UNIVERSIDAD NACIONAL DE JAÉN FACULTAD DE INGENIERÍA

CARRERA PROFESIONAL DE INGENIERÍA CIVIL

IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL

PAVIMENTO FLEXIBLE JAÉN - SAN IGNACIO KM 60+000 AL

70+000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN

2024

TESIS PARA OPTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autores: Bach. Chuquibala Guerrero Karen Jhoana Bach.Guerrero Martinez Isaías

Asesor: Mg. Cayatopa Calderón Billy Alexis Ing. Palomino Ojeda Jose Manuel

Línea de Investigación: LI IC 02 Transporte

JAÉN – PERÚ

2024

Karen Jhoana Chuquibala Guerre Isaías Guerrero ... IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓNDEL PAVIMENTO FLEXIBLEJAÉN -SAN IGNACIO KM 60+000 AL 70

NASTONAL DE JAÉN

Dr. Alexander Huaman Mera

Universidad Nacional de Jaen

Detalles del documento

Identificador de la entrega trn:oid:::20206:407951327

Fecha de encrega 21 nov 2024, 12:37 p.m. GMT-5

Fecha de descarga

21 nov 2024, 12:45 p.m. GMT-5

Nombre de archivo

INFORME-Chuquibala Guerrero Karen Jhoana y Guerrero Martinez Isaías _compressed - KAREN J....pdf

Tamaño de archivo

19.6 MB

283 Páginas

64,817 Palabras

288,287 Caracteres

6% Similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para ca...

Filtrado desde el informe

- Bibliografía
- Coincidencias menores (menos de 15 palabras)

Fuentes principales

4%

Fuentes de Internet

0%

Publicaciones

4%

Trabajos entregados (trabajos del estudiante)

Marcas de integridad

N.º de alerta de integridad para revisión

Po 1

Texto oculto

290 caracteres sospechosos en N.º de páginas

El texto es alterado para mezclarse con el fondo blanco del documento.

Los algoritmos de nuestro sistema analizan un documento en profundidad para buscar inconsistencias que permitirían distinguirio de una entrega normal. Si advertimos algo extraño, lo marcamos como una alerta para que pueda revisario.

Una marca de alerta no es necesariamente un indicador de problemas. Sin embargo, recomendamos que preste atención y la revise.

RESTRE UNIVERSIDAD NACIONAL DE JAEN

Dr. Alexander Huamán Mera Responsable de la Unidad de Investigación de la Facultad de Investra

UNIVERSIDAD NACIONAL DE JAÉN

Ley de Creación N° 29304 Universidad Licenciada con Resolución del Consejo Directivo N° 002-2018-SUNEDU/CD

FORMATO 03: ACTA DE SUSTENTACIÓN

reunieron de r Presidente Secretario Vocal Final:	manera pre : M. Sc. M : Mg. José : Mg. Leor	día 05 de diciembresencial los integrant arcos Antonio Gonza Luis Piedra Tineo nardo Damián Sando	es del Jurado ales Santisteb	an.				
	de Investi	gacion						
(X) Tesis	1 0 5							
() Trabajo	de Suficie	ncia Profesional						
PAVIMENTO MEDIANTE ' tesistas Kare Escuela Profes	FLEXIE VEHÍCUL n Jhoana sional de In	ACIÓN DE ZONA BLE JAÉN – SA O AÉREO NO TRI I Chuquibala Gue Igeniería Civil de la U on y defensa, el Jura	N IGNACIO PULADO, J rrero e Isaí niversidad Na	NM 60+00 AÉN 2024"pr as Guerrero	0 AL 70+000 esentado por los Martinez, de la			
(×) Aprobar) Desaprobar	(×) Unan	imidad () Mayoría			
			7,70114		7111475114			
Con la siguien	te menciór	n: 🔻						
a) Excele	nte	18, 19, 20	()				
b) Muy b	ueno	16, 17)				
c) Bueno		14, 15	(12)				
d) Regula	ır	13	()				
e) Desap	robado	12 ò menos	()				
confirmando	su participa	s del mismo día, e ación con la suscripci			de sustentación			
M.Sc. Marco		Gonzales	N	/lg. José Luis P	iedra Tineo			
Sa	ntisteban							
Presidente	del Jurado Ev			Secretario del Jura	do Evaluador			
			Damián Sand urado Evaluado					
Vocal del Juliado Evaluado!								

UNIVERSIDAD NACIONAL DE JAÉN

Ley de Creación Nº 29304

Universidad Licenciada con Resolución del Consejo Directivo Nº 002-2018-SUNEDU/CD

FORMATO 04: DECLARACIÓN JURADA DE NO PLAGIO

Yo, Chuquibala Guerrero Karen Jhoana identificado con DNI Nº 75099050 y Guerrero Martinez Isaías identificado con DNI Nº 75991954 bachilleres de la Carrera profesional de Ingeniería Civil de la Universidad Nacional de Jaén, autores de la Tesis:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN IGNACIO KM 60+000 AL 70+000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024"

- 1. El mismo que presento para optar: () Grado Académico de Bachiller (X) Título Profesional
- 2. El Trabajo de investigación no ha sido plagiado ni total ni parcialmente, para la cual se han respetado las normas internacionales de citas y referencias para las fuentes consultadas.
- 3. El Trabajo de investigación presentado no atenta contra derechos de terceros.
- El Trabajo de investigación no ha sido publicado ni presentado anteriormente para obtener algún grado académico previo o título profesional.
- 5. Los datos presentados en los resultados son reales, no han sido falsificados, ni duplicados, ni copiados. Por lo expuesto, mediante la presente asumo toda responsabilidad que pudiera derivarse por la autoría, originalidad y veracidad del contenido del Trabajo de investigación, así como por los derechos sobre la obra y/o invención presentada. Asimismo, por la presente me comprometo a asumir además todas las cargas pecuniarias que pudieran derivarse para la UNJ en favor de terceros por motivo de acciones, reclamaciones o conflictos derivados del incumplimiento de lo declarado o las que encontraren causa en el contenido del Trabajo de investigación.

De identificarse fraude, piratería, plagio, falsificación o que el trabajo de investigación haya sido publicado anteriormente; asumo las consecuencias y sanciones civiles y penales que de mi acción se deriven.

Jaén, 20 de noviembre del 2024

Chuquibala Guerrero Karen Jhoana

DNI: 75099050

Tesista

Guerrero Martinez Isaías

DNI: 75991954

Tesista

Ing. Palomino Ojeda Jose Manuel

DNI: 71094203

Asesor

Mg. Ing. Billy Alexis Cayatopa Calderón DNI: 44936232

Asesor

ÍNDICE

ÍNDIC	CE	III
INDIC	CE DE TABLAS	IV
INDIC	CE DE FIGURAS	V
RESU	MEN	VII
ABST	RACT	VII
I. IN	NTRODUCCIÓN	9
1.1.	Descripción de la realidad problemática	9
1.2.	Justificación	10
1.3.	Hipótesis	12
1.4.	Objetivos	12
1.5.	Antecedentes	13
II.	MATERIAL Y MÉTODOS	20
2.1.	Ubicación geográfica	20
2.2.	Población	21
2.3.	Muestra	21
2.4.	Muestreo	24
2.5.	Métodos	24
2.6.	Técnicas	25
2.7.	Procedimiento de recolección de datos	26
2.8.	Análisis de datos	46
III.	RESULTADOS	60
IV.	DISCUSIÓN	92
V.	CONCLUSIONES Y RECOMENDACIONES	95
VI.	REFERENCIAS BIBLIOGRAFICAS	98
AGR <i>A</i>	ADECIMIENTO	105
DEDI	CATORIA	106
ANEX	205	107

INDICE DE TABLAS

Tabla 1	1 Relación de Ancho de Calzada y Longitud de Unidad de Muestreo	21
	2 Unidades muéstrales	
Tabla 3	3 Equipos y materiales	26
Tabla 4	4 Características del Dron Phantom 4 RTK	27
	5 Detalles del vuelo fotogramétrico	
	6 Suma total de las áreas identificadas con fallas en la UM1	
Tabla '	7 Índice de densidad de fallas detectadas en la unidad de muestra UM1	47
Tabla 8	8 Cálculo de los valores deducidos por cada tipo de falla de la UM1	48
	9 Valores deducidos totales en la UM1	
	10 Valores deducidos corregidos para la UM1	
	11 Resultado de PCI de la UM1	
	12 Clasificación de condición del pavimento	
	13 Tiempo y personal necesario para la obtención de datos en campo	
	14 Tiempo y personal necesario para la obtención de datos en gabinete	
	15 Parámetros de evaluación	
	16 Matriz de comparación de pares	
	17 Matriz de normalización, pendientes	
	18 Vector suma ponderada y "λmáx", pendientes	
	19 Relación de Consistencia	
	20 Asignación de ponderación en la tabla de atributos para el mapa de riesgo	
	21 Resumen del metrado de las fallas identificadas mediante VANT	
	22 Fallas identificados en los ortomosaicos de todas las unidades de muestra representativas.	
	23 Fallas identificados en los ortomosaicos de muestra no representativas	
	24 Porcentaje de fallas detectadas – Metodología VANT	
	25 Resultados de PCI de las unidades de muestra utilizando el método VANT	
	26 Porcentaje de Condición de Pavimento mediante el método VANT	
	27 Resumen del metrado de las fallas superficiales-Método tradicional PCI	
	28 Fallas superficiales identificados en todas las unidades de muestra representativas utilizan	
	do tradicional PCI	
	29 Fallas superficiales identificados en las unidades de muestra no representativas utilizando	
	tradicional PCI	
	30 Porcentaje de fallas detectadas en las UM- Metodología tradicional PCI	
	31 Índice de Condición de cada Unidad de Muestra utilizando el método PCI	
	32 Porcentaje que indica el estado del pavimento de la Carretera Jaén-San Ignacio km 60+00	
	0+000, evaluado mediante el método PCI.	
	33 Procesamiento de datos recolectados en campo	
	34 Procesamiento de datos recolectados en gabinete	
	35 Total de horas hombre usadas para las metodologías VANT y PCI.	
	36 Rendimiento en horas-hombre para cada metodología	
	37 Diferencia de valor absoluto del PCI entre el método tradicional PCI y método VANT	
	38 Clasificación de la condición superficial por el método tradicional PCI y método VANT	
	39 Peligros detectados en el tramo de estudio	
	40 Niveles de peligrosidad	
	41 Niveles de vulnerabilidad	
i abia 4	42 Niveles de riesgo	.90

