	18,39%	16.52%	16.69%	17,65%	
G.Hum edad Prome dio	- 8	16,	63%	18,95%	16,	62%	18,39%	16,	11%	17,65%	
DENSIDAD SECA	(gr/cm3)	1,4	152	1,510	1,5	74	1,607	1,6	87	1,700	

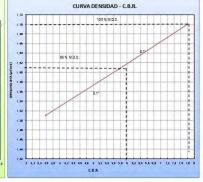
76	MPO	NUMERO DE MOLDE AF 4		74	NUMERO DE MOLDE Nº 5			NUMERO DE MOLDE Nº 6		
ACUAR	ILADII	LECTURA HINCHAMIENTO		LECTURA	HINCH	AMIENTO	LECTURA	HINCHAMIENTO		
(Ha)	(Dias)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	04
0	0	0.000	0.000	0.00	0.000	0,000	0,00	0.000	0.000	0,00
24	1	0.078	1.981	1.57	0.075	1.905	1.51	0.071	1.803	1.43
48	2	0.051	2,057	1,63	0.076	1.930	1.53	0.073	1.854	1.47
72	3	0.082	2.083	1.65	0.079	2,007	1.59	0.075	1,905	1.5
96	4	0.082	2.083	1.65	0.051	2.057	1.63	0.078	1,981	1.57

				ENSAYO	GARGA - PENETRI	ICION				
PENETE	RACION		MOLDE N° 04			MOLDE Nº 05			MOLDE № 06	
(mmi	70-10	CARGA	ESF	UERZO .	CARGA	ESF	FUERZO	CARGA	ESF	UERZO
(tauti)	(pulgi	KG.	(Kg/Cm2)	(Lb/PulgZ)	KG.	(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pu/g2
0.00	0.000	0.00	0.00	0.00	25.00	1,27	1.82	0,00	0.00	0.00
0.64	0.025	16,80	0.87	12.40	30 10	1.56	22.22	33.88	1.75	24.95
1.27	0.050	27.80	1.44	20,52	46.20	2,39	34,11	60.10	3,11	44.37
1.91	0.075	38.50	1,99	28,42	63,10	3,26	46,59	84.20	4.35	62.16
2.54	0,100	-8.50	2,51	35,81	78.00	4.03	57,59	105.80	5.47	78,11
3.18	0.125	57.80	2.99	42.67	90.10	4.66	66,52	125.00	6.46	92.28
3.81	0.150	86.50	3.44	49,10	102.80	5.31	75.90	144,50	7.47	106,68
4,45	0.175	75.20	3.89	55.52	113.20	5,85	83.57	161.00	8.32	118,86
5.08	0,200	82.20	4.25	60,69	121.80	6,30	90.00	175,00	9,04	129,20
7.62	0.300	108,70	5,62	80.25	151,10	7.81	111.55	225.00	11.63	166,11
10,16	0.400	130,50	6.74	96,35	179,00	9,25	132,15	268,00	13,85	197,86
12.70	0.500	151,80	7.84	112,07	205,80	10.64	151.94	302,00	15.61	222,96

DIRECCIONE CALLE LA COLINA IND. 381 (MONTEGRANDE-A 1 CDRA MCDQ SQL DIVINO) CAJAMARCA - JAEN - JAEN -

LAB SUC LABORATORIO DE SUPLOS Y PAVIMENTOS


BACH, ARODI R. CIEZA ROMERO JEFE DE LABORATORIO


LABSUC LABORATORIO DESDELOS Y PAVIMENTOS MANONATIAN HERRERA BARAHONA INGENIERO CIVIL CIP: 312615

OLDE PENETRACION Nº (puig)		PRESION APLICADA CORREGIDA (Li/polg2)	PRESION PATRON (Lb/paig 2)	C.B.R.	DENSIDAD SECA (gr/cm3)	
4	0.1	35,81	1000	3,58	1.51	
5	0,1	57,58	1000	5.76	1.61	
6	0.1	78.11	1000	7,81	1.70	

VALORES DEL ENSAYO DE PROCTOR MODI	HCADO	VALOR C.B.R.			
DENSIDAD SECA MAXIMA (gr/cm3) :	1,701	C.B.R. Para el 95 % de la M.O.S. (0,1")=	5,80%		
CONTENIDO DE HUMEDAD OPTIMO (%)	16,62	C.B.R. Para el 100 % de la M.D.S. (0,1*)=	7,80%		

PERIODO DE SUMERGIDO: 04 DIAS

OBSERVACIONES:

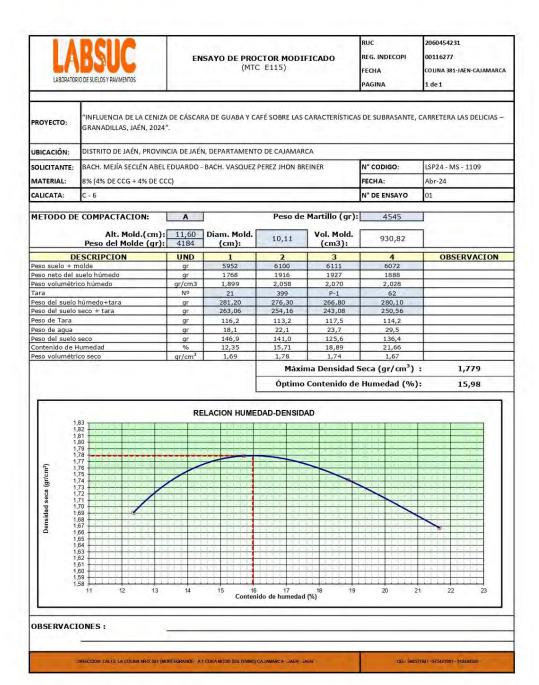
DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL: 969577841 - 975421091 - 912493920

LAB SUC LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH ARODI R. CIEZA ROMERO JEFE DE LABORATORIO LABORATORIO DE SOELOS Y PAVIMENTOS

ING. THONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615



TESIS: "INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS — GRANADILLAS, JAÉN, 2024".

ANEXOS LSP24 - MS - 1109 ABRIL - 2024

SOLICITANTE: BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

8% (4% DE CCG + 4% DE CCC)

LABS/UC
LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DESCELOS Y PAVIMENTOS

ING. THONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

CHARLESTON OF REMOVEMENTS	CBR DE LOS SUELOS (MTC E332)	RUC REG.INDECOPI FECHA PAGINA	2060454231 00116277 COLINA 381-JAEN-CAJAMARCA 1 de 1
PROYECTO:	"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SL	IBRASANTE, CARRETERA LAS DELIC	IAS – GRANADILLAS, JAÉN, 2024".
UBICACIÓN:	DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE CAJAMARCA		
7	DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE GAJAMARCA BACH, MEJÍA SECLÉN ABEL EDUARDO - BACH, VASQUEZ PEREZ JHON BREINER	Nº CODIGO:	LSP24 - M5 - 1109
UBICACIÓN: SOLICITANTE: MATERIAL:		№ codigo; FECHA:	LSP24 - MS - 1109 Abr-24

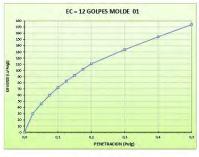
					COMPACTACION						
DESCRIPCION	UNIDAD					ENSAYOS					
NUMERO MOLDE	No		1			2			3		
Nº Capas	No		5		5			5			
N°Golpes x Capa	No		12	25			56				
Condición de Muestra		NO SATURADO		SATURADO	NO SA	NO SATURADO		NO SATURADO		SATURADO	
P. Humedo + Molde	(gr)	11784,0		11956,0	119	11986,0		12315,0		12491.0	
Pesa Molde (gr)	(gr)	7852,0		7852,0	77	7752.0		7841.0		7841,0	
Peso Húmedo:	(gr)	3932,0		4104,0	4234,0		4371.0	4474,0		4650,0	
Volumen del Molde	(cm3)	2215,30		2215.30	2247,50		2247.50	2236,10		2236.10	
Densidad Humeda	(gr/cm3)	1,7	775	1.853	1,884		1.945	2,001		2,080	
				CONT	ENIDO DE HUMED	AD					
P. Humedo + Tara	(gr)	152,34	148,69	152,37	133.75	147,93	152,61	147.32	144,26	150,78	
Peso Seco + Tara	(gr)	136.30	133,41	134.04	120,35	132,40	134.16	131.82	129.23	133,81	
Peso Agua	(pr)	16,04	15,28	18.33	13.40	15,53	18,45	15,50	15,03	16.97	
Peso Tara	(gr)	35,62	37.85	34.52	36.26	34,85	29.63	34.85	35.12	33.87	
P. Muestra Seca	(gr)	100.68	95,56	99,52	84,09	97,55	104,53	96,97	94,11	99.94	
Contenido de Humedad	*	15.93%	15.99%	18,42%	15,94%	15,92%	17,65%	15.98%	15,97%	16,98%	
C.Humedad Promedio	%	15,	96%	18,42%	15	93%	17,65%	15,	98%	16,98%	
DENSIDAD SECA	(qr/cm3)	1,3	531	1,564	1.	625	1,653	1,5	725	1,778	

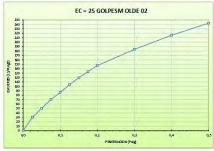
					EXPANCION					
TIE	TIEMPO NUMERO DE MOLDE Nº 1 NUME						62	NUMERO DE MOLDE Nº 3		
ACUMU	LADO.	LECTURA	HINCH	AMIENTO	LECTURA	HINCH	AMIENTO.	LECTURA	HIRCH	MAIENTO
(Hs)	(Dias)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM	(mm)	(%
0	0	0,000	0,000	0.00	0,000	0,000	0,00	0,000	0,000	0,0
24	1	0,135	3.429	2.72	0.129	3,277	2,60	0,120	3,048	24
48	2	0,141	3,581	2,84	0.132	3.353	2,66	0,123	3,124	2.4
72	3	0.147	3.734	2.96	0.135	3.429	2.72	0,126	3.200	2.5
96	141	0.150	3.810	3.02	0.137	3.480	2.76	0.129	3.277	26

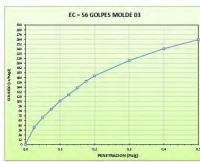
				ENSAYO	CARGA - PENETRA	CION				
PENETR	ACION		MOLDE N° 01		MOLDE Nº 02			MOLDE N° 93		
(mm)	20.00	CARGA	ESF	UERZO	CARGA	ESF	VERZO	CARGA	ESF	UERZO.
famil	(pulg)	(pug) KG.	(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pulg2
0.00	0.000	0,00	0.00	0,00	0.00	0,00	0,00	0.00	0.00	0,00
0.64	0.025	41,00	2,12	30.27	40,80	2,11	30,12	57.40	2.97	42,38
1,27	0.050	62.10	3.21	45.85	68,10	3,52	50.28	91.20	4.71	67,33
1,91	0.075	81.20	4.20	59,95	95.20	4,92	70,28	120.00	6.20	88,59
2.54	0,100	97.80	5.05	72,20	116,80	6.04	86,23	147.80	7.64	109,12
3,18	0.125	112,00	5.79	82,69	141,00	7,29	104,10	169.00	8.73	124.77
3,81	0.150	124.80	6.45	92,14	162,00	8,37	119,60	192.50	9,95	142,12
4.45	0,175	137.80	7.12	101.73	180.80	9.34	133,48	215,00	11.11	158,73
5.08	0,200	149.80	7.74	110,59	199,00	10,28	146.92	233.50	12,07	172,39
7.62	0,300	181.00	9.35	133,63	248,80	12.86	183.68	285.60	14.76	210,85
10,16	0,400	209.00	10.80	154.30	292,00	15.09	215,58	325.80	16,84	240.53
12.70	0.500	235.70	12.18	174.01	329,10	17.01	242.97	356.50	18.42	263.20

DIRECCION: CALLE LA COLINA NRO, 381 (MONTEGRANDE - A 1 CDRA MICDO SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL: 969577841 - 975421091 - 912493920


LAB SUC LABORATORIO DE SUPLOS Y PAVIMENTOS


BACH, ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

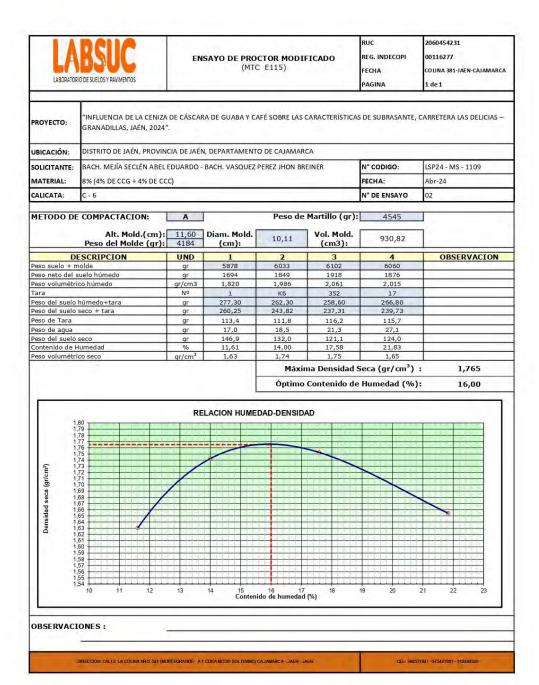

LABORATORIO DESGELOS Y PAVIMENTOS

ING. THONATANY, HERRERA BARAHONA
ING. SNIERO CIVIL
CIP: 312615

MOLDE No	PENETRACION (pulg)	PRESION APLICADA CORREGIDA (Lb/puig2)	PRESION PATRON (Lb/puig2)	C.B.R.	(gt/cm3) 1,56 1,65	
1	0.1	72,20	1000	7.22		
2	0.1	86,23	1000	8,62		
3	0.1	109,12	1000	10,91	1,78	

VALORES DEL ENSAYO DE PROCTOR MO	DIFICADO	VALOR C.B.R.		
DENSIDAD SECA MAXIMA (gr/cm3) :	1,779	C.B.R. Para el 95 % de la M.D.S. (0,1")=	9,30%	
CONTENIDO DE HUMEDAD OPTIMO (%)	15,98	C.B.R. Para el 100 % de la M.D.S. (0,1")=	10,90%	