INDICE DE FIGURAS

Figura	1 Ubicación geográfica del tramo de estudio	.20
Figura	2 Vista en planta del CP. Puerto Tamborapa-CP. Perico KM 60+000 y KM 70+0000	.20
Figura	3 Aplicación DJI GO 4	.28
Figura	4 Métodos de planificación mediante la aplicación DJI MG 4	.28
Figura	5 Configuración de parámetros de vuelo para la UM1	. 29
Figura	6 Instalación de la Estación Móvil D-RTK 2 y sincronización de equipos	.30
	7 Verificación del plan de vuelo en el monitor del control remoto	
Figura	8 Vista del transcurso de vuelo del Dron Phantom 4 RTK	.31
Figura	9 Imágenes añadidas al software Agisoft Metashape, del tramo 60+000 al 70+000	.32
Figura	10 Automatización y alineación de imágenes, del tramo 60+000 al 70+000	.32
Figura	11 Ubicación de puntos de control fotográfica, del tramo 60+000 al 70+000	.33
Figura	12 Generación de la nube de puntos densa, del tramo 60+000 al 70+000	. 33
Figura	13 Creación de malla digital, del tramo 60+000 al 70+000	. 34
Figura	14 Creación de modelo 3D, del tramo 60+000 al 70+000	. 34
Figura	15 Creación del Modelo Digital de Elevaciones (DEM), del tramo 60+000 al 70+000	.35
	16 Limpieza de obstáculos, Km 66+200	
	17 Creación de Ortomosaico, del tramo 60+000 al 70+000	
	18 Medición de las fallas en el software Civil3D, del tramo 60+000 al 70+000	
	19 Leyenda de los tipos de fallas en pavimentos flexibles y nivel de severidad	
	20 Ortofotografía de la unidad de muestra UM1, Km 60+000 al km 60+035.4	
	21 Detección de fallas identificadas en unidades de muestra, Km 60+000 al km 60+110	
_	22 Plano de fallas identificadas en la UM1, Km 60+000 al km 60+035.4	
	23 Ubicación de puntos de referencia, Km 70+000	
Figura	24 Delimitación de la unidad de muestra UM1, Km 60+000	. 39
Figura	25 Medición de falla superficial en la UM1, Km 60+000	.40
	26 Daños superficiales para superficie asfáltica	
	27 Registro de identificación de fallas superficiales, Km 63+364	
	28 Fracción del tiempo usado en procesamiento de datos en gabinete	
	29 Inspección de taludes en campo km 62+060	
_	30 Flujograma del recojo de información sobre peligro de deslizamiento en taludes	
_	31 Determinación del Valor Deducido para la falla desprendimiento de agregados	
_	32 Determinación de valores deducidos corregidos para la UM1	
	33 Determinación de la precisión mediante prueba de muestras emparejadas	
	34 Prueba de normalidad en el software SPSS	
_	35 Prueba t en el software SPSS	
	36 Ortomosaico, Km 60+000 al Km 70+000	
Figura	37 Porcentaje total de fallas detectadas-Metodología VANT	.64
	38 Distribución de deterioros en las UM utilizando el método VANT – Piel de Cocodrilo	
_	39 Distribución de deterioros en las UM del método VANT – Exudación de asfalto	
	40 Distribución de deterioros en las UM utilizando el método VANT – Fisuras en bloque	
_	41 Distribución de deterioros en las UM utilizando el método VANT – Corrugaciones	
_	42 Distribución de deterioros en las UM utilizando el método VANT – Fisuras de borde	
_	43 Distribución de deterioros de UM con el método VANT – Fisuras longitudinales	
_	44 Distribución de deterioros en las UM utilizando el método VANT – Parcheo	
_	45 Distribución de deterioros de OM con el metodo VANT—Desprendimiento de agregados 46 Perfil de los resultados de las unidades de muestra utilizando la metodología VANT	
_	47 Porcentaje de condición del pavimento Carretera Jaén-San Ignacio—método VANT	
_	48 Porcentaje total de fallas detectadas- Metodología tradicional PCI	
r igul a	To i oroginaje total de lamas detectadas- intetodologia tradicional i Ci	. 1J

Figura	49	Distribución de deterioros en las UM -método tradicional PCI, Piel de Cocodrilo	76
Figura	50	Distribución de deterioros en las UM – método tradicional PCI, Exudación de asfalto?	76
Figura	51	Distribución de deterioros en las UM -método tradicional PCI, Fisuras en bloque	77
Figura	52	Distribución de deterioros en las UM -método tradicional PCI, Corrugaciones	77
Figura	53	Distribución de deterioros en las UM -método tradicional PCI, Fisuras de borde	78
Figura	54	Distribución de deterioros en las UM -método tradicional PCI, Fisuras longitudinales?	78
Figura	55	Distribución de deterioros en las UM -método tradicional PCI, Parcheo	79
Figura	56	Distribución de deterioros en las UM - PCI, Desprendimiento de agregados	79
Figura	57	Perfil de los resultados de las unidades de muestra utilizando el método tradicional PCI 8	31
Figura	58	Comparación de los valores de PCI en cada unidad de muestra	36
Figura	59	Prueba de muestras relacionadas en el software SPSS	37

RESUMEN

El objetivo de la investigación fue identificar las zonas de riesgo y la condición del pavimento flexible Jaén - San Ignacio km 60+000 al 70+000 mediante Vehículo Aéreo No Tripulado. La metodología consistió en volar un dron DJI Phantom 4RTK a una altura de 30 m sobre un tramo de 10 km, dividiendo el área en 283 unidades de muestra de 230.10 m² cada una. Posteriormente, se seleccionaron 30 unidades de muestra específicas. Los resultados mostraron un PCI promedio de 43 con el uso del VANT y de 41 con la inspección tradicional, destacando que las grietas longitudinales y transversales representaron el 41.09% de las fallas, lo que clasificó la superficie del pavimento como regular en ambas evaluaciones. El ortomosaico identificó 4 zonas de riesgo "Muy Alto" en los tramos (Km 61+918.56 – Km 61+928.98), (Km 67+671.22 – Km 67+800.54), (Km 67+899.85 – Km 68+038.19) y (Km 69+586.66 – Km 69+628.91), y 3 zonas de riesgo "Alto" en los tramos (Km 61+867.62 – Km 62+070.89), (Km 66+802.40 – Km 66+920.71) y (Km 69+572.65 – Km 69+661.97). Se concluyó que el dron DJI Phantom 4RTK optimiza el tiempo de evaluación en un 57% HH y ofrece una precisión promedio de 95.00%, demostrando su eficacia en la evaluación de fallas superficiales y la detección de zonas de riesgo.

PALABRAS CLAVE: Método VANT, PCI, Pavimento flexible, Zonas de riesgo.

ABSTRACT

The objective of the research was to identify the risk areas and the condition of the

flexible pavement on the Jaén - San Ignacio section from km 60+000 to 70+000 using an

Unmanned Aerial Vehicle (UAV). The methodology involved flying a DJI Phantom 4RTK

drone at a height of 30 m over a 10 km stretch, dividing the area into 283 sample units of 230.10

m² each. Subsequently, 30 specific sample units were selected. The results showed an average

PCI of 43 with the use of the UAV and 41 with traditional inspection, highlighting that

longitudinal and transverse cracks accounted for 41.09% of the failures, classifying the

pavement surface as regular in both evaluations. The orthomosaic identified 4 "Very High" risk

zones in the sections (Km 61+918.56 – Km 61+928.98), (Km 67+671.22 – Km 67+800.54),

(Km 67+899.85 – Km 68+038.19), and (Km 69+586.66 – Km 69+628.91), and 3 "High" risk

zones in the sections (Km 61+867.62 - Km 62+070.89), (Km 66+802.40 - Km 66+920.71),

and (Km 69+572.65 - Km 69+661.97). It was concluded that the DJI Phantom 4RTK drone

optimizes evaluation time by 57% HH and provides an average accuracy of 95.00%,

demonstrating its effectiveness in assessing surface failures and detecting risk areas.