PERIODO DE SUMERGIDO:	04 DIAS	
-----------------------	---------	--


DIRECCION: CALLE LA COLINA NRO, 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN CEL: 969577841 - 975421091 - 912493920

LAB SUC
LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS

ING. JHONATAN HERRERA BARAHONA
INGENIERO CIVIL
INGENIERO CIVIL
CIP: 312615

LABSUC
LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DE SOELOS Y PAVIMENTOS

ING. THONATAN). HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

INSCRIBE & STRIKA SENIKA SENIKA SERIE	CBR DELOS SUELOS (MTCE132)	RUC REG.INDECOPI FECHA PAGINA	2060454231 00116277 COLINA 381-JAEN-CAJAMARCA 1 de 1
PROYECTO:	FINFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SI	JBRASANTE, CARRETERA LAS DELIGI	AS – GRANADILLAS, JAÉN, 2023".
			and a construct the series and
UBICACIÓN:	DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE GAJAMARCA		
7.7	DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE CAJAMARCA BACH. MEJÍA SECLÉN ABELEDUARDO - BACH. VASQUEZ PEREZ JHON BREINER	Nº CODIGO;	L5P24 - M5 - 1109
UBICACIÓN: SOLIGITANTE: MATERIAL:		N° CODIGO: FECHA:	L5P24 - M5 - 1109 Abr-24

				1	COMPACTACION						
DESCRIPCIÓN	UNIDAD					ENSAYOS					
NUMERO MOLDE	No		7			8			9		
Nº Capas	No		5		5			5			
N°Golpes x Capa	No		12		25			56			
Condición de Muestra		NO SATURADO		SATURADO	NO SATURADO		SATURADO	NO SATURADO		SATURADO	
P. Humedo + Molde	(gr)	116	11665,0		11952.0		12153,0	12292,0		12424.0	
Pesa Molde (gr)	(gr)	769	7698.0		7712.0		7712,0	7851.0		7851,0	
Peso Húmedo:	(gr)	396	3967,0		42	10.0	4441.0	4441,0		4573,0	
Volumen del Molde	(cm3)	223	2239.20		225	1.70	2251.70	2251.70 2247.30		2247.30	
Densidad Humeda	(gr/cm3)	1,7	772	1.867	7 1,883		1,972	1,976		2,035	
				CONT	ENIDO DE HUMED	ND .					
P. Humedo + Tara	(gr)	171.26	165,35	158.27	157,44	163,25	150.18	160.58	157.24	148,32	
Peso Seco + Tara	(gr)	151.41	146.77	138,07	140,38	145,64	132,90	142.45	140,31	131,69	
Peso Agua	(pr)	19.85	18.58	20.20	17,06	17,61	17,28	18.13	16,93	16.63	
Peso Tara	(gr)	28,63	31,52	28,54	34.62	36.57	37.12	29.86	35.44	35.19	
P. Muestra Seca	(gr)	122.78	115.25	109,53	105,76	109,07	95,78	112,59	104.87	96,50	
Contenido de Humedad	- %	16:17%	16.12%	18,44%	16,13%	16,15%	18,04%	16.10%	16.14%	17.23%	
C.Humedad Promedio	*	16.	14%	18,44%	16	14%	18,04%	16	12%	17,23%	
DENSIDAD SECA	(gr/cm3)	1,5	525	1,576	1.	521	1,671	1,7	702	1,736	

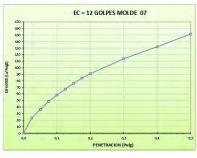
					EXPANCION						
TIE	TIEMPO NUMERO DE MOLDE Nº 7 NUMERO DE MOLDE Nº 8							NUMERO DE MOLDE Nº 9			
ACUMI	JLADO.	LECTURA	HINCH	AMIENTO	LECTURA	HINCH	AMIENTO	LECTURA	HINCH	AMENTO	
(Hs)	(Dias)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM	(mm)	(%)	
0	0	0,000	0,000	0.00	0,000	0,000	0,00	0,000	0,000	0,0	
24	1	0,070	1.778	1.41	0.066	1.676	1.33	0,063	1,600	1.27	
48	2	0,073	1.854	1.47	0,068	1.727	1.37	0.065	1,651	1.3	
72	3	0.075	1.905	1.51	0.071	1.803	1.43	0.066	1,676	1.33	
96	4	0.077	1.956	1.55	0.071	1.803	1.43	880.0	1.727	1.37	

				EI6AY0	CARGA - PENETRA	CION				
PENETF	IACION		MOLDE N° 07			MOLDE Nº 08			MOLDE N° 09	
Visit	2000	CARGA	ESF	UERZO	CARGA	ESF	VERZO	CARGA	ESF	UERZO.
(mm)	(pulg)	KG.	(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pulg2
0.00	0.000	0,00	0.00	0,00	0.00	0,00	0,00	0,00	0.00	0,00
0.64	0.025	31.70	1.64	23.40	57.80	2,93	42,67	81.50	4.21	60.17
1,27	0.050	49.10	2.54	35,25	87,90	4,54	64,89	115,00	5,94	84,90
1,91	0.075	65,90	3,41	48.65	114,00	5,89	84,16	140.20	7,25	103,51
2.54	0,100	79.00	4.08	58,32	136,00	7,03	100,41	162.70	8.41	120.12
3.18	0.125	91.20	4.71	67,33	159,80	8,26	117.98	181.50	9,38	134.00
3.81	0.150	103,20	5,33	76.19	179,40	9.27	132,45	199,50	10,31	147.29
4.45	0,175	114,20	5,90	84,31	199,00	10,28	146,92	216,50	11.19	159,84
5.08	0,200	123.10	6.36	90,88	216.80	11,20	160,06	234.50	12,12	173,13
7.62	0,300	154.00	7.96	113,70	279,00	14,42	205.98	285,50	14.75	.210.78
10,16	0,400	178.90	9.25	132,08	338,70	17,50	250,06	326,60	16,89	241,27
12.70	0,500	205,00	10,59	151,35	389,00	20,10	287,19	368.70	19,05	272.20

OBSERVACIONES:

DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL: 969577841 - 975421091 - 912493920


LAB SUC LABORATORIO DE SUPLOS Y PAVIMENTOS


BACH ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS

ING. THONATAN HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

MOLDE	PENETRACION	PRESION APLICADA	PRESION PATRON	C.B.R.	DENSIDAD SECA
No.	(pulg)	CORREGIDA (Lb/puig2)	(Lb/pulg2)	%	(gr/cm3)
7	0.1	58,32	1000	5.83	1.58
8	0.1	100.41	1000	10,04	1.67
9	0,1	120,12	1000	12,01	1.74

VALORES DEL ENSAYO DE PROCTOR MO	DIFICADO	VALOR C.B.R.	
DENSIDAD SECA MAXIMA (gr/cm3) :	1,735	C.B.R. Para el 95 % de la M.D.S. (0,1")=	8,80%
CONTENIDO DE HUMEDAD OPTIMO (%)	16,15	C.B.R. Para el 100 % de la M.D.S. (0,1")=	12,00%

PERIODO DE SUMERGIDO:	04 DIAS	
-----------------------	---------	--

OBSERVACIONES :

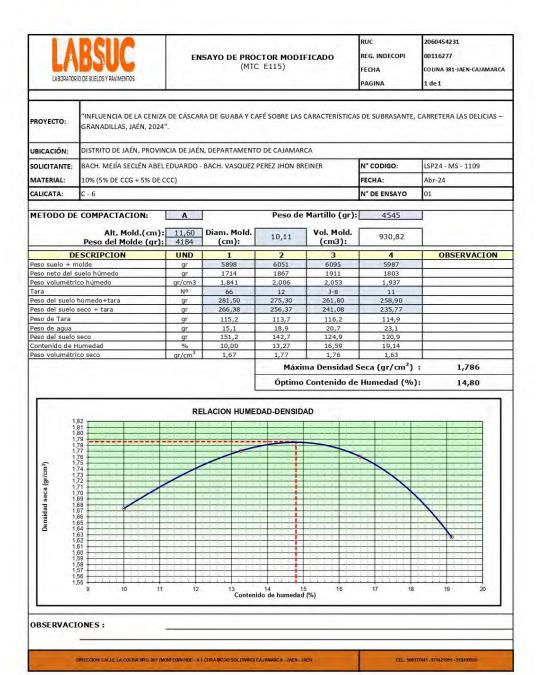
DIRECCION; CALLE LA COLINA NRO, 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN CEL: 969577841 - 975421091 - 912493920

LABSUC
LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS

ING. THONAIAN). HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615



TESIS: "INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS — GRANADILLAS, JAÉN, 2024".

ANEXOS LSP24 - MS - 1109 ABRIL - 2024

SOLICITANTE: BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

10% (5% DE CCG + 5% DE CCC)

LAB SUC
LABORATORIO DE SUPLOS Y PAVIMENTOS

W
BACH. ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS

ING. THONATANY HERRERA BARAHONA
INGENIERO CIVIL
(IP: 312615

DECEMBER (N. S. SON A SERVICIO SE	CBR DE LOS SUELOS (MTC E132)	RUC REG. INDECOPI FECHA PAGINA	2060454231 00116277 COLINA 381-JAEN-CAJAMARCA 1 de 1
PROYECTO:	"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAPÉSOBRE LAS CARACTERÍSTICAS DE S	UBRASANTE, CARRETERA LAS DEUC	IAS – GRANADILLAS, JAÉN, 2024".
a distribution			
UBICACIÓN:	DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE CAJAMARCA		
UBICACION: SOLICITANTE:	DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE CAJAMARCA BACH, MEJÍA SECLÉN ABEL EDUARDO - BACH, VASQUEZ PEREZ JHON BREINER	Nº CODIGO:	LSP24 - M5 - 1109
7-7-2-3		Nº CODIGO: FECHA:	LSP24 - M5 - 1109 Abr-24

					OMPACTACION					
DESCRIPCION	UNIDAD					ENSAYOS				
NUMERO MOLDE	No		5			4			3	
Nº Capas	No		5			5			5	
N°Golpes x Capa	No		12			25			56	
Condición de Muestra		NO SAT	URADO	SATURADO	NO SAT	TURADO	SATURADO	NO SA	TURADO	SATURADO
P. Humedo + Molde	(gr)	117	98,0	12027.0	121	12,0	12257,0	122	92,0	12465.0
Peso Molde (gr)	(gr)	785	2.0	7852,0	79	11.0	7901.0	784	41.0	7841,0
Peso Húmedo.	(gr)	394	6,0	4175.0	42	11,0	4356.0	445	51,0	4624.0
Volumen del Molde	(cm3)	225	6,50	2256,50	224	1.60	2241,60	223	5,10	2236.10
Densidad Humeda	(gr/cm3)	1,7	49	1,850	1.0	379	1,943	1,3	991	2,068
				CONT	ENIDO DE HUMEDI	ND .				
P.Humedo + Tara	(gr)	165,30	172,36	152,38	165,63	159,62	148,57	160.58	172,35	174,79
Peso Seco + Tara	(gr)	148.80	154.48	135,58	149,23	143,88	132,68	144.40	154.50	155,78
Peso Agua	(gr)	16,50	17.88	16.80	16,40	15.74	15.89	16,18	17,85	19,01
Peso Tara	(gr)	37.26	34,15	35,52	38,52	37,48	34,63	35,18	33.96	35.87
. Muestra Seca	(gr)	111.54	120,33	99,06	110.71	106,40	98,05	109.22	120.54	119,91
Contenido de Humedad	*	14.79%	14.86%	16,96%	14.81%	14,79%	16,21%	14,81%	14,81%	15,85%
. Humedad Promedio	%	14,	83%	16,96%	14,	80%	16,21%	14,	81%	15,85%
DENSIDAD SECA	(gr/cm3)	1,5	23	1,582	1,0	336	1,672	1,7	734	1,785

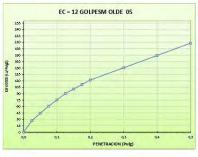
					EXPANCION					
TIE	MPO	NUI	MERG DE MOLDE !	(2.5.	NU	MERO DE MOLDE N	194	NUI	MERO DE MOLDE	F3
ACUMI	LADO.	LECTURA	HINCH	AMIENTO	LECTURA	HINCH	AMIENTO	LECTURA	HINCH	AMIENTO
(Hs)	(Dias)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM	(mm)	(%)
0	0	0,000	0.000	0.00	0,000	0,000	0,00	0,000	0,000	0,00
24	1	0.071	1.803	1.43	0.066	1,676	1,33	0,064	1,615	1.28
48	2	0,072	1,629	1.45	0.064	1.626	1.29	0,065	1,651	1.31
72	3	0.076	1.930	1.53	0.065	1.651	1,31	0.061	1.549	1.23
96	4	0,077	1,956	1.55	0.065	1,651	1,31	0,063	1,600	1,27

				ENSAYO	CARGA - PENETRA	CION				
PENETF	IACION		MOLDE N° 05			MOLDE Nº 04			MOLDE N° 03	
(mm)	2000	CARGA	ESF	UERZO	CARGA	ESF	VERZO	CARGA	ESF	UERZO.
form	(pulg)	KG.	(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pulg2
0.00	0.000	0,00	0.00	0,00	0.00	0,00	0,00	0,00	0.00	0,00
0.64	0.025	36,50	1.89	26,95	50,10	2,59	36,99	80.10	4.14	59,14
1,27	0.050	60.10	.3.11	44,37	88,30	4,58	65,19	121,30	6.27	89.55
1,91	0.075	82.10	4,24	60,61	118.50	6,12	87,49	159.50	8.24	117.76
2.54	0,100	102.30	5,29	75,53	146,80	7.59	108,38	195,40	10.10	144.26
3.18	0.125	122,30	6.32	90,29	174,50	9.02	128,83	225,20	11,64	166,26
3.81	0.150	136,50	7.05	100.78	199,50	10,31	147.29	249,80	12,91	184,42
4.45	0,175	151:20	7.81	111,63	226,30	11.70	167.07	278.50	14.39	205,61
5.08	0,200	165.20	8.54	121,96	251.30	12.99	185,53	299.50	15,48	221,11
7.62	0,300	204.00	10.54	150,61	326,60	16,88	241.12	375,20	19.39	277,00
10,16	0,400	243,00	12.56	179,40	401,20	20,73	296.20	439.00	22,69	324.10
12,70	0,500	281.60	14,55	207,90	463,90	23.97	342,49	502.00	25,94	370,62