KEY WORDS: UAV method, PCI, Flexible pavement, Risk areas.

VIII

I. INTRODUCCIÓN

1.1. Descripción de la realidad problemática

En el ámbito internacional, el mal estado de la infraestructura vial se presenta como una problemática crítica que afecta de manera significativa al entorno social, económico y político (Ríos et al., 2020). En Colombia, la red vial nacional pavimentada abarca 8639,46 km, representando el 79,25% de las vías nacionales. De esta red, el 54% está en buenas condiciones, mientras que el 46% se encuentra en estado regular, malo o muy malo. El Observatorio Nacional de Seguridad Vial reporta alrededor de 1,200 eventos anuales de deslizamientos de tierra, los cuales contribuyen a agravar esta situación. (Martín y Gómez, 2020). En Ecuador, el tramo desde la Terminal Terrestre Reina del Cisne hasta Carigán presenta más de tres fallas geológicas, causando numerosos accidentes y daños a vehículos debido a la inestabilidad del suelo y al deterioro de la vía. (León, 2022). En México, el mal estado de las vías, exacerbado por precipitaciones intensas y terrenos accidentados, causa deformaciones, grietas y otros daños en las carreteras, lo que representa el 30% de los accidentes viales. (Giler, 2023).

A nivel nacional se menciona que, cerca del 80% de las carreteras peruanas están en mal estado, especialmente en áreas rurales, donde las condiciones climáticas y la falta de mantenimiento aceleran el deterioro de la capa asfáltica y aumentan el riesgo de accidentes (Idrogo, 2020). Las principales vías de Perú, como la carretera Panamericana, la Longitudinal de la Sierra y la Longitudinal de la Selva, que suman 9,600 km de pavimento flexible, presentan deformaciones y fisuras, causando desperfectos en los vehículos y gastos adicionales para los transportistas (Ramos, 2021). En Amazonas, la capa superficial de la carretera se ha deteriorado, presentando fallas como ahuellamiento, hundimientos, desprendimiento de asfalto, fisuras y grietas debido a factores como deslizamientos de masas en los taludes, aumento de temperatura y fallas geológicas (Paredes, 2022).

El departamento de Cajamarca no es ajeno a esta situación. En particular, el estado actual del pavimento asfáltico de la carretera Celendín-Balsas presenta diversas fallas, tanto funcionales como estructurales, con distintos niveles de severidad. Estas fallas se deben a las condiciones climáticas, así como a deficiencias en el diseño estructural, errores durante la construcción y el uso de materiales de inferior calidad (Villegas, 2020). En las carreteras de Jaén, la falta de evaluación adecuada de las vías y de políticas de mantenimiento, junto con el impacto de deslizamientos de masas en laderas, provoca un deterioro progresivo y reparaciones costosas. (Flores, 2022).

La falta de monitoreo constante y las limitaciones de las metodologías tradicionales para evaluar el estado del pavimento, que suelen ser costosas y no abarcan todas las áreas ni consideran factores externos, impiden una detección oportuna de daños. Esto resulta en un aumento de los costos de mantenimiento y afecta la seguridad y durabilidad de las vías. Ante esta situación, surge la necesidad de implementar innovadoras metodologías, como la basada en vehículos aéreos no tripulados. Verificar la confiabilidad de esta metodología permitirá gestionar de manera más eficiente el mantenimiento y la rehabilitación de las vías, optimizando los recursos e identificando zonas de riesgo.

De la presente investigación nos plateamos la siguiente interrogante: ¿Cuáles son las zonas de riesgo y condición del pavimento flexible Jaén - San Ignacio km 60+000 al 70+000 mediante Vehículo Aéreo No Tripulado, Jaén 2024?

1.2. Justificación

El estudio se justifica socialmente porque busca solucionar una problemática de las principales arterias de comunicación que conecta comunidades rurales y facilita el transporte de personas y bienes, donde identificar zonas de riesgo y evaluar el pavimento contribuye a intervenir en puntos críticos, reduciendo accidentes y protegiendo la vida de los usuarios, ya

que una carretera en buen estado no solo mejora la seguridad vial, sino que también favorece la conectividad, impulsa el desarrollo económico de la región e incrementa la competitividad de las zonas rurales, promoviendo nuevas oportunidades de negocio, empleo e inversión.

La justificación técnica de esta investigación se fundamentó en la implementación de vehículos aéreos no tripulados (VANT), que permitieron una recopilación precisa y eficiente de datos, incluso en áreas de difícil acceso. Esta tecnología facilitó la identificación de fallas en el pavimento y zonas de riesgo, optimizando los recursos destinados al mantenimiento vial. Así, se generó conocimiento científico que contribuye a mejorar la seguridad, durabilidad y eficiencia de las vías, garantizando una gestión más eficaz y sostenible de la infraestructura vial en estudio.

El desarrollo metodológico del PCI mediante drones permitió solucionar problemas de infraestructura vial de manera más rápida y eficiente, facilitando el monitoreo constante y la detección temprana de fallas en el pavimento. Además, garantizó mayor seguridad para los inspectores, ya que se adaptó a diversas condiciones geográficas y tipos de pavimento. Esto posibilitó realizar un análisis comparativo entre intervenciones previas y actuales, permitiendo inspecciones regulares sin intervención humana constante y optimizando los procesos de monitoreo y evaluación.

Económica, el estudio presentó condiciones muy favorables, ya que permitió reducir significativamente los costos operativos al eliminar la necesidad de un gran número de operarios en el terreno, optimizando los recursos destinados a la supervisión y análisis de las infraestructuras viales. Este enfoque facilita las reparaciones tempranas, prolongando la vida útil de las infraestructuras y reduciendo los costos de mantenimiento a largo plazo. Al ser eficiente y rentable, puede atraer inversiones al sector, ofreciendo una solución económica y efectiva para el mantenimiento de las infraestructuras viales.

1.3. Hipótesis

El uso del vehículo aéreo no tripulado permite clasificar la condición del pavimento como bueno, regular, malo y elaborar mapas que identifican las zonas de riesgo del tramo Jaén - San Ignacio km 60+000 al 70+000.

1.4. Objetivos

1.4.1. Objetivos generales

Identificar las zonas de riesgo y condición del pavimento flexible Jaén - San Ignacio km
 60+000 al 70+000 mediante vehículo aéreo no tripulado, Jaén 2024.

1.4.2. Objetivos específicos

- Evaluar la condición superficial del pavimento flexible tramo Jaén San Ignacio km
 60+000 al 70+000 mediante Vehículo Aéreo No Tripulado, Jaén 2024.
- Evaluar la condición superficial del pavimento flexible tramo Jaén San Ignacio km
 60+000 al 70+000 mediante método PCI, Jaén 2024.
- Comparar el tiempo y precisión de los datos recopilados por el VANT en la detección de la condición del pavimento, contrastándola con los resultados obtenidos mediante el método PCI.
- Determinar las zonas de riesgo del pavimento flexible tramo Jaén San Ignacio km 60+000
 al 70+000 a partir de los datos recopilados del vehículo aéreo no tripulado, Jaén 2024.

1.5. Antecedentes

1.5.1. *Internacionales*

Małek (2023) en su estudio "Evaluación del uso de vehículos aéreos no tripulados para el estudio del estado del pavimento de carreteras". Tuvo como fin evaluar el uso de vehículos no tripulados para estudiar pavimentos. La metodología consistió en las mediciones de campo, el uso de software fotogramétrico y procesamiento de datos. Entre los resultados se tuvo que los baches son daños con un alto grado de nocividad, que constituyen una pérdida de la mezcla mineral-asfáltica con dimensiones no inferiores a 15 cm × 15 cm y hasta una profundidad superior al espesor de la capa de rodadura, de otro lado que en el caso de la cámara utilizada, el vuelo de reconocimiento a una altitud de 5 m permite detectar grietas de tamaño a partir de 1 mm; en el caso de una altitud de vuelo de 30 m es posible detectar grietas a partir de 4 mm. Concluyó que la precisión del estudio de deterioro del pavimento utilizando un VANT se ve afectada por factores, como: altitud y velocidad de vuelo, parámetros de la cámara (sensor de imagen, distancia focal) y distorsiones geométricas causadas por un ángulo de cámara inadecuado.

De Carvalho et al. (2023) en su estudio "Detección de Manifestaciones Patológicas en Pavimentos Asfálticos mediante Drone". Tuvo como finalidad detectar patologías en pavimentos asfalticos mediante el uso de dron. La metodología aplicada consistió en implantación de software, trabajo de campo y gabinete. Entre los resultados se tuvo que los parámetros de vuelo a una altura de 50m, velocidad de 6m/s, con un tiempo de duración de 18min, con cobertura longitudinal y transversal de 80%, resolución de 1.25cm/pixel y un total de 450 fotos, donde se obtuvo que patologías como pales con 60.70cm, desgaste de 166.00cm, Remiendo de 154.00cm, trinca transversal 198cm y trinca interligada de 16.30cm, cuyas diferencias con respecto a evaluaciones tradicionales la variaciones con inferiores a 7cm.

Concluyó los resultados encontrados confirman a el potencial del uso del dron para identificación de patologías, siendo confiables.

Ji et al. (2021) en su artículo "Evaluación basada en imágenes del riesgo de grietas en carreteras utilizando una red neuronal convolucional y un vehículo aéreo no tripulado". Tuvo como objetivo evaluar riesgo de grietas en carreteras utilizando una red neuronal convolucional y un VANT. La metodología consistió en la recopilación de datos, detección de grietas, extracción de la ubicación de las grietas, cálculo del tamaño real de las grietas y evaluación del nivel de riesgo. Entre los resultados se tuvo que el pavimento flexible presento grietas transversales, grietas longitudinales, grietas que se cruzan y grietas de cocodrilo; asimismo existen cuatro fisuras que pueden afectar significativamente la vía debido a su alto nivel de daño. La mayoría de las fisuras presentaron un nivel de daño moderado cuyas aberturas variaron de 6 mm a mayores de 19 mm ubicándose en zonas intermedias del pavimento. Concluyó que el riesgo general de moderado.

Fernández et al. (2021) en su estudio "Mapeo de manifestaciones patológicas en pavimento asfáltico mediante drones". Tuvo como fin realizar mapeos para determinar patologías de un pavimento flexible. La metodología consistió en el empleo de Drones para mapear e inspeccionar y procesar datos. Como resultados se tuvo que la evaluación se realizó con un altitud de vuelo de 70m, resolución de 2.4cm/pixel, con Tasa de cobertura horizontal de 65% y vertical de 75%, velocidad de vuelo de 15m/s y 109 fotos; donde se logró encontrar 04 tipos de patologías, que son: 26 macetas (P) - hueco o agujero que se forma en el revestimiento y puede llegar a la base; 20 grietas (F): caracterizadas como aberturas en la superficie del asfalto que son visibles a simple vista; 5 parches (R) - defecto caracterizado por el llenado de macetas o cualquier otro orificio, agujero o depresión con mezcla asfáltica; y 2 deslizamiento (E) - desplazamiento en relación con la capa de pavimento; cuyo índice de

severidad fue 302. Concluyó que el uso de drones para inspeccionar patologías en pavimentos asfálticos, en base presenta un acierto aproximado de 94,4%, con la metodología tradicional.

Refiere Sotomayor y Torres (2020) en su estudio "Empleo de VANT para determinar fallas superficiales en pavimentos flexibles". Su objetivo fue emplear vehículos aéreos no tripulados para identificar fallas en los pavimentos. La metodología se centró en tres etapas: inicialmente, la planificación de la zona de estudio, luego la recolección y procesamiento de datos, para culminar con el análisis de resultados. Entre los resultados se tuvo que de las 247 imágenes obtenidas con el VANT se obtuvo una nube de puntos densa de 87, 371 y 413 puntos de alta calidad, donde se tuvo que entre las fallas que destacan, son grietas y baches. Concluyó que el VANT es adecuado para la detección temprana de fallas superficiales sobre pavimento flexible, dando resultados óptimos.

1.5.2. Nacionales

De acuerdo con Quispe (2021) en su estudio "Evaluación de confiabilidad del Drone Phantom 4 Pro V2. 0 para calcular el índice de condición del pavimento flexible en Av. Miraflores del distrito de Comas, Lima-2020". El objetivo fue evaluar la condición de un pavimento mediante Drone y su confiabilidad. La metodología consistió en obtener imágenes de la vía asfaltada, posteriormente se desarrolló el procesamiento fotogramétrico que contribuyó en desarrollar una caracterización de fallas de forma visual en gabinete. Entre los resultados se tuvo que la vía presento fallas de parcheo, huecos, grietas longitudinales, desprendimientos de agregados para ambos procedimientos; y que el uso del Drone es confiable para el cálculo de PCI puesto que se tuvieron resultados promedio de ambos procedimientos 49 y 50 respectivamente. Concluyó que el pavimento presento un estado general de regular.

Quispe (2021) en su estudio "Metodología PCI empleando VANT, para determinar la condición superficial del pavimento flexible en la Avenida José María Arguedas San Jerónimo,

2021". El objetivo fue evaluar la condición superficial del pavimento empleando VANT. La metodología consistió en realizar reconocimiento de la zona, obtención del dron con software instalado, recorrido de la vía con dron y análisis de datos en gabinete. Entre los resultados se lograron identificar que el 46.09% pertenecen a fallas de tipo piel de cocodrilo, el 24.67% representa al pulimiento de agregados, el 14.59% constituyen parcheo y acometidas de servicios públicos, un 9.60% a grietas longitudinales, las fallas tipo huecos y ahuellamiento se presentan en mínimos porcentajes; asimismo que las unidades evaluadas presentan variaciones desde 14 hasta 79 que reflejan una condición del pavimento "muy pobre" y "muy buena" respectivamente. Concluyó que el PCI empleando VANT promedio es de 55 que representa una condición de pavimento regular.

Olaya y Ramos (2021) en su estudio "Evaluación superficial del pavimento flexible del Paseo Turicarami, Sullana-Piura utilizando tecnología VANT". Tuvo como fin evaluar un pavimento flexible usando tecnología VANT. La metodología consistió en toma de datos en campo, seguido del procesamiento de información. Entre los resultados se tuvo que la Sección 1 presento huecos, Parcheo, Ahuellamiento y Pulimiento de agregados cuyo estado fue pobre (PCI = 20.5); la Sección 2, Ahuellamiento y Pulimiento de agregados cuyo estado fue de 80.5 (PCI=85); en la Sección 3, solo la falla Pulimiento de agregados; en la Sección 4, Grietas de borde y Pulimiento de agregados cuyo estado fue excelente (PCI=88); en la Sección 5 y 6, Huecos y Pulimiento de agregados cuyo estado fue excelente (PCI=88) y pobre (PCI=37); en la Sección 7, solo Pulimiento de agregados; en la Sección 8, las fallas Parcheo y Pulimiento de agregados cuyo estado fue excelente (PCI=89). Concluyó que las actividades de intervención para la sección 1 y sección 6 son rehabilitar con actividades mayores y correctivas, la sección 9 necesita actividades de rehabilitación mayor (efectivo). Las secciones 2, 3, 4, 5, 7 y 10 necesitan actividades de mantenimiento menor o rutinario.

Cubas (2021) en su estudio "Uso de un dron para optimizar la evaluación superficial del pavimento flexible por el método PCI en la Av. Los Conquistadores, distrito de San Isidro, Lima–2021". Tuvo como fin usar dron para evaluar un pavimento flexible. La metodología consistió en la obtención del dron con software instalado, recorrido de la vía con dron y análisis de datos en gabinete. Entre los resultados se tuvo tipos de falla de piel de cocodrilo con 182.06m2, exudación con 3.50m2, agrietamiento en bloque de 40.54m2, grieta longitudinal y transversal con 58.89m2, parcheo con 35.14m2, pulimiento de agregados con 84.22m2 y hueco con 7.00m2, cuyo estado fue de 33% excelente, 33% regular, 17% pobre, 11% bueno y 6% muy pobre. Se concluyo que el uso de dron presenta para la evaluación de pavimentos presentan datos muy próximos semejanzas con la realidad.

Soto (2020) en su tesis "Condición superficial de pavimentos flexibles determinados mediante métodos convencionales empleando un vehículo aéreo no tripulado, carretera anexo Fátima, Piura 2020". Tuvo como fin evaluar pavimentos flexibles mediante vehículo aéreo no tripulado. Como resultados se tiene un área de afectada relevante ocasionada por parcheo de 92.69m2 y pulimiento de agregados de 608.20m2 mostrados, de condición promedio excelente de PCI 88. Concluyó que el empleo de un vehículo aéreo no tripulado resultó ser eficiente.

1.5.3. Regional y/o Local

Según Leiva (2021) en su tesis "Comparación de la metodología PCI para la evaluación de las condiciones del pavimento de forma convencional y con el uso de un dron, Cajamarca 2021". Tuvo como fin realizar comparativos entre el método tradicional y mediante dron para evaluar pavimentos. La metodología fue realizar aplicaciones de campo insitu con formatos y con dron, seguido del procesamiento de datos y comparaciones. Como resultados se tuvo que la falla más común que se reportó fue el Abultamiento y hundimiento seguido por el agrietamiento en bloque, grietas de reflexión, piel de cocodrilo, seguido de grietas en el asfalto

entre otras. Concluyó que la metodología convencional y utilizando el dron, ambas cumplen la finalidad de la determinación de las fallas, según lo establecido en la normativa.