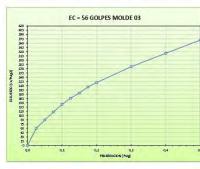
OBSERVACIONES:

DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL: 969577841 - 975421091 - 912493920


LABSUC
LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO


LABORATORIO DESDELOS Y PAVIMENTOS

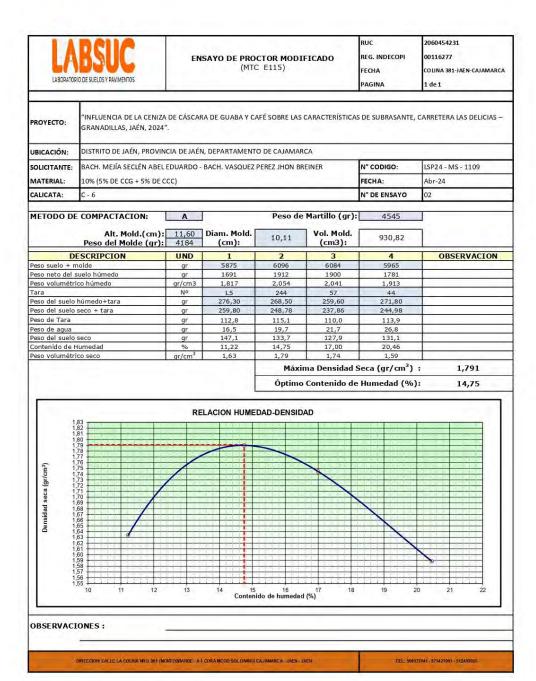

ING. THONATAN HERRERA BARAHONA
ING. BIOLOGIA POR PROPERTIES CIVIL
CIP: 312615

MOLDE	PENETRACION	PRESION APLICADA	PRESION PATRON	C.B.R.	DENSIDAD SECA
No	(pulg)	CORREGIDA (Lb/pulg2)	(Lb/pulg2)	%	(gr/cm3)
5	0.1	75.53	1000	7,55	1.58
4	0.1	108.38	1000	10,84	1,67
3	0,1	144,26	1000	14,43	1,78

VALORES DEL ENSAYO DE PROCTOR MO	IFICADO	VALOR C.B.R.	
DENSIDAD SECA MAXIMA (gr/cm3) :	1,786	C.B.R. Para el 95 % de la M.D.S. (0,1")=	11,50%
CONTENIDO DE HUMEDAD OPTIMO (%)	14,80	C.B.R. Para el 100 % de la M.D.S. (0,1")=	14,50%

PERIODO DE SUMERGIDO:	04 DIAS	
-----------------------	---------	--

OBSERVACIONES :


DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN CEL: 969577841 - 975421091 - 912493920

LAB SUC
LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH-ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS

ING. THONATAN J. HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

LABS/UC
LABORATORIO DE SURIOS Y PAVIMENTOS

BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DESCELOS Y PAVIMENTOS

ING. THOMATIAN). HERRERA BARAHONA
ING. PIROS POLIVIL.

GP; 312615

(Nacestae of Secretics between 1912)	CBR DE LOS SUELOS (MTC E132)	RUC REG. INDECOPI FECHA PAGINA	2060454231 00116277 COLINA 381-JAEN-CAJAMARCA 1 de 1
PROYECTO:	"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y GAFÉSOBRE LAS CARACTERÍSTICAS DE SU	BRASANTE, CARRETERA LAS DELIGI	IAS – GRANADILLAS, JAÉN, 2024".
UBICACIÓN:	DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMIENTO DE CAJAMARCA		
7-7-2-3	DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE CAJAMARCA BACH, MEJÍÁSECLÉN ABEL EDUARDO - BACH, VASQUEZ PEREZ JHON BREINER	Nº CODIGO;	L5P24 - M5 - 1109
UBICACIÓN: SOLICITANTE: MATERIAL:		№ CODIGO: FECHA:	LSP24 - MS - 1109 Abr-24

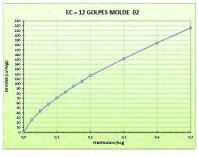
					OMPACTACION					
DESCRIPCION	UNIDAD	ENSAYOS								
NUMERO MOLDE	No		2		4			1		
Nº Capas	No		5		5			5		
N°Golpes x Capa	No		12	25				56		
Condición de Muestra		NO SATURADO		SATURADO	NO SA	NO SATURADO		NO SATURADO		SATURADO
P. Humedo + Molde	(gr)	11702,0		11918.0	12071.0		12282.0	12218,0		12431.0
Pesa Molde (gr)	(gr)	7752.0		7752,0	7901.0		7901.0	7852.0		7852,0
Peso Húmedo:	(gr)	3950,0		4166,0	4170,0		4381.0	4366,0		4579,0
Volumen del Molde	(cm3)	2247.50		2247.50	2241.60		2241.60	2215.30		2215.30
Densidad Humeda	(gr/cm3)	1,758		1.854	1,860 1,954		1.954	1,971		2,067
				CONT	ENIDO DE HUMED	ND .				
P. Humedo + Tara	(gr)	148.60	155,30	147.20	161,32	155.24	144,00	161.32	158,98	148,62
Peso Seco + Tara	(gr)	134.19	139,78	130,19	144.29	139.73	128.53	145,30	142.58	132,57
Peso Agua	(pr)	14.41	15.52	17.01	17,03	15,51	15.47	16.02	16,38	16.05
Peso Tara	(gr)	36.25	34.78	29,63	28,51	34.52	33,63	36,58	31.47	28.63
P. Muestra Seca	(gr)	97.94	105,00	100.56	115.78	105.21	94.90	108.72	111,11	103,94
Contenido de Humedad	*	14.71%	14.78%	16,92%	14,71%	14,74%	16,30%	14,74%	14.74%	15,44%
C.Humedad Promedio	%	14,	75%	16,92%	14	73%	16,30%	14,74%		15,44%
DENSIDAD SECA	(qr/cm3)	1,532		1,585	1,622		1,680	1,718		1,791

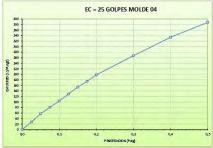
					EXPANCION					
TIEMPO LECT		NUI	VERO DE 1/10LDE 1	62	NUMERO DE MOLDE Nº 4			NUMERO DE MOLDE Nº 1		
		LECTURA HINCHAMIENTO		AMIENTO	LECTURA HINCHAMIENTO		AMIENTO	LECTURA	HINCHAMIENTO	
(Hs)	(Dias)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM	(mm)	(%
0	0	0,000	0,000	0.00	0,000	0,000	0,00	0,000	0,000	0,0
24	1	0.072	1.829	1.45	0.065	1.651	1,31	0,060	1,524	1.2
48	2	0,076	1,930	1,53	0.066	1.676	1,33	0,061	1.549	1.2
72	3	0.077	1.956	1.55	0.067	1,702	1.35	0.063	1,600	12
96	4	0.078	1.981	1.57	0.069	1.753	1.39	0.065	1.651	13

	EISAYO CARGA - PENETRACION											
PENETRACION		MOLDE N° D2			MOLDE N° 04			MOLDE N° 01				
(mm)	2000	CARGA KG.	ESFUERZO		CARGA	ESFUERZO		CARGA	ESFUERZO			
	(pulg)		(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pulg2		
0.00	0.000	0,00	0.00	0,00	0.00	0,00	0,00	0.00	0.00	0,00		
0.64	0.025	35.20	1.82	25.99	36,90	1,91	27,24	79.50	4.11	58.69		
1,27	0.050	59,60	3,08	44,00	77.90	4.03	57,51	126,10	6.52	93.10		
1,91	0.075	78.60	4,06	58,03	109,50	5,66	80,84	162.30	8,39	119,82		
2.54	0,100	95,80	4.95	70.73	140.00	7.24	103,36	197.70	10.22	145,96		
3,18	0.125	112.30	5,80	82,91	174,50	9.02	128,83	228,60	11.81	168.77		
3.81	0.150	128.60	6.65	94,94	208,50	10,78	153,93	257.60	13.31	190.18		
4.45	0,175	142.10	7.34	104,91	236,50	12.22	174.60	286,50	14,81	211.52		
5.08	0,200	158.30	8.18	116.87	268.50	13,88	198,23	310.00	16,02	228,87		
7.62	0,300	205.60	10.63	151,79	362,20	18.72	267.40	385,00	19,90	284.24		
10,16	0,400	250.20	12,93	184,72	452,30	23,37	333.92	455.20	23.52	336.06		
12.70	0,500	291.60	15.07	215,28	525.20	27,14	387.74	526,80	27.22	388,93		

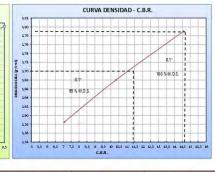
OBSERVACIONES:

DIRECCION: CALLE LA COLRIA NRO. 381 (MONTEGRANDE - A 1 CDRA (MCDQ SOL DIVINO) CAJAMARCA - JAEN - JAEN


CEL: 969577841 - 975421091 - 912493920


LAB SUC LABORATORIO DE SUPLOS Y PAVIMENTOS DE LABORATORIO LEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS


ING. THONATANY. HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

MOLDE	PENETRACION	PRESION APLICADA	PRESION PATRON	C.B.R.	DENSIDAD SECA
No.	(pulg)	CORREGIDA (Lb/pulg2)	(Lb/pulg2)	%	(gr/cm3)
2	0.1	70.73	1000	7,07	1.59
4	0.1	103,36	1000	10,34	1,68
1	0,1	145,96	1000	14,60	1.79

VALORES DEL ENSAYO DE PROCTOR MODIFICADO		VALOR C.B.R.	
DENSIDAD SECA MAXIMA (gr/cm3) :	1,791	C.B.R. Para el 95 % de la M.D.S. (0,1")=	11,00%
CONTENIDO DE HUMEDAD OPTIMO (%) :	14,75	C.B.R. Para el 100 % de la M.D.S. (0,1")=	14,60%

PERIODO DE SUMERGIDO:	04 DIAS	
-----------------------	---------	--

OBSERVACIONES :

DIRECCION: CALLE LA COLINA NRO, 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL: 969577841 - 975421091 - 912493920

LAB SUC
LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH-ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS

ING. THONATANY HERRERA BARAHONA
ING. SINGENIERO CIVIL
CIP: 312615

TESIS: "INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS — GRANADILLAS, JAÉN, 2024".

ANEXOS LSP24 - MS - 1109 ABRIL - 2024

SOLICITANTE: BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

12% (6% DE CCG + 6% DE CCC)

ENSAYO DE PROCTOR MODIFICADO (MTC E115)

2060454231 RUC REG. INDECOPI 00116277 FECHA COLINA 381-JAEN-CAJAMARCA PAGINA 1 de 1

"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS — PROYECTO: GRANADILLAS, JAÉN, 2024". DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE CAJAMARCA UBICACIÓN: BACH. MEJÍA SECLÉN ABEL EDUARDO - BACH. VASQUEZ PEREZ JHON BREINER N° CODIGO: LSP24 - MS - 1109 SOLICITANTE: MATERIAL: Abr-24 FECHA: 12% (6% DE CCG + 6% DE CCC) CALICATA: N° DE ENSAYO

METODO DE COMPACTACION:	A		Peso de	Martillo (gr):	4545	
Alt. Mold.(cm): Peso del Molde (gr):		Diam. Mold. (cm):	10,11	Vol. Mold. (cm3):	930,82	
DESCRIPCION	UND	1 1	2	3	4	OBSERVACION
Peso suelo + molde	gr	5923	6063	6107	6025	
Peso neto del suelo húmedo	gr	1739	1879	1923	1841	
Peso volumétrico húmedo	gr/cm3	1,868	2,019	2,066	1,978	
Tara	No	42	78	6	12	
Peso del suelo húmedo+tara	gr	253,30	267,30	281,50	243,90	
Peso del suelo seco + tara	gr	242,00	250,97	260,28	225,03	
Peso de Tara	gr	114,3	112,3	115,2	117,5	
Peso de agua	gr	11,3	16,3	21,2	18,9	
Peso del suelo seco	gr	127,7	138,7	145,0	107,5	
Contenido de Humedad	%	8,85	11,78	14,63	17,56	
Peso volumétrico seco	gr/cm ³	1,72	1,81	1,80	1,68	
1	41/0111			ma Densidad Se	and Street	1,817

Óptimo Contenido de Humedad (%):

13,14 RELACION HUMEDAD-DENSIDAD Densidad seca (gr/cm³) 12 13 14 15 Contenido de humedad (%)

OBSERVACIONES:

DIRECCION: CALLE LA COLINA INTO: 381 (MONTEGRANDE , A 1 CORA MCDO SOLDIMNO) CAJAMARCA - JAEN - JAEN

EEL: 969577841 - 975421091 - 912493920

BACH, ARODI R. CIEZA ROMERO JEFE DE LABORATORIO

LABSUC LABORATORIO DESDELOS Y PAVIMENTOS LIAD ING. THONATANY HERRERA BARAHONA INGENIERO CIVIL CIP: 312615

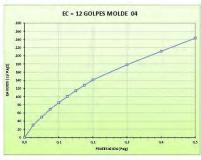
LASS SUCCESSION OF SUREMY NAVARAUS	CBR DE LOS SUELOS (MTC E132)	RUC REG. INDECOPI FECHA PAGINA	2060454231 00116277 COUNA 381-JAEN-CAJAMARCA 1 de 1
PROYECTO:	"INFLUENÇIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAPÉ SOBRE LAS CARACTERÍSTICAS DE SI	UBRASANTE, CARRETERA LAS DELIC	DAS – GRANADILLAS, JAÉN, 2024".
UBICACIÓN:	DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE CAJAMARCA.		
SOLICITANTE:	BACH, MEJÍÁ SECLÉN ABEL EDUARDO - BACH, VASQUEZ PEREZ IHON BREINER	N° CODIGO:	LSP24 - MS - 1109
SOLICITANTE: MATERIAL:	BACH, MEJÍA SECLÉN ABEL EDÜÁRDO - BACH, VASQUÉZ PEREZ IHON BREWER 12% (6% DE CCG + 6% DE CCG)	N° CODIGO: FECHA:	LSP24 - MS - 1109 Abr-24