Refiere Fernandez y Jimenez (2021) en su tesis "Evaluación Superficial del Pavimento Flexible Mediante los Métodos VIZIR, PCI, IRI en la Carretera Bagua Grande - Cajaruro, Amazonas – 2021". Su propósito fue hacer una evaluación de pavimento mediante los métodos VIZIR; PCI e IRI. La metodología consistió la delimitación del área de estudio, cuantificación y clasificación del IMD, identificación y clasificación de fallas, evaluación superficial del pavimento flexible y el uso del software. Como resultados de las fallas encontraron que el 82.7% fueron baches-Huecos, 1.3% pulimento de agregados, 0.8% piel de cocodrilo, 0.8% abultamientos y hundimientos y 14.3% de parcheo. El valor del PCI fue de 47.98, VIZIR fue bueno e IRI regular. Concluyendo que la falla predominante fue de baches-huecos y que el método del PCI es el más preciso puesto que se calcula tramos más cortos por lo que sus resultados serán más confiables.

Contreras y Alindor (2021) en su tesis "Evaluación Superficial de Pavimento Rígido, mediante el Método PCI del Casco Urbano de Cutervo, Cajamarca, 2021". Su objetivo fue realizar una evaluación del pavimento rígido mediante el PCI del casco urbano de Cutervo. La metodología consistió en recolectar datos en guías de observación, reconocimiento in situ del lugar y procesamiento de datos. Los resultados demostraron que la mayoría de calles presentan fallas severas, por lo cual, se clasificó de manera general al pavimento como muy malo; puesto que, en el Jirón 22 de octubre se obtuvo un 26.83 como valor de PCI, en Jr. Juan Montenegro de 40.40, en Jr. América de 23.57, Jr. Bolívar de 49.10, Jr. Asunción de 20.58. Concluyó que el pavimento estudiado se encontraba con daños severos, tales como: fallas tipo grietas, parcheos, pulimientos, desconchamientos y descascaramientos.

De acuerdo con Sosa y Campos (2021) en su tesis "Evaluación de Fallas del Pavimento flexible Comparando con los Métodos PCI y VIZIR de la carretera Jaén - Aeropuerto en Cajamarca". Su propósito fue comparar el método PCI y VIZIR para evaluar superficialmente pavimentos flexibles. La metodología consistió en realizar levantamiento topográfico, recopilación de datos, conteo vehicular, clasificación de fallas y procesamiento de datos. Los resultados mostraron que el PCI tuvo un promedio de 69.45 y VIZIR 1.2 cuyo índice de severidad para ambos fue bueno, asimismo se identificaron fallas en un 30.41% de piel de cocodrilo, 23.51% fisuras longitudinales - transversales y 25.71% parcheo. Concluyendo que la falla predominando fue la de piel de cocodrilo y ambos métodos son fáciles y aplicables.

Y finalmente Gil y Pauccar (2021) en su estudio "Evaluación mediante el método PCI para determinar el estado superficial del pavimento flexible de la carretera Jaén—Chamaya, Jaén, Cajamarca-2020". Su fin evaluar un pavimento flexible mediante el método PCI de la vía carretera Jaén — Chamaya. La metodología consistió en realizar el levantamiento topográfico de la vía, seguido del usó fichas usando la inspección visual para determinar el tipo de falla, severidad y finalmente interpretar resultados. Entre los resultados se tuvo un valor de PCI de 70.06, lo cual representa una condición de muy bueno, asimismo se encontraron 10 tipos de daños y entre los daños con mayor porcentaje se encontró fisuras y parcheo con un 18.26 %. Concluyo realizar un mantenimiento rutinario con la finalidad de poder seguir garantizando el normal tránsito de los vehículos.

II. MATERIAL Y MÉTODOS

2.1. Ubicación geográfica

El estudio se realizó en una sección de la carretera que conecta Jaén con San Ignacio, abarcando desde el km 60+000 hasta el km 70+000, atravesando el Centro Poblado de Puerto Tamborapa y llegando hasta Centro Poblado Perico. Este tramo forma parte del distrito de Chirinos, Provincia de San Ignacio, del Departamento de Cajamarca.

Figura 1

Ubicación geográfica del tramo de estudio

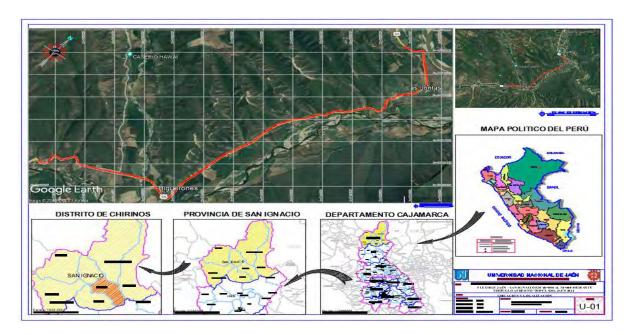


Figura 2

Vista en planta del tramo CP. Puerto Tamborapa—CP. Perico KM 60+000 y KM 70+0000

2.2. Población

Es un conjunto de individuos u objetos de interés o medidas obtenidas a partir de todos los individuos u objetos de interés (Pastor, 2019). La población de esta investigación estuvo conformada por la carretera Jaén - San Ignacio del Km 00+000 al KM 100+000.

2.3. Muestra

La muestra es el subconjunto de las unidades de una población (Pastor, 2019). Por lo cual, la muestra fue una parte de la vía Jaén - San Ignacio, del KM 60+000 al KM 70+000 ubicado específicamente entre el CP. Puerto Tamborapa – CP. Perico.

2.3.1. Cuantificación de la muestra

Se establece como requisito que el área de cada Unidad de Muestreo (UM) debe encontrarse dentro del rango de 230.0 ± 93.0 metros cuadrados (ASTM D6433, 2004). La relación del ancho de calzada y longitud de unidad de muestreo se presenta la Tabla 1.

Tabla 1Relación de Ancho de Calzada y Longitud de Unidad de Muestreo

Ancho de Calzada(m)	Longitud de la Unidad de muestreo (m)				
5.0	46.0				
5.5	41.8				
6.0	38.3				
6.5	35.4				
7.3 (Máximo)	31.5				

Nota. La tabla muestra la adaptación de datos de la guía del cálculo de PCI.

Dado que el ancho promedio del tramo estudiado es de 6.5 m, de acuerdo con la Tabla 1, se estableció que la longitud de la unidad de muestra es de 35.4 m, lo que resulta en un área de muestra de 230.10 m² por unidad. Así mismo, la longitud de la vía en estudio es de 10000 m con un ancho de calzada de 6.5 m, por lo cual, se obtiene un área total de $65\,000$ m^2 . En este estudio la ecuación para determinar las unidades de muestreo se expresa de la siguiente manera:

$$N = \frac{10000}{35.4}$$

N = 283 unidades de muestreo (UM)

Es decir, en el tramo de la vía de 10000 m, se determinó 283 (UM), 281 de 35.4 m de longitud, una (UM) de 34.3 m y una (UM) de 18.3 m.

Con un nivel de confianza del 95 % en el Intervalo de Confianza para la Proporción (ICP), se empleó la siguiente ecuación para determinar el número mínimo de muestras a evaluar en el tramo de 10 000 m.

$$n = \frac{N * \sigma^2}{\frac{e^2}{4} * (N-1) + \sigma^2}$$

Donde:

N: Numero total de unidades de muestreo disponible.

n: Número mínimo de unidades a evaluar.

e: Error admisible en el estimativo del PCI de la sección (e = 5%).

σ: Desviación estándar del PCI entre las unidades.

$$n = \frac{283 * 10^2}{\frac{5^2}{4} * (283 - 1) + 10^2}$$

$$n = \frac{283 * 10^2}{\frac{5^2}{4} * (283 - 1) + 10^2}$$

$$n = 15.19 \approx 15$$

Se determinó que el intervalo de muestreo (i) corresponde a:

$$i = \frac{N}{n}$$

Donde:

$$i = \frac{283}{15}$$
$$i = 18.86 \approx 19$$

Es decir, se realizó la evaluación de 1 unidad de muestra representativa por cada 19 unidades de muestreo (UM).

Se inspeccionaron un total de 30 unidades de muestreo, que incluyeron 15 unidades representativas (UM1, UM20, UM39, UM58, UM77, UM96, UM115, UM134, UM153, UM172, UM191, UM210, UM229, UM248 y UM267) y 15 unidades adicionales seleccionadas para cubrir una variedad de condiciones del pavimento (UM4, UM15, UM25, UM34, UM46, UM62, UM70, UM88, UM106, UM162, UM167, UM188, UM204, UM238 y UM281).