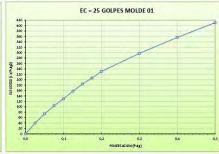
				0	OMPACTACION					
DESCRIPCION	UNIDAD					ENSAYOS				
NUMERO MOLDE	No		4			1			2	
N° Capas	No		5		- 5					
N°Golpes x Capa	No		12			25		56		
Condición de Muestra		NO SAT	TURAD 0	SATURADO	NO SA	TURADO	SATURADO	NO SA	TURADO	SATURADO
P: Humedo + Molde	(gr)	118	12,0	12105,0	119	80.0	12227.0	122	84,0	12422.0
Peso Molde (gr)	(gr)	790	01.0	7901.0	78	52,0	7852,0	775	2,0	7752.0
Peso Húmedo:	(97)	391	11,0	4204.0	40	28,0	4375.0	453	82,0	4670.0
Volumen del Molde	(cm3)	224	1.60	2241.60	221	5,30	2215.30	224	7,50	2247.50
Densidad Hümeda	(gr/cm3)	1.7	745	1,875	1,8	363	1.975	2,0	116	2,078
				CONT	ENIDO DE HUMED	AD				
P.Humedo + Tara.	(gr)	161.30	158,50	157.60	148,60	155,20	149.80	152,30	144.60	137,60
Peso Seco + Tara	(gr)	146,85	144.42	140.78	134.86	141.10	134,67	138,91	132.10	124.75
Peso Agua	(gr)	14.45	14,08	16,82	13.74	14.10	15.13	13,39	12,50	13.05
Peso Tara	(gr)	36,20	37.52	35.26	29.63	33.62	34.58	36,58	37.19	34.28
P. Muestra Seca	(gr)	110.65	106,90	105.52	105,23	107,48	100,09	102,33	94,91	90,47
Contenido de Humedad	%	13,06%	13,17%	15,94%	13.06%	13.12%	15,12%	13,09%	13.17%	14.42%
C.Humedad Promedio	%	13,	12%	15,94%	13,	09%	15,12%	13,	13%	14,42%
DENSIDAD SECA	(gr/cm3)	1,5	142	1,618	1,6	48	1,716	1,7	182	1,816

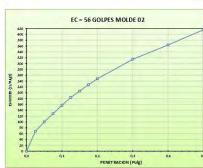
					EXPANCION					
TIE	MPO	NUI	IERO DE MOLDE N	P4	NUI	VIERO DE MOLDE N	19.1	NUN	VERO DE MOLDE I	No. 2
AGUML	JLAD 0	LECTURA	HINCH	AMIENTO	LECTURA	HINCH	AMIENTO	LECTURA	HINCH	AMIENTO
(Hs)	(D/as)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%
.0	0	0.000	0.000	0,00	0.000	0,000	0.00	0,000	0,000	0.00
24	1	0.058	1.422	1.13	0,052	1,321	1.05	0.049	1.245	0.99
48	2	0.058	1.473	1.17	0.058	1,473	1.17	0.051	1,295	1.03
72	3	0.061	1,549	1.23	.0,060	1.524	1.21	0.053	1,346	1.07
96	4	0.063	1,600	1.27	0.081	1,549	1.23	0.055	1,397	1.11

				ENSAYO	CARGA - PENETRI	ACION				
PENETR	ACION		MOLDE N° 04			MOLDENº 01			MOLDE Nº 02	
American State of the State of	Later 1	CARGA	ESF	UERZO	CARGA	ESF	UERZO .	CARGA	ESF	UERZO
(mm)	(pulg)	KG.	(Kg/Cm2)	(L6/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pulg2
0,00	0,000	0,00	0,00	0.00	0.00	0.00	0,00	0,00	0,00	0.00
0.64	0.025	41.20	2,13	30,42	54,10	2,80	39,94	91.50	4.73	67.55
1.27	0.050	67,60	3.49	49,91	99.90	5,16.	73.75	135,20	6,99	99.82
1.91	0.075	93,50	4.83	69.03	140,20	7.25	103,51	173,60	8.97	128,17
2.54	0,100	115,30	5,96	85.12	175,20	9.05	129.35	212,31	10,97	156,74
3.18	0.125	136.20	7.04	100.55	213,50	11.03	157.62	248.50	12.84	183.46
3.81	0.150	155,20	8.02	114.58	248,60	12,85	183,54	278,50	14,39	205,61
4.45	0.175	173,20	8,95	127.87	279,50	14,44	206,35	308.50	15:94	227.76
5.08	0,200	191.10	9,88	141.09	312.20	16,13	230.49	335,60	17.34	247.77
7.62	0.300	241.20	12,47	178.07	402,50	20,80	297.16	425.60	21,99	314.21
10.16	0.400	286.00	14.78	211.15	482,50	24,94	356,22	492,50	25,45	363,60
12.70	0.500	329.50	17.03	243.26	558,80	28,78	411.07	562.80	29.09	415,50

DIRECCION: CALLE LA COLINANRO. 381 (MONTEGRANDE: A 1 CORA MCDO SOL DIVINO) (CAJAMARCA - JAEN - JAEN CEL: 989577841 - 975421091 - 912493328


LABSUC
LABORATORIO DE SURIOS Y PAVIMENTOS


BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO


LABORATORIO DESCELOS Y PAVIMENTOS

ING. THONATANV. HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

LABSUC	CBR DE LOS SUELOS (MTC E132)	RUC REG. INDECOPI FECHA PAGINA	2060 45 423 1 00 11 62 77 CO LINA 3 81 - JAEN-CAJAMARCA 1 de 1
PROYECTO:	"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SI DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE CAJAMARCA	UBRASANTE, CARRETERA LAS DELIC	SIAS – GRANADILLAS, JAÉN, 2024*.
SOLICITANTE:	BACH. MEJÍA SECLÉN ABEL EDUARDO - BACH. VASQUEZ PEREZ JHON BREINER	Nº CODIGO:	LSP24 - MS -1109
MATERIAL:	12% (6% DE CCG + 6% DE CCC)	FECHA:	Abr-24
CALICATA:	C-6	N° DE ENSAYO:	01

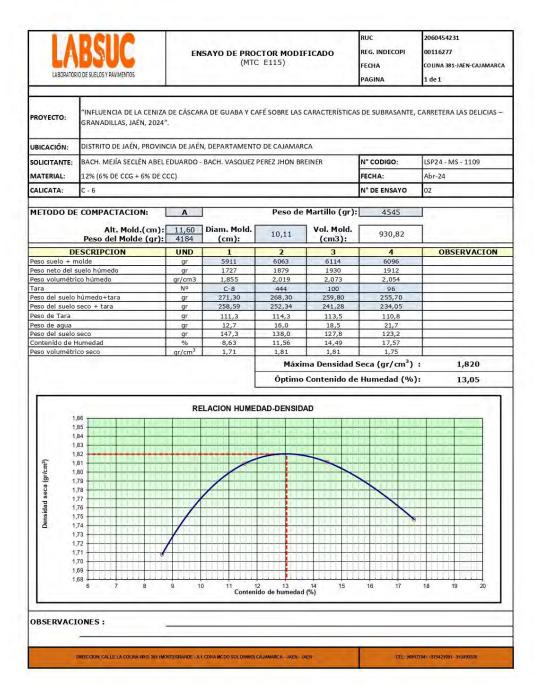
MOLDE	PENETRACION	PRESION APLICADA	PRESION PATRON	C.B.R.	DENSIDAD SECA
N=	(pulg)	CORREGIDA (Lb/pulg2)	(Lb/pulg2)	(%	(gr/cm3)
4	0,1	85,12	1000	8.51	1.62
1	0.1	129,35	1000	12.93	1.72
2	0.1	156,74	1000	15,67	1.82

VALORES DEL ENSAYO DE PROCTOR MODIFICADO		VALOR C.B.R.	
DENSIDAD SECA MAXIMA (gr/cm3) :	1,817	C.B.R. Para el 95 % de la M.D.S. (0,1")=	13,00%
CONTENIDO DE HUMEDAD OPTIMO (%)	13.14	C.B.R. Para el 100 % de la M.D.S. (0,1") =	15,70%

04 DIAS

OBSERVACIONES:

DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO), CAJAMARCA - JAEN - JAEN


CEL: 969577841 -975421091 -912493920

LABSUC
LABORATORIO DE SUPLOS Y PAVIMENTOS

BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DESDELOS YPAVIMENTOS

ING. THONATANY, HERRERA BARAHONA
ING. BIOLOGIA INGENIERO CIVIL
CIP: 312615

LAB SUC
LABORATORIO DE SURIOS Y PAVIMENTOS

BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DESDELOS Y PAVIMENTOS

ING. HONATAN) HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

LIACEATTOR OF S. EURY DEVIATION	CBR DE LOS SUELOS (MTC E132)	RUC REG.INDECOPI FECHA PAGINA	2060454231 00116277 COLINA 381-JAEN-CAJAMARCA 1 de 1
PROYECTO:	"INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉSOBRE LAS CARACTERÍSTICAS DE SL	IBRASANTE, CARRETERA LAS DELIC	AS – GRANADILLAS JAÉN 2024".
			Co. Terrollogogogogogogogogogogogogogogogogogo
UBICACIÓN:	DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE CAJAMARCA		
	DISTRITO DE JAÉN, PROVINCIA DE JAÉN, DEPARTAMENTO DE CAJAMARCA BACH, MEJÍA SECLÉN ABELEDUARDO - BACH, VASQUEZ PEREZ JHON BREINER	Nº CODIGO:	L5P24 - M5 - 1109
UBICACIÓN: SOLIGITANTE: MATERIAL:		N° CODIGO; FECHA:	

					COMPACTACION					
DESCRIPCION	UNIDAD					ENSAYOS				
NUMERO MOLDE	No		7			8				
Nº Capas	No		5			5	- 11			
N°Golpes x Capa	No		12			25			56	
Condición de Muestra		NO SAT	NO SATURADO		NO SATURADO		SATURADO	NO SA	TURADO	SATURADO
P. Humedo + Molde	(gr)	117	02,0	11915,0	119	78.0	12212.0	123	82,0	12518.0
Pesa Molde (gr)	(gr)	7698.0		7698,0	77	7712.0		7851.0		7851,0
Peso Húmedo:	(gr)	4004,0		4217.0	42	0,08	4500,0	4531,0		4667,0
Volumen del Molde	(cm3)	2239,20		2239.20	225	1,70	2251.70	224	7,30	2247.30
Densidad Humeda	(gr/cm3)	1,788		1,883		1.895 1.998		2,1	016	2,077
				CONT	ENIDO DE HUMEO	AD				
P. Húmedo + Tara	(gr)	152_30	157,30	148,60	163,50	172,56	155.80	162,47	158,30	159.30
Peso Seco + Tara	(gr)	137.65	142.27	133,48	147.26	155,62	140.42	147.75	143,91	144.12
Peso Agua	(gr)	14.65	15.03	15,12	16.24	16,94	15,38	14.72	14,39	15,18
Peso Tara	(gr)	33.20	35,26	37,14	31.50	35,28	37,62	34.85	33.96	35.77
P. Muestra Seca	(gr)	104,45	107,01	96,34	115.76	120,34	102,80	112,90	109.95	107,35
Contenido de Humedad	*	14,03%	14.05%	15,69%	14,03%	14,08%	14,96%	13,04%	13,09%	14.14%
C.Humedad Promedio	- %	14,	04%	15,69%	14	05%	14,96%	13,	06%	14,14%
DENSIDAD SECA	(qr/cm3)	1.3	568	1,628	1,	661	1,738	1,7	783	1,819

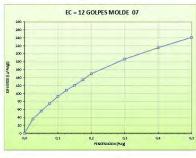
					EXPANCION					
TIE	MPO	NUI	MERO DE MOLDE 1	(27)	NU	MERO DE MOLDE N	(° 8	NUI	MERO DE MOLDE	NP 8
ACUMU	LADO	LECTURA	HINCH	AMIENTO	LECTURA	HINCH	HINCHAMIENTO		HINCH	AMIENTO
(Hs)	(Dias)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM	(mm)	(%)
0	0	0,000	0,000	0.00	0,000	0,000	0,00	0,000	0,000	0,00
24	1	0.052	1.321	1.05	0.050	1,270	1,01	0,048	1,219	0,97
48	2	0,055	1,397	1.11	0.051	1,295	1,03	0,049	1.245	0.99
72	3	0.056	1,422	1.13	0.051	1,295	1.03	0.051	1.295	1.03
96	4	0,057	1,448	1.15	0.052	1,321	1,05	0,052	1,321	1,05

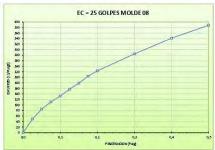
				ENSAYO	CARGA - PENETRA	CION						
PENETF	PENETRACION MOLDE N° 97					MOLDE Nº 08		MOLDE N° 09				
(mm)		CARGA	ESF	UERZO	CARGA	ESF	VERZO	CARGA	ESFUERZO			
form	(pulg)	KG.	(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pulg2)	KG.	(Kg/Cm2)	(Lb/Pulg2		
0.00	0.000	0,00	0.00	0,00	0.00	0,00	0,00	0.00	0.00	0,00		
0.64	0.025	48,50	2.51	35.81	66,60	3,44	49.17	00.08	4.13	59.06		
1,27	0.050	75.20	3,89	55.52	115,20	5,95	85,05	130.20	6.73	96.12		
1,91	0.075	101,00	5,22	74,57	150,00	7.75	110.74	172.00	8.89	126,98		
2.54	0,100	125.60	6,49	92,73	179:20	9.26	132,30	211.80	10.95	156,37		
3,18	0.125	146.20	7.56	107,94	212,20	10,97	156,66	245.60	12,69	181.32		
3.81	0.150	163.50	8,45	120.71	242.30	12,52	178,89	278,50	14.39	205.61		
4.45	0,175	182,50	9.43	134,74	276,30	14,28	203,99	308,00	15.92	227,39		
5.08	0,200	202.50	10.47	149,50	302.50	15,63	223.33	332.00	17,16	245.11		
7.62	0,300	252.60	13.05	186,49	385.60	19,93	284.68	425.60	21,99	314.21		
10,16	0,400	291.50	15,06	215,21	462,50	23,90	341.45	526.30	27,20	388,56		
12.70	0,500	326.30	16.86	240,90	526,00	27,18	388,34	632,50	32,69	466,96		