Tabla 2

Unidades muéstrales

UNIDADES DE MUESTRA														
UM1	UM1 UM2 UM3 UM4 UM5 UM6 UM7 UM8 UM9 UM10 UM11 UM12 UM13 UM14 UM1													UM15
UM16	MU17	MU18	MU19	MU20	MU21	MU22	MU23	MU24	MU25	MU26	MU27	MU28	MU29	MU30
UM31	MU32	MU33	MU34	MU35	MU36	MU37	MU38	MU39	MU40	MU41	MU42	MU43	MU44	MU45
UM46	UM47	UM48	UM49	UM50	UM51	UM52	UM53	UM54	UM55	UM56	UM57	UM58	UM59	UM60
UM61	UM62	UM63	UM64	UM65	UM66	UM67	UM68	UM69	UM70	UM71	UM72	UM73	UM74	UM75
UM76	UM77	UM78	UM79	UM80	UM81	UM82	UM83	UM84	UM85	UM86	UM87	UM88	UM89	UM90
UM91	UM92	UM93	UM94	UM95	UM96	UM97	UM98	UM99	UM100	UM101	UM102	UM103	UM104	UM105
UM106	UM107	UM108	UM109	UM110	UM111	UM112	UM113	UM114	UM115	UM116	UM117	UM118	UM119	UM120
UM121	UM122	UM123	UM124	UM125	UM126	UM127	UM128	UM129	UM130	UM131	UM132	UM133	UM134	UM135
UM136	UM137	UM138	UM139	UM140	UM141	UM142	UM143	UM144	UM145	UM146	UM147	UM148	UM149	UM150
UM151	UM152	UM153	UM154	UM155	UM156	UM157	UM158	UM159	UM160	UM161	UM162	UM163	UM164	UM165
UM166	UM167	UM168	UM169	UM170	UM171	UM172	UM173	UM174	UM175	UM176	UM177	UM178	UM179	UM180
UM181	UM182	UM183	UM184	UM185	UM186	UM187	UM188	UM189	UM190	UM191	UM192	UM193	UM194	UM195
UM196	UM197	UM198	UM199	UM200	UM201	UM202	UM203	UM204	UM205	UM206	UM207	UM208	UM209	UM210
UM211	UM212	UM213	UM214	UM215	UM216	UM217	UM218	UM219	UM220	UM221	UM222	UM223	UM224	UM225
UM226	UM227	UM228	UM229	UM230	UM231	UM232	UM233	UM234	UM235	UM236	UM237	UM238	UM239	UM240
UM241	UM242	UM243	UM244	UM245	UM246	UM247	UM248	UM249	UM250	UM251	UM252	UM253	UM254	UM255
UM256	UM257	UM258	UM259	UM260	UM261	UM262	UM263	UM264	UM265	UM266	UM267	UM268	UM269	UM270
UM271	UM272	UM273	UM274	UM275	UM276	UM277	UM278	UM279	UM280	UM281	UM282	UM283		
	Unidad	de muestr	a represei	ntativa										
	Unidad (de muestr	a no repre	esentativa										

La tabla 2 muestra un total de 283 unidades de muestra. De estas, 15 están marcadas en azul como muestras representativas, mientras que otras 15 están marcadas en amarillo como muestras no representativas.

2.4. Muestreo

En este estudio, se utilizó un muestreo probabilístico, ya que la primera muestra se selecciona de manera aleatoria y las siguientes se eligen según un intervalo predeterminado. Además, se definieron las unidades muestrales de acuerdo con lo establecido en la metodología PCI, tal como lo indica la norma ASTM D6433.

2.5. Métodos

2.5.1. *Método*

El razonamiento inductivo que comienza con la observación de casos específicos, el cual tiene por objeto establecer principalmente generalizaciones, tratando de ver si estas generalizaciones se aplican a casos específicos (Urzola, 2020). Es por ello que este estudio fue inductivo, ya que comenzamos con puntos específicos, como la toma de datos en campo mediante dron, seguido del procesamiento e interpretaciones, para finalmente establecer las conclusiones del estudio.

Este estudio fue deductivo porque, basado en la bibliografía revisada, especialmente en los antecedentes relacionados con el tema y la observación del estado actual del tramo seleccionado, se concluyó que era necesario llevar a cabo esta investigación para abordar la problemática existente.

2.5.2. Tipos de investigación

Una investigación aplicada se centra en resolver problemas específicos mediante la aplicación práctica de conocimientos especializados para satisfacer necesidades concretas. (Vargas, 2009). Según su finalidad, esta investigación fue aplicada, ya que se centró en utilizar nuevas metodologías y tecnologías especializadas para resolver problemas relacionados con la identificación de zonas de riesgo y evaluación superficial del pavimento flexible.

En el enfoque cuantitativo, se recolectan datos numéricos y se realiza análisis estadístico para probar hipótesis y establecer patrones, mientras que en la investigación cualitativo usa la recolección de datos para afinar preguntas de investigación, basándose en las perspectivas y puntos de vista de los participantes (Polanía et al., 2020). Vistos los conceptos, se determinó que nuestro estudio fue de carácter mixto, ya que mediante la aplicación de metodologías se recolectaron datos numéricos y cualitativos que, en conjunto, sirvieron para cuantificar y caracterizar la evaluación de pavimentos y las zonas de riesgo.

El diseño no experimental recoge información sobre el objeto de estudio sin administrar o controlar un tratamiento, involucrando una variable y una población. (Polanía et al., 2020). Se consideró de diseño no experimental porque se centró en la observación y el análisis de las condiciones del pavimento sin manipular ninguna variable de estudio.

2.6. Técnicas

a. Observación

Empleando esta técnica, se realizó el vuelo utilizando el dron Phantom 4 RTK sobre las zonas de estudio para capturar imágenes del estado del pavimento. Estos vuelos se realizaron a una altura de 30 m para obtener una vista completa y detallada de la superficie del pavimento y las posibles zonas de riesgo. La observación también incluyó inspecciones in situ para validar los datos obtenidos mediante la fotogrametría.

b. Revisión documental.

Se realizó una exhaustiva revisión documental que incluyó la recopilación y análisis de informes históricos sobre el estado del pavimento, documentos técnicos relacionados con el mantenimiento de carreteras, y estudios previos en el área de pavimentos flexibles. Esta revisión ayudó a establecer un contexto teórico y técnico para la investigación y permitió identificar patrones y problemas recurrentes en el mantenimiento de pavimentos.

c. Procesamiento con Software de Fotogrametría

Las imágenes capturadas por el dron Phantom 4RTK fueron procesadas con el software Argisoft Metashape. Se emplearon técnicas avanzadas para crear modelos tridimensionales del pavimento. Para identificar las zonas de riesgo se integró los datos procesados mediante el software ArcGIS, permitiendo correlacionar diferentes parámetros.

2.7. Procedimiento de recolección de datos

2.7.1. *Materiales y equipos*

Con el objetivo de llevar a cabo la recolección de datos utilizando las metodologías VANT (Vehículo Aéreo No Tripulado) y metodología Tradicional PCI, fue necesario contar con diversos equipos y materiales.

Tabla 3 *Equipos y materiales*

MÉTODO VANT	MÉTODO PCI				
- Dron Phantom 4 RTK	- Wincha, Flexómetro.				
- Control remoto y estación base	- Escuadra.				
D-RTK 2	- Yeso.				
- Baterías de repuesto y	- Equipos de protección personal.				
cargadores	- Reglas metálicas				
- Tarjetas de memoria	- Hoja de inspección, Libreta de campo.				
	- Estación total Marca Leica TS09				
	- Laptop CPU Intel Core i7				

Nota. Esta tabla proporciona una visión organizada de los equipos y materiales necesarios para la implementación efectiva de las metodologías VANT y PCI.

2.7.2. Recolección de datos mediante la metodología VANT

2.7.2.1. Obtención de los equipos y materiales

Los equipos utilizados fueron obtenidos de la Universidad Nacional de Jaén a través de un préstamo formal. Todos los equipos estaban debidamente calibrados y certificados lo que aseguró la precisión y fiabilidad de las mediciones realizadas (ver Anexo 10).

Tabla 4Características del Dron Phantom 4 RTK

Descripción	Características					
Cámara	Sensor CMOS de 1" y resolución de 20 MP					
Altura máx de servicio	6000 m					
Tiempo de vuelo	30 minutos aprox.					
Peso de despegue	1391 g					
Rango de precisión del vuelo	RTK activado: Vertical ± 0.1 m, Horizontal: ± 0.1 m					
Estación Móvil	D-RTK 2					

2.7.2.2. Descripción del procedimiento

Esta etapa consistió en realizar el levantamiento fotogramétrico de un tramo de 10 km de la carretera Jaén – San Ignacio, específicamente desde el Km 60+000 hasta el Km 70+000. Este tramo está ubicado entre el Centro Poblado (CP) Puerto Tamborapa y el CP Perico. Se dispuso de un total de 283 unidades de muestra, cada una con un área promedio de 230.10 m². Para el análisis, se seleccionaron 30 unidades de muestra siguiendo la metodología establecida por la norma ASTM D 6433.

a. Planificación del vuelo

Se realizó una inspección preliminar de la vía en evaluación para identificar los puntos clave y trazar la ruta necesaria para la captura de datos en la misión de vuelo. La planificación detallada se llevó a cabo en gabinete utilizando el monitor del control remoto y la aplicación DJI GO 4.

Figura 3

Aplicación DJI GO 4

Luego se estableció el método de planificación, que consistió en una misión de vuelo lineal.

Figura 4

Métodos de planificación mediante la aplicación DJI MG 4

Nota. La figura muestra los diversos métodos de planificación disponibles en la aplicación DJI GO 4, accesible desde el monitor del control remoto del Dron Phantom 4 RTK.

Posteriormente, para todas las unidades de muestra se configuró los parámetros de vuelo.

Figura 5

Configuración de parámetros de vuelo para la UM1

En el cual se estableció:

• Longitud de banda: 30 x 100 m

• Altitud de vuelo: 30 m.