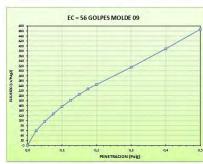
OBSERVACIONES:

DIRECCION: CALLE LA COLRIA NRO. 381 (MONTEGRANDE - A 1 CDRA (MCDQ SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL: 969577841 - 975421091 - 972493920


LABSUC
LABORATORIO DE SUPLOS Y PAVIMENTOS


BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO


LABSUC
LABORATORIO DESPELOS Y PAVIMENTOS

ING. THONATAN/ HERRERA BARAHONA
ING. PINERO CIVIL
GIP: 312615

MOLDE	PENETRACION	PRESION APLICADA	PRESION PATRON	C.B.R.	DENSIDAD SECA
No	(pulg)	CORREGIDA (Lb/pulg2)	(Lb/pulg2)	%	(gr/cm3)
7	0.1	92.73	1000	9.27	1.63
8	0.1	132,30	1000	13,23	1.74
9	0,1	156,37	1000	15,64	1.82

VALORES DEL ENSAYO DE PROCTOR MOD	IFICADO	VALOR C.B.R.	
DENSIDAD SECA MAXIMA (gr/cm3) :	1.820	C.B.R. Para el 95 % de la M.D.S. (0,1")=	12,70%
CONTENIDO DE HUMEDAD OPTIMO (%) :	13,05	C.B.R. Para el 100 % de la M.D.S. (0,1")=	15,60%

PERIODO DE SUMERGIDO:	04 DIAS	
-----------------------	---------	--

OBSERVACIONES:

DIRECCION: CALLE LA COLINA NRO. 381 (MONTEGRANDE - A 1 CDRA MCDO SOL DIVINO) CAJAMARCA - JAEN - JAEN

CEL: 969577841 - 975421091 - 912493920

LAB SUC
LABORATORIO DE SUBLOS Y PAVIMENTOS

BACH, ARODI R. CIEZA ROMERO
JEFE DE LABORATORIO

LABORATORIO DESCELOS Y PAVIMENTOS

ING. THONATANY, HERRERA BARAHONA
ING. BIOLOGO CIVIL
CIP: 312615

Anexo 8. PERFILES ESTRATIGRÁFICOS

LARDINITORIO DE SURLOS PRANTE	C ENTCS		LABSU	C LABORATORIO DE SUELOS Y PAVIMENTOS	RUC REG. INDECOPI DIRECCION PAGINA	LA COLINA	2060454 001163 381-JAE 1 de	277 N-CAJAN	MARCA
		Te con to		DATOS DEL PROYECTO		1			_
PROYECTO : Ubicación : Solicitante :		DELICIAS – GRANAD DISTRITO: JAEN, PRO	ULAS, JAEN, 201 DVINCIA: JAEN, F	ARA DE GUJABA Y CAPE SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE. CAPRETERA LAS '4'. 1680N: CAJAMARCA - BACH, VASQUEZ PEREZ JHON BREINER	JEFE DE CALIDAD :: ASISTENTE:	ING: JHONATAN		BARAHON	A
				DATOS DE CAMPO		-			
CALICATA:		0	1	PROFUNDIDAD (m):		1,50			
PROFUNDIDAD	I	CLASIFIC	ACION				W	LIM	ITES
(m)	N.F. (m)	SIMBOLO (A.A.S.H.T.D.)	SIMBOLO GRAFICO	DESCRIPCION DEL MATERIAL		MUESTRAS	(%)	LL (%)	IP (%)
0.20		7-8		Material conformado por pastos y raices.		S/M	7 - 17	19-8	100
1.50	0.00	A - 7 - 5 (1)		Arena limosa (A - 7 - 5 (1)), de mediana plasticidad, mezclada con e (8 %). Se encuentra mediamente consolidada, húmeda, se en	scasa cantidad de grava acuentra sin olor.	M-1	15.6	42	ai
3.00									

LABSUC LABORATORIO DESDELOS Y PAVIMENTOS

ING. THONATANY HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

FS017ALCE 0500 (1970)	C		LABSUC	C LABORATORIO DE SUELOS Y PAVIMENTOS DIRECCION DAGINA DATOS DEL PROFECTO					IARGA
	-	r		334203000000		1			
PROYECTO : UBICACIÓN : SOLICITANTE :		DELICIAS – GRANAD DISTRITO: JAEN, PRO	illas, Jaen, 202 Dvincia Jaen, Ri		JEFE DE CALIDAD :	ING JHONATAN		BARAHON)	1
				DATOS DE CAMPO					
CALICATA:	-	0	2	PROFUNDIDAD (m) :		1.50			
PROFUNDIDAD	N.F.						W	LIM	TES
(m)	(m)			DESCRIPCION DEL MATERIAL		MUESTRAS	(%)	LL (%)	(%)
0.20		-0		Material conformado por pastos y raïces.		S/M	1000	10-01	-
2.00			7						
4.00									

LABSUC
LABORATORIO DESELOS Y PAVIMENTOS
ING. THONATAN) HERRERA BARAHONA
ING. THONATAN HERRERA

*INFLUEN						2060454231 00118277 LA COLINA 381-JAEN-CAJA 1 de 1			
MINFLUEN			DATOS DEL PROYECTO						
DISTRITO	- GRANADI JAEN, PRO	ILLAS, JAEN, 202 OVINCIA: JAEN, R	REGION: CAJAMARCA ASISTENTE: CIEZA ROMERO A					A	
			DATOS DE CAMPO						
	C -3	3	PROFUNDIDAD (m):		1.50				
	CLASIFICA	ACION				W	LIM	ITES	
m) SIMI	400000000000000000000000000000000000000	SIMBOLO GRAFICO	DESCRIPCION DEL MATERIAL		MUESTRAS	(%)	LL (%)	IP (%)	
	(P +)		Material conformado por pastos y raïces.		S/M	0	14-8	700	
1	BACH ME	BACH MEJÁ SECLE C CLASIFIC SMBOLO (A.A.S.H.T.O.)	BACH MENA SECLEN ABEL EDUARD C -3 CLASTRICACION SIMBOLO SIMBOLO (A.A.S.H.T.D.) GRAPICO	BACH MEMA SECIEN ASEL EDILARD - BACH, VASQUEZ PEREZ JHON BREMER OATOS DE CAMPO C - 3 PROFUNDIDAD (m): CLASIFICACION SIMBOLO SIMBOLO (A.A.S.H.T.O.) GRAPICO Material conformado por pastos y raices. Arena limosa (A - 2 - 4 (0)), de mediana plasificidad, mezciada con o	BACH MEMA SECLEN ABEL EDUARD - SACH, VASQUEZ PEREZ JHON BRENER OATOS DE CAMPO C3 PROFUNDIDAD (m): CLASTROACION SIMBOLO SIMBOLO DESCRIPCION DEL MATERIAL (A.A.S.H.T.D.) GRARCO Material conformado por pastos y raices.	BACH MEJA SECIENADI - SACH, VASQUEZ PEREZ, HON BREMER OEZA ROMERO OATOS DE CAMPO C - 3 PROFUNDIDAD (m): 1.50 CLASIFICACIÓN SMABOLO SMABOLO DESCRIPCIÓN DEL MATERIAL MUESTRAS ASENTADA GRAFICO Material conformado por pastos y raices. SVM Arena limosa (A - 2 - 4 (0)), de mediana plasticidad, mezolada con elevada cantidad de grava	BACH MEMA SECLEN ABEL EDUAND - SACH, VASQUEZ PEREZ JHON BRENER OLATOS DE CAMPO CLASHICA CION CLASHICA CION SIMBOLO (RAJERO) GRAPICO MUESTRAS (%) Arena limosa (A - 2 - 4 (0)), de mediana plasticidad, mezclada con elevada cantidad de grava	ASSTETE GEA ROMERO ARONY	

LABORATORIO DESDELOS Y PAVIMENTOS
ING. HONATAN/I HERRERA BARAHONA
INGENIERO CIVIL
CIP: 312615

LASON TO DESIRED FRAN	C IENTOS		LABSUC	LABORATORIO DE SUELOS Y PAVIMENTOS	RUC REG. INDECOPI DIRECCION PAGINA	LA COLINA	2060454 001162 381-JAEI 1 de	277 N-CAJAN	IARCA
				DATOS DEL PROYECTO	_	1			
PROYECTO : UBICACIÓN : SOLICITANTE :		DELICIAS – GRANAD DISTRITO: JAEN, PRI	ILLAS, JAEN, 2024 DVINCIA: JAEN, RE		JEFE DE CALIDAD ::	ING: JHONATAN	X		
				DATOS DE CAMPO					
CALICATA:	2	C -	4	PROFUNDIDAD (m):		1,50			
PROFUNDIDAD	N.F.	CLASIFIC	ACION				W	LIN	ITES
(m)	(m)	SIMBOLO (A.A.S.H.T.D.)	SIMBOLO GRAFICO	DESCRIPCION DEL MATERIAL		MUESTRAS	(%)	LL (%)	IP (%)
0.20		1 -2 1		Material conformado por pastos y raices.		S/M	9.0	19-81	7.7
1.50	0.00	A - 2 - 4 (0)		Arena limosa (A - 2 - 4 (0)), de mediana plasticidad, mezclada con (26 %). Se encuentra mediamente consolidada, húmeda, se e		M-1	16.15	38	10
3.00									

LABSTIC
LABORATORIO DE SELOS Y PAVIMENTOS
ING. JHONATAN J HERRERA BARAHONA
ING. SINGERO CIVIL
ING. J. 12615

PSENZALOSPISOS (AMBAZO)		LABSU	C LABORATORIO DE SUELOS Y PAVIMENTOS	RUC REG. INDECOPI DIRECCION PAGINA	LA GOLINA	2060454 001182 381-JAE1 1 de	277 N-CAJAN	MARCA	
			DATOS DEL PROYECTO	_					
OYECTO: ICACIÓN: LICITANTE:	DELICIAS – GRANA DISTRITO: JAEN, PI	DILLAS, JAEN, 20 ROVINCIA: JAEN,	JARA DE GUARA Y CAPE SOBRE LAS CARACTERISTICAS DE SUBRASANTE. CARRETERA LAS 24 : REGON: CAJAMARCA 1 - BACH, VASQUEZ PEREZ JHON BREMER	JEFE DE CALIDAD :	ING-JHONATAN HERRERA BARAH CIEZA ROMERO ARODY				
			DATOS DE CAMPO						
CALICATA:	0.	- 5	PROFUNDIDAD (m):		1.50				
PROFUNDIDAD N.	CLASIFI	CACION				W	LIN	NTES	
(m) (m)		SIMBOLO GRAFICO	DESCRIPCION DEL MATERIAL		MUESTRAS	(%)	LL (%)	(%)	
0.20			Material conformado por pastos y raices.		S/M	4	14-81	700	
1.50	A-7-5 (16)		arena (4 %) y exenta de grava. Se encuentra mediamente consolidac sin olor.	а, вытне са., se encuentra	M-1	27.56	47	12	

LABSUC
LABORATORIO DESDELOS Y PAVIMENTOS
ING. THONATAN HERRERA BARAHONA
ING. THONATAN HERRERA

PREMIZANO (PERMENTA) MANIMALION		LABSUC LABORATORIO DE SUELOS Y PAVIMENTOS DIRECCION PAGINA BATOS BEL PROVECTO						2060454231 00118277 LA COLINA 381-JAEN-CAJAMARCA 1 de 1		
			DATOS DEL PROYECTO							
NOYECTO : Sicación ; Dicetante :	DELICIAS - GRANAD DISTRITO: JAEN, PRO	illas, Jaën, 20 Dvincia: Jaën,	REGION: CAJAMARCA - BACH, VASQUEZ PEREZ JHON BREINER	JEFE DE CALIDAD :	ING: JHONATAN HERRERA BARAHONA CIEZA ROMERO ARODY			2		
			DATOS DE CAMPO							
CALICATA:	0		PROFUNDIDAD (m):		1,50					
PROFUNDIDAD N.F	CLASIFIC		020024000000000000000000000000000000000			W	-	ITES		
(m) (m)	SIMBOLO	SIMBOLO	DESCRIPCION DEL MATERIAL		MUESTRAS	(%)	LL	P		
(01)	(A.A.S.H.T.O.)	GRAHCO	Material conformado por pastos y raices.		S/M	400	(%)	(%)		
1.50	A-7-5 (16)		Limo inorganico (A - 7 - 5 (16)), de mediana plasticidad, mezciada c arena (5 %) y exenta de grava. Se encuentra mediamente consolidad sin olor:	on escasa proporcion de a, húmeda, se encuentra	M-1	27.34	43	16		

LABORATORIO DESCIELOS Y PAVIMENTOS

ING. THONATAN J. HERRERA BARAHONA
INGENIERO CIVIL
ING. 312615

Anexo 9. RESULTADOS DEL CONTEO VEHICULAR

UNIVERSIDAD NACIONAL DE JAÉN TESIS: "Influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, carretera Las Delicias – Granadillas, Jaén, 2024" Bach. Mejía Seclén Abel Eduardo Bach. Vasquez Perez Jhon Breiner

RUTA:	Las Delicias - Granadillas E					ESTACION:	E-1		
SENTIDO:	Ida y regreso	Ida y regreso					15/01/2024		
UBICACIÓN:	DEPARTAMENTO:	Cajamarca	PROVINCIA:	Jaén	DISTRITO:	Jaén	C.POBLADO:	Granadillas	