• Velocidad de vuelo (m/s): 3.8 m/s

• Método de disparo: Disparo con temporizador

• Finalizar: Regreso al punto

b. Verificación del plan de Vuelo en campo

El levantamiento fotogramétrico comenzó con la sincronización del dron Phantom 4 RTK y la Estación Móvil D-RTK 2 con el aplicativo DJI GO 4.

Se siguió una lista de verificación:

- Se aseguró que la batería del dron estuviera cargada.
- Se verificó que las hélices del dron estuvieran colocadas correctamente.

- Se revisó el entorno para confirmar que estuviera despejado de obstáculos, como líneas de tensión, árboles, taludes o edificios.
- Se comprobó la conexión a internet para cargar el plan de vuelo.
- Se verificó la conexión adecuada entre el control remoto del dron y el celular.

De acuerdo con la Norma Técnica Complementaria emitida por la Dirección General de Aeronáutica Civil (DGAC), se consideró una separación vertical del dron de más de 20 metros y horizontal de más de 30 metros en relación con cualquier obstáculo.

Figura 6

Instalación de la Estación Móvil D-RTK 2 y sincronización de equipos

Figura 7

Verificación del plan de vuelo en el monitor del control remoto

c. Ejecución del vuelo y captura de imágenes georreferencias

Se realizó la misión de vuelo de acuerdo con los planes establecidos, asegurando el seguimiento de la ruta y la recolección sistemática de datos en tiempo real.

Figura 8

Vista del transcurso de vuelo del Dron Phantom 4 RTK

Completado el vuelo, se transfirió los datos almacenados en la memoria del dron a una carpeta de proyecto. En esta carpeta se incluyó toda la información detallada del plan de vuelo.

d. Post-Procesamiento de datos obtenidas del vuelo

Para el procesamiento de datos se utilizó el software Agisoft Metashape Versión 2.0.4, el cual involucró inicialmente abrir el programa y luego importar las imágenes, configurando así una secuencia operativa.

Tabla 5Detalles del vuelo fotogramétrico

Vuelo	Orientación	Altura (m)	Resolución (cm/px)	Líneas de vuelo	Número de fotos	Longitud de vuelo (m)	Tamaño imagen (px)	Propiedades de imagen
1	Longitudinal	30	72 ppp	3	2678	10000	5472x3648	Cámara: FC6310R Punto F: f/5 Exposición: 1/240s Velocidad ISO: ISO-100 Distancia focal: 9mm Apertura máxima: 2.97

Se seleccionó la carpeta que contenía las imágenes a cargar en el software, el cual procedió a orientarlas de manera automática.

Figura 9

Imágenes añadidas al software Agisoft Metashape, del tramo 60+000 al 70+000

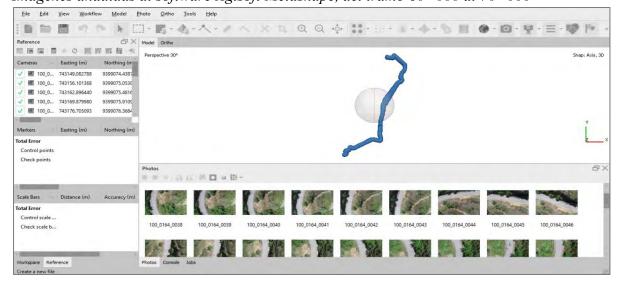
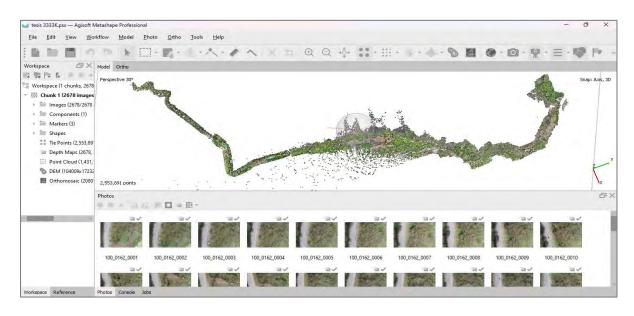
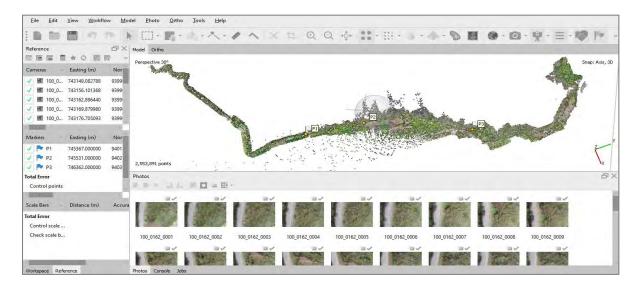
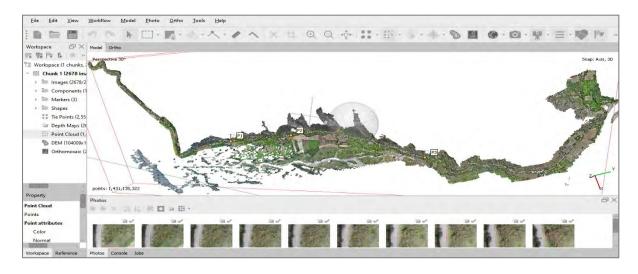



Figura 10


Automatización de la creación de puntos y alineación automática de imágenes, del tramo 60+000 al 70+000

Luego, se realizó el posicionamiento de puntos de control fotográficos para garantizar la precisa superposición de imágenes y disminuir los errores en el proceso de georreferenciación.

Figura 11


Ubicación de puntos de control fotográfica, del tramo 60+000 al 70+000

Después, se procedió a generar una nube de puntos densa, la cual contribuyó a mejorar la calidad de las imágenes en tres dimensiones.

Figura 12

Generación de la nube de puntos densa, del tramo 60+000 al 70+000

Para continuar, se llevó a cabo la generación de una malla digital y un modelo tridimensional, que optimizó la textura de las imágenes y así obtener un resultado más avanzado y detallado.

Figura 13

Creación de malla digital, del tramo 60+000 al 70+000

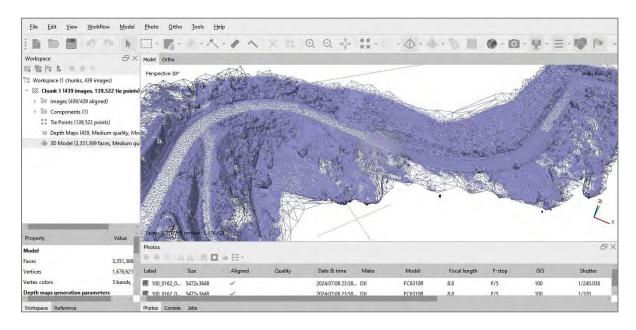
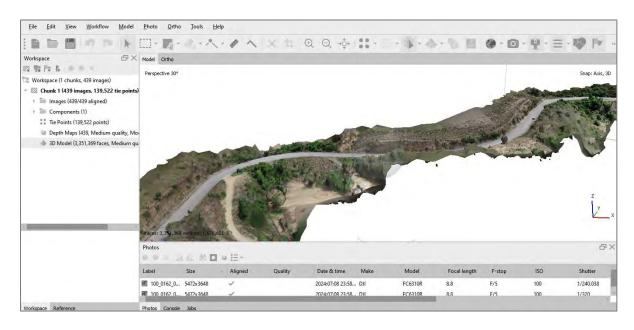
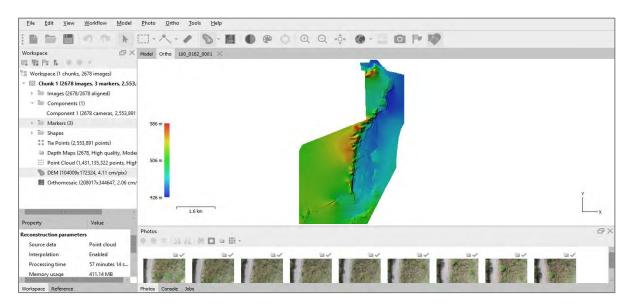



Figura 14


Creación de modelo 3D, del tramo 60+000 al 70+000

Luego se creó del Modelo Digital de Elevación (DEM).

Figura 15

Creación del Modelo Digital de Elevaciones (DEM), del tramo 60+000 al 70+000

Posteriormente se realizó la eliminación de obstáculos como personas y vehículos para garantizar una vista clara, permitiendo una evaluación más precisa de las fallas existentes en el pavimento flexible del tramo Jaén - San Ignacio desde el KM 60+000 hasta el KM 70+000.

Figura 16

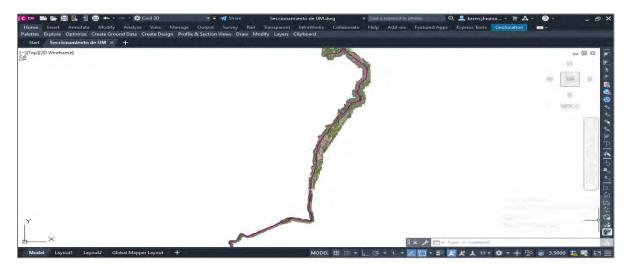
Limpieza de obstáculos, Km 66+200

Nota. En la imagen se puede observar la eliminación de los vehículos que obstaculizan la evaluación precisa de las fallas existentes.