	•			TIPO DE VI	EHÍCULO				
		AUTO	MINIVAN	CAMIONETA	PANEL	COMBI	CAMIÓN 2E		
HORARIO	DE CONTEO			VO-0		0-0	₽	TOTAL	
7:00 a m 8:00 a m	Ida	0	3	4	0	2	0	9	
7:00 a.m 8:00 a. m	Regreso	0	0	0	0	0	0	0	
8:00 a.m 9:00 a.m.	Ida	0	0	0	0	1	0	1	
	Regreso	0	0	0	0	0	0	0	
9:00 a.m 10:00 a.m.	Ida	0	0	0	0	1	0	1	
	Regreso	0	0	1	0	1	0	2	
12:00 p.m 1:00 p.m.	Ida	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	
1:00 p.m 2:00 p.m.	Ida	0	1	1	0	1	0	3	
2.00 p.m.s	Regreso	0	0	0	0	0	0	0	
2:00 p.m 3:00 p.m.	Ida	0	0	0	0	1	1	2	
2.00 p.m 3.00 p.m.	Regreso	0	2	0	0	0	0	2	
4:00 p.m 5:00 p.m.	Ida	0	0	1	0	0	0	1	
4.00 p.m 3.00 p.m.	Regreso	0	2	0	0	2	1	5	
	Ida	0	0	0	0	0	0	0	
5:00 p.m 6:00 p.m.	Regreso	0	0	1	0	1	0	2	
6,00 n m 7,00 n m	Ida	0	0	0	0	0	0	0	
6:00 p.m 7:00 p.m.	Regreso	0	0	2	0	1	0	3	
TOTAL DE IDA		0	4	6	0	6	1	21	
TOTAL DE REGRES	TOTAL DE REGRESO		4	4	0	5	1	31	

UNIVERSIDAD NACIONAL DE JAÉN							
TESIS: "Influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, car							
	Las Delicias – Granadillas, Jaén, 2024"						
AUTORES:	Bach. Mejía Seclén Abel Eduardo						
AUTUKES:	Bach. Vasquez Perez Jhon Breiner						

RUTA:	Las Delicias - Granadillas					E-1		
SENTIDO:	Ida y regreso					16/01/2024		
UBICACIÓN:	DEPARTAMENTO: Cajamarca	PROVINCIA:	Jaén	DISTRITO:	Jaén	C.POBLADO:	Granadillas	

	*			TIPO DE VEI	HÍCULO			
		AUTO	MINIVAN	CAMIONETA	PANEL	COMBI	CAMIÓN 2E	
HORARIO I	DE CONTEO			50-0		-0-0	2 — 1	TOTAL
7:00 a.m 8:00 a. m	Ida	0	0	1	0	2	0	3
	Regreso	0	0	0	0	0	0	0
8:00 a m 0:00 a m	Ida	0	0	0	0	0	0	0
	Regreso	0	0	0	0	0	0	0
9:00 a.m 10:00 a.m.	Ida	0	0	0	0	1	0	1
7.00 a.m 10.00 a.m.	Regreso	0	0	0	0	0	0	0
12:00 p.m 1:00 p.m.	Ida	0	0	0	0	0	0	0
12.00 p.m. 1.00 p.m.	Regreso	0	0	1	0	2	0	3
1:00 p.m 2:00 p.m.	Ida	0	0	0	0	0	0	0
1.00 p.m. 2.00 p.m.	Regreso	0	0	0	0	0	0	0
2:00 p.m 3:00 p.m.	Ida	0	0	1	0	0	0	1
2.00 p.m 3.00 p.m.	Regreso	0	0	0	0	0	1	1
	Ida	0	0	0	0	0	0	0
4:00 p.m 5:00 p.m.	Regreso	0	0	1	0	1	0	2
	Ida	0	0	1	0	0	0	1
5:00 p.m 6:00 p.m.	Regreso	0	0	0	0	0	0	0
	Ida	0	0	0	0	0	0	0
6:00 p.m 7:00 p.m.	Regreso	0	0	0	0	0	0	0
TOTAL DE IDA		0	0	3	0	3	0	12
TOTAL DE REGRESO)	0	0	2	0	3	1	12

	UNIVERSIDAD NACIONAL DE JAÉN						
TESIS: "Influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, car							
	Las Delicias – Granadillas, Jaén, 2024"						
AUTORES:	Bach. Mejía Seclén Abel Eduardo						
AUTUKES:	Bach. Vasquez Perez Jhon Breiner						

RUTA:	Las Delicias - Granadillas					E-1	
SENTIDO:	Ida y regreso					17/01/2024	
UBICACIÓN:	DEPARTAMENTO: Cajamarca	PROVINCIA:	Jaén	DISTRITO:	Jaén	C.POBLADO:	Granadillas

				TIPO DE VEI	HÍCULO				
		AUTO	MINIVAN	CAMIONETA	PANEL	COMBI	CAMIÓN 2E		
HORARIO I	DE CONTEO			Solo 4		-0-0	م م	TOTAL	
7:00 a m 8:00 a m	Ida	0	0	2	0	3	0	5	
7:00 a.m 8:00 a. m	Regreso	0	0	0	0	0	0	0	
8:00 a.m 9:00 a.m.	Ida	0	0	1	0	0	0	1	
	Regreso	0	0	0	0	0	0	0	
9:00 a m = 10:00 a m	Ida	0	0	0	0	0	0	0	
	Regreso	0	0	1	0	0	0	1	
12:00 n m = 1:00 n m	Ida	0	0	0	0	0	0	0	
12:00 p.m 1:00 p.m.	Regreso	0	0	0	0	0	0	0	
1:00 p.m 2:00 p.m.	Ida	0	0	1	0	1	0	2	
1.00 p.m 2.00 p.m.	Regreso	0	0	0	0	0	0	0	
2:00 p.m 3:00 p.m.	Ida	1	0	0	0	0	0	1	
2.00 p.m 3.00 p.m.	Regreso	0	0	0	0	1	0	1	
4.00 n m 5.00 n m	Ida	0	0	1	0	0	0	1	
4:00 p.m 5:00 p.m.	Regreso	0	0	0	0	0	0	0	
	Ida	0	0	0	0	0	0	0	
5:00 p.m 6:00 p.m.	Regreso	1	0	1	0	1	0	3	
6:00 n m 7:00 n m	Ida	0	0	0	0	0	0	0	
6:00 p.m 7:00 p.m.	Regreso	0	0	2	0	2	0	4	
TOTAL DE IDA		1	0	5	0	4	0	10	
TOTAL DE REGRES	0	1	0	4	0	4	0	19	

UNIVERSIDAD NACIONAL DE JAÉN							
TESIS: "Influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, carreter							
	Las Delicias – Granadillas, Jaén, 2024"	l					
AUTORES:	Bach. Mejía Seclén Abel Eduardo	l					
AUTUKES:	Bach. Vasquez Perez Jhon Breiner						

RUTA:	Las Delicias - Granadillas					E-1	
SENTIDO:	Ida y regreso	FECHA:	18/01/2024				
UBICACIÓN:	DEPARTAMENTO: Cajamarca	PROVINCIA:	Jaén	DISTRITO:	Jaén	C.POBLADO:	Granadillas

				TIPO DE VEH	IÍCULO				
		AUTO	MINIVAN	CAMIONETA	PANEL	COMBI	CAMIÓN 2E		
HORARIO I	DE CONTEO			6		-0-0	÷ C	TOTAL	
7:00 a.m 8:00 a. m	Ida	0	0	3	0	2	0	5	
7.00 a.m 8.00 a. m	Regreso	0	0	0	0	0	0	0	
8:00 a.m 9:00 a.m.	Ida	0	0	0	0	0	0	0	
	Regreso	0	0	1	0	0	0	1	
9:00 a.m 10:00 a.m.	Ida	0	0	0	0	0	1	1	
	Regreso	0	0	0	0	0	0	0	
12:00 p.m 1:00 p.m.	Ida	0	0	0	0	0	0	0	
	Regreso	0	0	1	0	0	0	1	
1:00 p.m 2:00 p.m.	Ida	0	0	0	0	1	0	1	
1.00 p.m. 2.00 p.m.	Regreso	0	0	1	0	0	0	1	
2:00 p.m 3:00 p.m.	Ida	0	0	0	0	0	0	0	
2.00 p.m 3.00 p.m.	Regreso	0	0	1	0	0	0	1	
4.00 5.00	Ida	0	0	1	0	0	0	1	
4:00 p.m 5:00 p.m.	Regreso	0	0	0	0	0	0	0	
	Ida	0	0	0	0	0	0	0	
5:00 p.m 6:00 p.m.	Regreso	0	0	1	0	0	1	2	
	Ida	0	0	1	0	0	0	1	
6:00 p.m 7:00 p.m.	Regreso	0	0	0	0	3	0	3	
TOTAL DE IDA		0	0	5	0	3	1	18	
TOTAL DE REGRESO	OTAL DE REGRESO		0	5	0	3	1	10	

UNIVERSIDAD NACIONAL DE JAÉN							
TESIS:	"Influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, carretera						
	Las Delicias – Granadillas, Jaén, 2024"						
AUTORES:	Bach. Mejía Seclén Abel Eduardo						
AUTORES:	Bach. Vasquez Perez Jhon Breiner						

RUTA:	Las Delicias - Granadillas				ESTACION:	E-1	
SENTIDO:	Ida y regreso				FECHA:	19/01/2024	
UBICACIÓN:	DEPARTAMENTO: Cajamarca	PROVINCIA:	Jaén	DISTRITO:	Jaén	C.POBLADO:	Granadillas

		TIPO DE VEHÍCULO							
			MINIVAN	CAMIONETA	PANEL	COMBI	CAMIÓN 2E		
HORARIO DE CONTEO				So_o		0-0	\$	TOTAL	
7:00 a.m 8:00 a. m	Ida	0	1	2	0	2	0	5	
7.00 a.m 8.00 a. m	Regreso	0	0	0	0	0	0	0	
8:00 a m = 9:00 a m	Ida	0	0	0	0	0	0	0	
0.00 a.m 7.00 a.m.	Regreso	0	0	1	0	1	0	2	
9:00 a.m 10:00 a.m.	Ida	0	0	0	0	0	0	0	
	Regreso	0	0	1	0	0	0	1	
12:00 p.m 1:00 p.m.	Ida	0	0	0	0	1	0	1	
12.00 p.m. 1.00 p.m.	Regreso	0	0	0	0	1	0	1	
1:00 p.m 2:00 p.m.	Ida	0	0	0	0	0	0	0	
1.00 p.m. 2.00 p.m.	Regreso	0	0	0	0	0	0	0	
2:00 p.m 3:00 p.m.	Ida	0	0	1	0	1	0	2	
2.00 p.m 3.00 p.m.	Regreso	0	0	1	0	1	0	2	
4.00 n m 5.00 n m	Ida	0	0	0	0	1	0	1	
4:00 p.m 5:00 p.m.	Regreso	0	0	1	0	0	0	1	
	Ida	0	0	1	0	0	0	1	
5:00 p.m 6:00 p.m.	Regreso	0	1	0	0	1	0	2	
6:00 p.m 7:00 p.m.	Ida	0	0	0	0	0	0	0	
0.00 p.m 7.00 p.m.	Regreso	0	0	0	0	0	0	0	
TOTAL DE IDA		0	1	4	0	5	0	19	
TOTAL DE REGRESO	0	0	1	4	0	4	0	19	

UNIVERSIDAD NACIONAL DE JAÉN							
TESIS:	"Influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, carretera						
	Las Delicias – Granadillas, Jaén, 2024"						
AUTODEC.	Bach. Mejía Seclén Abel Eduardo						
AUTORES:	Bach. Vasquez Perez Jhon Breiner						

RUTA:	Las Delicias - Granadillas				ESTACION:	E-1	
SENTIDO:	Ida y regreso				FECHA:	20/01/2024	
UBICACIÓN:	DEPARTAMENTO: Cajamarca	PROVINCIA:	Jaén	DISTRITO:	Jaén	C.POBLADO:	Granadillas

		TIPO DE VEHÍCULO							
HORARIO DE CONTEO		AUTO	MINIVAN	CAMIONETA	PANEL	COMBI	CAMIÓN 2E		
				So_o		0-0	م م	TOTAL	
7:00 a.m 8:00 a. m	Ida	0	0	3	0	2	0	5	
7.00 a.m 8.00 a. m	Regreso	0	0	0	0	0	0	0	
8:00 a.m 9:00 a.m.	Ida	0	0	0	0	1	1	2	
0.00 a.m 7.00 a.m.	Regreso	0	0	0	0	0	0	0	
9:00 a.m 10:00 a.m.	Ida	0	0	1	0	0	0	1	
	Regreso	0	0	0	0	0	0	0	
12:00 p.m 1:00 p.m.	Ida	0	0	0	0	0	0	0	
12.00 p.m. 1100 p.m.		0	0	0	0	1	0	1	
1:00 p.m 2:00 p.m.	Ida	0	0	0	0	0	0	0	
1100 pina 2100 pina	Regreso	0	0	0	0	1	0	1	
2:00 p.m 3:00 p.m.	Ida	0	0	0	0	0	0	0	
2.00 p.m. 3.00 p.m.	Regreso	0	0	2	0	0	1	3	
4:00 p.m 5:00 p.m.	Ida	0	0	0	0	1	0	1	
4.00 p.m 3.00 p.m.	Regreso	0	0	0	0	0	0	0	
5.00 n m 6.00 n m	Ida	0	0	0	0	0	0	0	
5:00 p.m 6:00 p.m.	Regreso	0	0	2	0	1	0	3	
	Ida	0	0	0	0	0	0	0	
6:00 p.m 7:00 p.m.	Regreso	0	0	0	0	0	0	0	
TOTAL DE IDA		0	0	4	0	4	1	17	
TOTAL DE REGRESO	C	0	0	4	0	3	1	1 /	

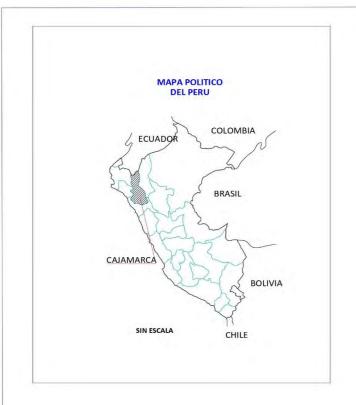
UNIVERSIDAD CÉSAR VALLEJO TESIS: "Influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, carretera Las Delicias – Granadillas, Jaén, 2024" Bach. Mejía Seclén Abel Eduardo Bach. Vasquez Perez Jhon Breiner

RUTA:	Las Delicias - Granadillas				ESTACION:	E-1	
SENTIDO:	Ida y regreso				FECHA:	21/01/2024	
UBICACIÓN:	DEPARTAMENTO: Cajamarca	PROVINCIA:	Jaén	DISTRITO:	Jaén	C.POBLADO:	Granadillas

HORARIO DE CONTEO		TIPO DE VEHÍCULO							
		AUTO	MINIVAN	CAMIONETA	PANEL	COMBI	CAMIÓN 2E		
				SO-0		-0-0	\$	TOTAL	
7:00 a.m 8:00 a. m	Ida	0	0	1	0	2	0	3	
7.00 a.m 8.00 a. m	Regreso	0	0	0	0	0	0	0	
8:00 a.m 9:00 a.m.	Ida	1	0	2	0	0	0	3	
0.00 a.m 7.00 a.m.	Regreso	0	0	0	0	0	0	0	
9:00 a.m 10:00 a.m.	Ida	0	0	0	0	1	0	1	
	Regreso	0	0	0	0	0	0	0	
12:00 p.m 1:00 p.m.	Ida	0	0	0	0	0	0	0	
12.00 p.m. 1.00 p.m.	Regreso	0	0	1	0	0	0	1	
1:00 p.m 2:00 p.m.	Ida	0	0	0	0	1	0	1	
1.00 p.m. 2.00 p.m.	Regreso	0	0	1	0	0	0	1	
2:00 p.m 3:00 p.m.	Ida	0	0	1	0	0	0	1	
2.00 p.m 3.00 p.m.	Regreso	0	0	0	0	1	0	1	
4.00 n m 5.00 n m	Ida	0	0	0	0	0	0	0	
4:00 p.m 5:00 p.m.	Regreso	0	0	1	0	3	0	4	
	Ida	0	0	0	0	1	0	1	
5:00 p.m 6:00 p.m.	Regreso	1	0	0	0	1	0	2	
	Ida	0	0	0	0	0	0	0	
6:00 p.m 7:00 p.m.	Regreso	0	0	1	0	0	0	1	
TOTAL DE IDA		1	0	4	0	5	0	20	
TOTAL DE REGRESO	0	1	0	4	0	5	0	20	

Anexo 10. RESULTADOS DEL IMDA

UNIVERSIDAD NACIONAL DE JAÉN								
TTECIC.	"Influencia de la ceniza de cáscara de guaba y café sobre las características de subrasante, carretera Las Delicias – Granadillas, Jaén, 2024"							
AUTORES:	Bach. Mejía Seclén Abel Eduardo							
AUTORES:	Bach. Vasquez Perez Jhon Breiner							

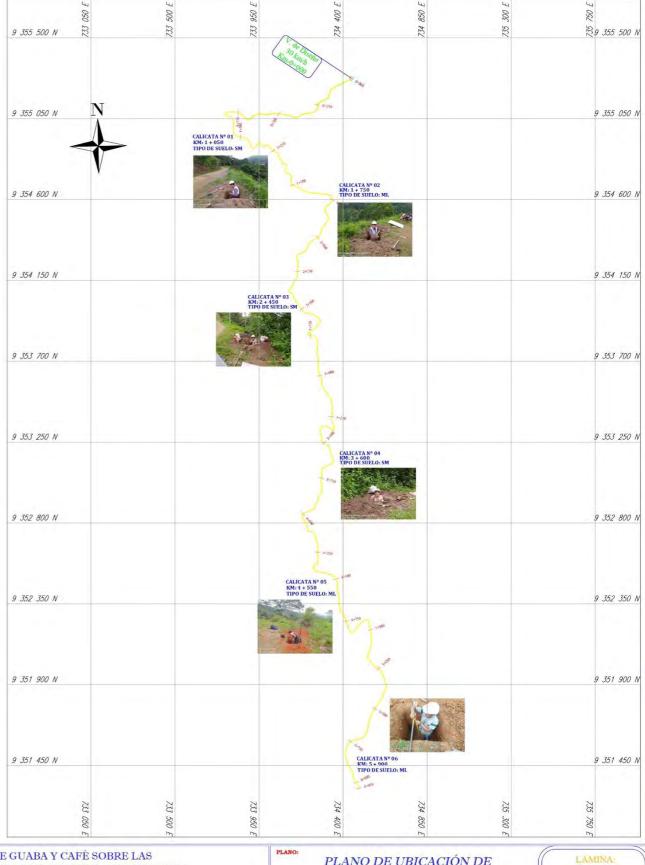


19 veh/dia

	<u> </u>	Buen. Vusquez	T CICZ THOU DICERC				
		FORMATO	DE CONTEO V	TEUICIII AD			
		FURNIATO	DE CONTEO	EHICULAK			
RUTA:	T - 2 Delicies Granadillas					ESTACION.	E-1
SENTIDO:	Las Delicias - Granadillas					ESTACION:	
_	Ida y regreso	Та .	ВВОУИ	NOT A	. ,	FECHA:	22/01/2024
UBICACIÓN:	DEPARTAMENTO:	Cajamarca	PROVI	NCIA:	Jaén	C.POBLADO:	Granadillas
	Tiempo de est	tudio a la ejecuci	ión de provecto				4
	-		Livianos	fe:		0.	9394
Factor de corrección e	estacional		Pesados	fe:			0234
	Día	Auto	Minivan	Camioneta	Panel	Combi	Camion 2E
	Dia			50 00		-0-0	
	IDA	0	4	6	0	6	1
Lunes 15/01/2024	REGRESO	0	4	4	0	5	1
	Total	0	8	10	0	11	2
	IDA	0	0	3	0	3	0
Martes 16/01/2024	REGRESO	0	0	2	0	3	1
	Total	0	0	5	0	6	1
	IDA	1	0	5	0	4	0
Miercoles 17/01/2024	REGRESO	1	0			4	0
	Total	2	-				0
	IDA	0					1
Jueves 18/01/2024	REGRESO	0	0	5	0	3	1
	Total	0	-	10			2
	IDA	0	-	4			0
Viernes 19/01/2024	REGRESO	0					C
	Total	0					0
	IDA	0	-		0		1
Sábado 20/01/2024	REGRESO	0	-		0		1
	Total	0	•				2
D : 01/01/2024	IDA	1	0		0		0
Domingo 21/01/2024	REGRESO	1	0				0
	Total	2				-	0.4
IMDs	IDA	0.3			0.0	4.3	0.4
IIVIDS	REGRESO	0.3		3.9		3.9	0.6
	Total	0.6		8.3	0.0	8.1	1.0
IMDa	IDA	0.27		4.16		4.03	0.40
liviDa	REGRESO Total	0.27		3.62 7.78	0.00	3.62 7.65	0.54 0.94
IMDa		0.34		8		7.63	0.94
IIVIDa	Total vehículos	1	1	. 8	U	ه ا	1

IMDa

Anexo 11. PLANO DE UBICACIÓN DE CALICATAS



STA. ROSA

AMAZONAS

BELLAVISTA

UNIVERSIDAD NACIONAL DE JAÉN

PIURA

LAMBAYEQUE

SAN FELIPE

SIN ESCALA

INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE LA SUBRASANTE, CARRETERA LAS DELICIAS - GRANADILLAS, **JAÉN 2024**

PLANO DE UBICACIÓN DE CALICATAS

17 SUR

FECHA:

WGS84

1/2000

ENERO 2021

BACH. MEJÍA SECLÉN ABEL EDUARDO BACH. VASQUEZ PEREZ JHON BREINER

MAPA DE LA PROVINCIA DE JAÉN

SAN JOSE DEL ALTO

COLASAY

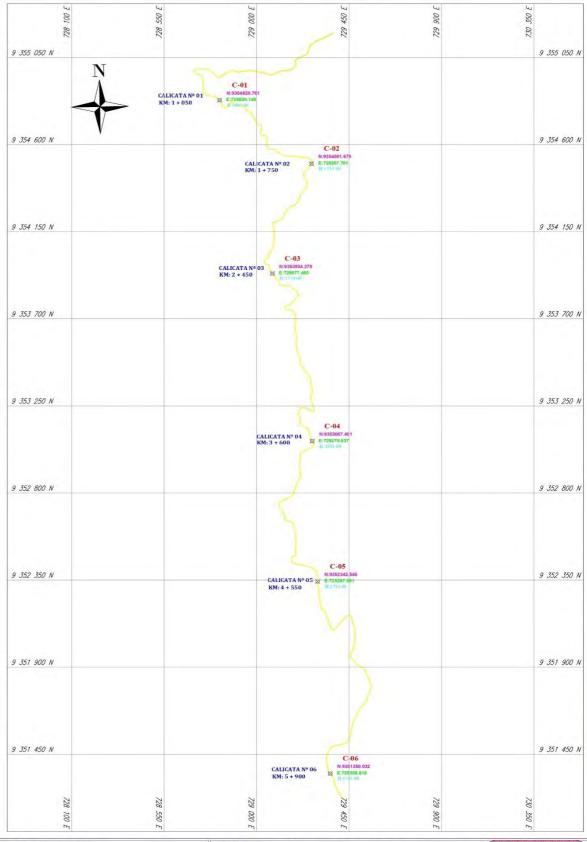
POMAHUACA

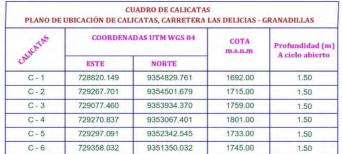
PROV. SAN IGNACIO

HUABAL LAS PIRIAS

PROV. CUTERVO

JAEN


DR. MARCO ANTONIO MARTÍNEZ SERRANO


REGION : CAJAMARCA
PROVINCIA: JAÉN SISTEMA DE PROYECCIÓN GEOGRAFICA: DATUM UTM DISTRITO: JAÉN

-1	\mathbf{a}	_
	41	٠,
	7	_ `

Anexo 12. PLANO DE COORDENADAS DE LAS CALICATAS

BACH, MEJÍA SECLÉN ABEL EDUARDO

INFLUENCIA DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE LA SUBRASANTE, CARRETERA LAS DELICIAS - GRANADILLAS, **JAÉN 2024**

DR. MARCO ANTONIO MARTÍNEZ SERRANO

REGION : CAJAMARCA PROVINCIA: JAÉN SISTEMA DE PROYECCIÓN GEOGRAFICA: WGS84 UTM

PLANO DE COORDENADAS DE LAS CALICATAS ESCALA: 17 SUR

ENERO 2021

Anexo 13. COTIZACIÓN DE LA BOLSA DE CEMENTO

COTIZACION DE MATERIALES

TESIS: "INFLUENCIA DE CENIZA DE CÁSCARA DE GUABA Y CAFÉ SOBRE LAS CARACTERÍSTICAS DE SUBRASANTE, CARRETERA LAS DELICIAS-GRANADILLAS, JAÉN, 2024."

Señor: Mejía Seclén Abel Eduardo, Vasquez Perez Jhon Breiner

Fecha de emisión: octubre 2024

Asunto: Cotización de Materiales para Construcción Vendedor: Herman Rimapa Navarro

DESCRIPCIÓN Y TIPO DE MATERIAL	UND	CANTIDAD	P.U
Cemento Portland Tipo I (42.5kg)	Bol	1.00	33.50

LOS MATERIALES SE COTIZAN PUESTO EN OBRA: Centro Poblado Granadillas

OCARO
J. Mernan Rimapa Navier
Assert gosteres

w. Mesones Murp N Jaén -Telf, Cel: 94982

	,	
Anexo 14. PANEL	, FOTOGRAFICO DEL.	CONTEO VEHICULAR

Figura 74

Conteo vehicular

Nota. En la figura 74, se muestra el proceso del conteo vehicular del día 1.

Figura 75

Conteo vehicular

Nota. En la figura 75, se muestra el proceso del conteo vehicular del día 1.

Figura 76

Conteo vehicular

Nota. En la figura 76, se muestra el proceso del conteo vehicular del día 1.

Figura 77 *Conteo vehicular*

Nota. En la figura 77, se muestra el proceso del conteo vehicular del día 2.

Figura 78

Conteo vehicular

Nota. En la figura 78, se muestra el proceso del conteo vehicular del día 3.

Figura 79 *Conteo vehicular*

Nota. En la figura 79, se muestra el proceso del conteo vehicular del día 4.

Figura 80

Conteo vehicular

Nota. En la figura 80, se muestra el proceso del conteo vehicular del día 5.

Figura 81

Conteo vehicular

Nota. En la figura 81, se muestra el proceso del conteo vehicular del día 6.

Figura 82

Conteo vehicular

Nota. En la figura 82, se muestra el proceso del conteo vehicular del día 6.

Figura 83

Conteo vehicular

Nota. En la figura 83, se muestra el proceso del conteo vehicular del día 7.

Anexo 15. PANEL FOTOGRÁFICO DE LA OBTENCIÓN DE LA CENIZA DE CÁSCARA DE GUABA Y CAFÉ

Figura 84 *Obtención del fruto de la guaba*

Nota. En la figura 84, se muestra el proceso de recolección de los frutos de guaba de los principales puntos de las localidades en la que se está ejecutando dicho proyecto.

Figura 85 *Obtención del fruto de la guaba*

Nota. En la figura 85, se muestra el proceso de recolección de los frutos de guaba de los principales puntos de las localidades a intervenir en la que se está ejecutando dicho proyecto.

Figura 86 *Obtención de la cáscara de café*

Nota. En la figura 86, se muestra el acopio de la cáscara de café, el cual es eliminado después de realizar la despulpa de dicho grano, siendo esta útil para la obtención de ceniza, dicho punto se ubica en la localidad de granadillas.

Figura 87 *Preparación de la muestra de guaba*

Nota. En la figura 87, se evidencia la preparación de la muestra de cáscara de guaba previo a la quema para la obtención de ceniza.

Figura 88 *Preparación de la muestra de café*

Nota. En la figura 88, se evidencia la preparación de la muestra de cáscara de café previo a la quema para la obtención de ceniza.

Figura 89Proceso de quemado de la cáscara de guaba

Nota. En la figura 89, se evidencia el proceso de quema de la muestra de cáscara de guaba dicha actividad es realizada en un horno artesanal de molienda de caña ubicado en el caserío de Granadillas.

Figura 90Proceso de quemado de la cáscara de café

Nota. En la figura 90, se evidencia el proceso de quema de la muestra de cáscara de café dicha actividad es realizada en un horno artesanal utilizado para quemar ladrillos ubicado en el centro poblado Granadillas.

Figura 91 *Obtención de la ceniza de cáscara de guaba*

Nota. En la figura 91, se evidencia la obtención de la ceniza de la muestra de cáscara de guaba después de pasado el proceso de enfriamiento en un aproximado de 24 horas de haber realizado la quema.

Figura 92 *Obtención de la ceniza de cáscara de café*

Nota. En la figura 92, se evidencia la obtención de la ceniza de la muestra de cáscara de café después de pasado el proceso de enfriamiento en un aproximado de 72 horas de haber realizado la quema.

Anexo 16. PANEL FOTOGRÁFICO DE ELABORACIÓN DE CALICATAS Y MUESTREO DE SUELOS

Figura 93 *Ubicación de la progresiva de la Calicata nº 01*

Nota. En la figura 93, se muestra la ubicación de la calicata nº 01, con la ayuda del GPS Manual nos da las coordenadas Norte: 9354829.761, Este: 728820.149 y Altura: 1692.00, con el diseño del plano determinaos que está en la progresiva 1+050.

Figura 94 *Excavación de la Calicata nº 01*

Nota. En la figura 94, se muestra el proceso de excavación de la calicata nº 01 con una profundidad de 1.50m según normativa el cual se ubica en la progresiva 1+050, dichos trabajos son realizado por los tesistas.

Figura 95 *Extracción de muestra de la Calicata nº 01*

Nota. En la figura 95, se evidencia el proceso de extracción de muestra de la calicata nº 01 ubicado en las progresivas 1+050, el cual será trasladado a la provincia de Jaén para sus estudios respectivos en laboratorio de suelos.

Figura 96 *Ubicación de la progresiva de la Calicata nº 02*

Nota. En la figura 96, se muestra la ubicación de la calicata nº 02, con la ayuda del GPS Manual nos da las coordenadas Norte: 9354501.679, Este: 729267.701 y Altura: 1715.00, con el diseño del plano determinaos que se encuentra en la progresiva 1+750.

Figura 97 *Excavación de la Calicata nº 02*

Nota. En la figura 97, se muestra el proceso de excavación de la calicata nº 02 con una profundidad de 1.50m según normativa el cual se ubica en la progresiva 1+750, dichos trabajos son realizado por los tesistas.

Figura 98 *Extracción de muestra de la Calicata nº 02*

Nota. En la figura 98, se evidencia el proceso de extracción de muestra de la calicata nº 02 ubicado en las progresivas 1+750, el cual será trasladado a la provincia de Jaén para sus estudios respectivos en laboratorio de suelos.

Figura 99 *Ubicación de la progresiva de la Calicata nº 03*

Nota. En la figura 99, se muestra la ubicación de la calicata nº 03, con la ayuda del GPS Manual nos da las coordenadas Norte: 9353934.370, Este: 729077.460 y Altura: 1759.00, con el diseño del plano determinaos que se encuentra en la progresiva 2+450.

Figura 100

Excavación de la Calicata nº 03

Nota. En la figura 100, se muestra el proceso de excavación de la calicata nº 03 con una profundidad de 1.50m según normativa el cual se ubica en la progresiva 2+450, dichos trabajos son realizado por los tesistas.

Figura 101 *Extracción de muestra de la Calicata nº 03*

Nota. En la figura 101, se evidencia el proceso de extracción de muestra de la calicata nº 03 ubicado en las progresivas 2+450, el cual será trasladado a la provincia de Jaén para sus estudios respectivos en laboratorio de suelos.

Figura 102 *Ubicación de la progresiva de la Calicata nº 04*

Nota. En la figura 102, se muestra la ubicación de la calicata nº 04, con la ayuda del GPS Manual nos da las coordenadas Norte: 9353067.401, Este: 729270.837 y Altura: 1801.00, con el diseño del plano determinaos que se encuentra en la progresiva 3+600.

Figura 103 *Excavación de la Calicata nº 04*

Nota. En la figura 103, se muestra el proceso de excavación de la calicata nº 04 con una profundidad de 1.50m según normativa el cual se ubica en la progresiva 3+600, dichos trabajos son realizado por los tesistas.

Figura 104 *Extracción de muestra de la Calicata nº 04*

Nota. En la figura 104, se evidencia el proceso de extracción de muestra de la calicata nº 04 ubicado en las progresivas 3+600, el cual será trasladado a la provincia de Jaén para sus estudios respectivos en laboratorio de suelos.

Figura 105Ubicación de la progresiva y extracción de la Calicata nº 05

Nota. En la figura 105, se muestra el proceso de excavación de la calicata nº 05 con una profundidad de 1.50m según normativa, con coordenadas Norte: 9352342.545, Este: 729297.091 y Altura: 1733.00, se encuentra en la progresiva 4+550.

Figura 106 *Extracción de muestra de la Calicata nº 05*

Nota. En la figura 106, se evidencia el proceso de extracción de muestra de la calicata nº 05 ubicado en las progresivas 4+550, el cual será trasladado a la provincia de Jaén para sus estudios respectivos en laboratorio de suelos.

Figura 107 *Ubicación de la progresiva de la Calicata nº 06*

Nota. En la figura 107, se muestra la ubicación de la calicata nº 06, con la ayuda del GPS Manual nos da las coordenadas Norte: 9351350.032, Este: 729358.032 y Altura: 1745.00, con el diseño del plano determinaos que se encuentra en la progresiva 5+900.

Figura 108 *Excavación de la Calicata nº 06*

Nota. En la figura 108, se muestra el proceso de excavación de la calicata nº 06 con una profundidad de 1.50m según normativa el cual se ubica en la progresiva 5+900, dichos trabajos son realizado por los tesistas.

Figura 109 *Extracción de muestra de la Calicata nº 06*

Nota. En la figura 109, se evidencia el proceso de extracción de muestra de la calicata nº 06 ubicado en las progresivas 5+900, el cual será trasladado a la provincia de Jaén para sus estudios respectivos en laboratorio de suelos.

Anexo 17. PANEL FOTOGRÁFICO DEL ESTUDIO DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL SUELO

Figura 110 *Obtención de muestras representativas- Cuarteo (MTC E 105)*

Nota. En la figura 110, se muestra el proceso del cuarteo esto con el objetivo de obtener proporciones representativas de tamaño adecuado para efectuar las pruebas del ensayo de granulometría, siguiendo las pautas de la Normativa MTC E 105.

Figura 111
Ensayo de contenido de humedad (MTC E 108)

Nota. En la figura 111, se evidencia el proceso de ingreso de la muestra de suelo en el horno para determinar su contenido de humedad después de 24 horas.

Figura 112 *Lavado de la muestra por el tamiz nº 200*

Nota. En la figura 112, se muestra el proceso del lavado de la muestra representativa, este con el objetivo de eliminar los finos que pasan por el tamiz nº 200 para después realizar el ensayo de la granulometría.

Figura 113 *Ensayo de análisis granulométrico por tamizado (MTC E 107)*

Nota. En la figura 113, se evidencia el proceso de tamizado de la muestra de suelo por cada uno de los tamices correspondientes todo ello siguiendo las pautas de la Normativa MTC E 107.

Figura 114 *Ensayo de análisis granulométrico por tamizado (MTC E 107)*

Nota. En la figura 114, se muestra el proceso de pesado de la muestra que pasa y es retenido en cada tamiz todo ello será anotado en un formato adaptado a la normativa siguiendo el procedimiento según corresponda.

Figura 115 *Ensayo de Límite de Atterberg- Límite líquido (MTC E 110)*

Nota. En la figura 115, se muestra el proceso del ensayo del límite líquido, el cual consiste en esparcir una porción de material en la copa de Casagrande, todos estos pasos se realizando siguiendo las pautas de la Normativa MTC E 110.

Figura 116

Ensayo de Límite de Atterberg- Límite plástico (MTC E 111)

Nota. En la figura 116, se muestra el proceso del ensayo del límite plástico, el cual consiste amasar cilindros de 3mm de diámetro, todos estos pasos se realizan siguiendo las pautas de la Normativa MTC E 111.

Figura 117 *Ensayo de Límite de Atterberg- Contenido de humedad*

Nota. En la figura 117, se evidencia el proceso del contenido de humedad tomado de pequeñas muestras obtenidas después de haber realizado los límites de atterberg, para posterior tener que colocar en el horno en un tiempo de 24 horas.

Figura 118

Ensayo de Proctor Modificado (MTC E 115)- Muestra patrón

Nota. En la figura 118, se muestra el proceso del ensayo de Proctor modificado de la muestra patrón, en este caso se evidencia la adición de contenido de agua, todos estos pasos se realizan siguiendo las pautas de la Normativa MTC E 115.

Figura 119. *Ensayo de Proctor Modificado (MTC E 115)- Muestra patrón*

Nota. En la figura 119, se muestra el proceso del ensayo de Proctor modificado de la muestra patrón, en este caso se evidencia la compactación en capas con la ayuda del pisón, todos estos pasos se realizan siguiendo las pautas de la Normativa MTC E 115.

Figura 120 *Ensayo de Proctor Modificado- Contenido de humedad*

Nota. En la figura 120, se muestra el proceso del contenido de humedad del ensayo de Proctor modificado de la muestra patrón, en este caso se evidencia las muestras que son añadidas el horno por un tiempo de 24 horas.

Figura 121. Ensayo de CBR (MTC E 132)- Muestra Patrón

Nota. En la figura 121, se muestra el proceso del ensayo de CBR de la muestra patrón, en este caso se evidencia la adición de contenido de agua para posteriormente tener que mezclar, todos estos pasos se realizan siguiendo las pautas de la Normativa MTC E 132.

Figura 122

Ensayo de CBR (MTC E 132)- Muestra Patrón

Nota. En la figura 122, se muestra el proceso del ensayo de CBR de la muestra patrón, en este caso se evidencia la compactación en capas con la ayuda del pisón, todos estos pasos se realizan siguiendo las pautas de la Normativa MTC E 132.

Figura 123
Ensayo de saturación de la muestra de CBR al agua

Nota. En la figura 123, se evidencia el proceso del ensayo de saturación de las muestras de CBR, el cual consiste en sumergir los moldes en agua y aplicar un punzonamiento esto se realiza por un periodo de cuatro días consecutivos.

Figura 124 *Ensayo de penetración de la muestra de CBR*

Nota. En la figura 124, se evidencia el proceso del ensayo de penetración de la muestra patrón de CBR, la cual consiste en aplicar un punzonamiento sobre la superficie del molde mediante un pistón normalizado, todos estos pasos se realizan siguiendo las pautas de la Normativa ASTM 1883.

Anexo 18. ESTUDIO DE LAS PROPIEDADES MECÁNICAS DEL SUELO CON ADICIÓN DE CENIZA

Figura 125 *Muestras de ceniza de cáscara de guaba y café*

Nota. En la figura 125, evidencia la muestra de la ceniza obtenida de la cáscara de guaba y café, la cual va ser útil para nuestros ensayos con adiciones de 6, 8, 10 y 12% a la muestra de suelo natural.

Figura 126Peso de la muestra de ceniza

Nota. En la figura 126, se muestra el peso de la ceniza de cascara de guaba y café en este caso se está trabajando con el 6% de adición es decir 3% de guaba y 3% de café.

Figura 127
Peso de la muestra de suelo con 6% de ceniza

Nota. En la figura 127, se muestra el proceso del pesado de la muestra de suelo para realizar el ensayo de CBR ya con las adiciones respectivas de ceniza.

Figura 128 *Mezclado de la muestra de suelo con ceniza*

Nota. En la figura 128, se evidencia el proceso de mezclado de la muestra de suelo con la adición de 8% de ceniza para posteriormente tener que realizar el ensayo de CBR.

Figura 129Cuarteo de la muestra de suelo

Nota. En la figura 129, se evidencia el proceso de cuarteo de la muestra de suelo con las adiciones de 6% cenizas 3% de guaba y 3% de café.

Figura 130
Ensayo CBR con adición de ceniza del 10%

Nota. En la figura 130, se evidencia el proceso del ensayo de CBR con la adición de 10% de ceniza en cantidades de 5% de guaba y 5% de café.

Figura 131

Ensayo CBR con adición de ceniza del 12%

Nota. En la figura 131, se evidencia el proceso del ensayo de CBR con la adición de 12% de ceniza en cantidades de 6% de guaba y 6% de café, en este caso se realiza el proceso de enrasado para posterior tener que pesar dicha muestra de CBR.

Figura 132

Ensayo CBR con adición de ceniza del 12%

Nota. En la figura 132, se evidencia el proceso del ensayo de CBR con la adición de 12% de ceniza en cantidades de 6% de guaba y 6% de café, en este caso se realiza el proceso de pesado de la muestra compactada de CBR.

Figura 133

Ensayo de penetración de la muestra de CBR con el 6% de ceniza

Nota. En la figura 133, se evidencia el proceso del ensayo de penetración de la muestra patrón de CBR con la adición del 6% de ceniza 3% de guaba y 3% de café, la cual consiste en aplicar un punzonamiento sobre la superficie del molde.

Figura 134

Ensayo de penetración de la muestra de CBR con el 8% de ceniza

Nota. En la figura 134, se evidencia el proceso del ensayo de penetración de la muestra patrón de CBR con la adición del 8% de ceniza 4% de guaba y 4% de café, todos estos pasos se realizan siguiendo las pautas de la Normativa ASTM 1883.

Figura 135

Ensayo de penetración de la muestra de CBR con el 10% de ceniza

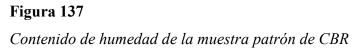

Nota. En la figura 135, se evidencia el proceso del ensayo de penetración de la muestra patrón de CBR con la adición del 10% de ceniza 5% de guaba y 5% de café, todos estos pasos se realizan siguiendo las pautas de la Normativa ASTM 1883.

Figura 136

Ensayo de penetración de la muestra de CBR con el 12% de ceniza

Nota. En la figura 136, se evidencia el proceso del ensayo de penetración de la muestra patrón de CBR con la adición del 12% de ceniza 6% de guaba y 6% de café, todos estos pasos se realizan siguiendo las pautas de la Normativa ASTM 1883.

Nota. En la figura 137, se evidencia el proceso de ensayo para determinar el contenido de humedad de la muestra compactada de CBR, que consiste en tomar una pequeña muestra compactada de dicho molde para determinar su humedad, todos estos pasos se realizan bajo la normativa MTC E 108.