El proceso en el software Agisoft Metashape 2.0.4. concluyó con la creación del ortomosaico.

Figura 17

Creación de Ortomosaico, del tramo 60+000 al 70+000


Nota. En la imagen se puede observar el orto mosaico obtenido del levantamiento.

e. Identificación y metrado en el software AutoCAD Civil 3D

Se procedió a importar el ortomosaico en el software AutoCAD Civil 3D.

Figura 18

Medición de las fallas identificadas en el software Civil 3D, del tramo 60+000 al 70+000

Nota. En la figura se muestra el ortomosaico, y el seccionamiento de las 283 UM comprendidas entre el km 60+000 y el km 70+000 de la carretera Jaén – San Ignacio.

Con el fin de mejorar la identificación y evaluación de la gravedad de las fallas en el pavimento flexible, se diseñó una leyenda que clasificaba cada tipo de falla utilizando una simbología especifica.

Figura 19

Leyenda de los tipos de fallas en pavimentos flexibles y nivel de severidad

TIPO DE FALLAS	SIMBOLOGÍA	TIPO DE FALLAS	SIMBOLOGÍA	NI	VEL DE SEVERIDAD	SIMBOLOGÍA
1. Piel de cocodrilo (m2)	1474	11. Parcheo (m2)		L	Low (baja)	
2. Exudación de asfalto (m2)	1//	12. Agregados pulldos (m2)		M	Medium (medio)	
3. Fisuras en bloque (m2)		13. Huecos (Baches) (und)		H	High (alto)	
4. Abultamiento y Hundimientos(m)		14. Cruce de vía férrea.(m2)				
5. Corrugaciones (m2)	25255	15. Ahuellamiento (m2)	10000			
6. Depresiones (m2)	HARLES AND STREET	16. Dezplazamiento (m2)	KURKERS			
7. Fisuras de borde (m)		17. Grieta parabólica (m)	3.00			
8. Grietas de reflexiones (m)		18. Hinchamiento (m)				
9. Desnivel carril/berma (m)		19. Desprendimiento de				
10.Fisuras longitudinales y transversales (m)		agregados (m)	12002000			

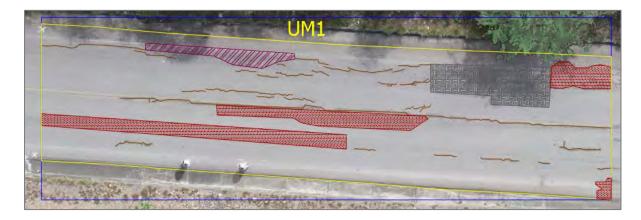
Nota. La figura presenta los tipos de fallas en el pavimento flexible y su simbología, un sistema de colores para indicar el nivel de severidad: rojo para alta, amarillo para media, y verde a leve.

Luego, se llevó a cabo el seccionamiento de las 283 unidades de muestreo en áreas de 230.10 m² cada uno. Para el análisis, se seleccionaron 30 unidades de muestra siguiendo la metodología establecida por la norma ASTM D6433.

Figura 20
Ortofotografia de la unidad de muestra UM1, Km 60+000 al km 60+035.4

Este procesamiento permitió identificar los tipos de fallas en el pavimento y realizar el metrado de cada una de ellas, de manera que estos datos fueron incluidos en las fichas de recolección de datos utilizando la metodología VANT.

Figura 21


Detección de fallas identificadas en unidades de muestra, Km 60+000 al km 60+110

Nota. En la figura se observa los tipos de fallas identificadas en la UM1 y la UM4.

Figura 22

Plano de fallas identificadas en la UM1, Km 60+000 al km 60+035.4

Posteriormente, se aplicó el mismo procedimiento en la detección de fallas de las unidades de muestra restantes.

2.7.3. Recolección de datos mediante la metodología tradicional PCI

En esta etapa, se realizó una inspección visual del pavimento flexible para identificar y registrar de manera ordenada los deterioros y fallas presentes. Se delimitó un total de 30

unidades de muestra a lo largo de los 10 km de pavimento flexible, siguiendo la metodología establecida por la norma ASTM D 6433.

a. Ubicación de Puntos Referenciales con Estación Total

Se estableció una red de puntos referenciales para facilitar la ubicación precisa de las unidades de muestra, utilizando del equipo Estación Total marca LEICA, modelo TS 09 PLUS.

Figura 23

Ubicación de puntos de referencia, Km 70+000

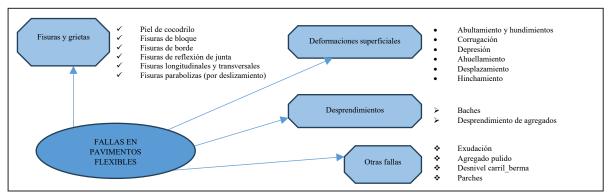
b. Auscultación visual del pavimento flexible

Para ilustrar el procedimiento, se seleccionó la unidad de muestra UM1. Primero, se establecieron sus límites de 35.4 metros lineales utilizando flexómetro y los puntos de referencia establecidos. Luego, se delimito con yeso el tramo a evaluar.

Figura 24

Delimitación de la unidad de muestra UM1, Km 60+000

Se procedió meticulosamente a detectar y registrar todas las fallas superficiales presentes en dicha área de muestreo. Este proceso fue fundamental para garantizar que todas las imperfecciones sean identificadas y documentadas de manera precisa en la hoja de inspección.


Figura 25

Medición de falla superficial en la UM1, Km 60+000

Para registrar los datos en la hoja de inspección, se aplicó la Normativa ASTM D 6433, la cual detalla 19 categorías de daños en vías con superficies asfálticas (ver Anexo 3).

Figura 26Daños superficiales para superficie asfáltica.

Nota. La tabla ilustra los tipos de daños en superficies asfáltica según la normativa ASTM D 6433.

Se registraron todas las unidades de muestra, tanto representativas como no representativas, anotando el código que identifica el tipo de falla. Luego, se midieron sus

dimensiones con herramientas como cinta métrica, flexómetro y regla metálica para cuantificar el nivel de severidad de cada unidad de muestra. Posteriormente se determinó la Condición del pavimento mediante los datos recolectados en las hojas de inspección.

Figura 27

Registro de identificación de fallas superficiales, Km 63+364

2.7.4. Recolección de datos de tiempo y precisión

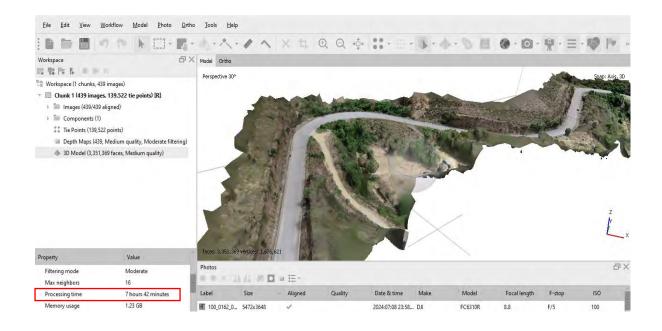
En esta etapa, se llevó a cabo la recolección de datos de tiempo tanto en el campo como en el gabinete para ambas metodologías (Ver Anexo 7).

2.7.4.1.Tiempo

Fase de campo. Se registró a cantidad de horas transcurridas desde el inicio hasta la finalización de la recolección de datos. Se anotó el tiempo dedicado a cada tarea en ambas metodologías, los cuales se tuvieron lo siguiente:

En la metodología PCI, se llevó a cabo la localización de puntos utilizando una estación total en el sitio, seguida de la medición y división de las unidades de muestreo, así como el registro de las fallas, todo realizado de manera presencial en el lugar.

Con el uso del VANT, se ejecutó el vuelo y se capturaron imágenes georreferenciadas, permitiendo así obtener información precisa del área de estudio.


Fase de gabinete. Se registró el tiempo empleado desde el inicio hasta la finalización del procesamiento de los datos recolectados en campo.

En la metodología PCI, los datos fueron procesados utilizando hojas de cálculo en Excel para facilitar su análisis y organización

En el VANT, se llevó a cabo la planificación del vuelo, seguido del procesamiento de los datos en Agisoft Metashape. Posteriormente, se realizó la medición de las fallas en Civil 3D, y finalmente, se procesaron los resultados en formato Excel para su análisis (ver Anexo 7).

Figura 28

Fracción del tiempo usado en procesamiento de datos en gabinete

2.7.4.2. Precisión

Se registraron todas las mediciones de las fallas presentes en el pavimento en un formato unificado (ver Anexo 7), utilizando la posición numérica de los tramos para identificar cada tipo de falla. Posteriormente, se calculó el total de fallas en cada categoría según el tipo de falla, comparando los datos mediante tablas y gráficos en el software Excel. Además, se evaluó la precisión de los datos obtenidos en ambas evaluaciones a través de la prueba de hipótesis, utilizando el software IBM SPSS Statistics 26.

2.7.5. Recolección de datos para identificación de zonas de riesgo

Se utilizó el método de indagación directa, mediante una visita de campo, haciendo un recorrido a lo largo del tramo Jaén - San Ignacio KM 60+000 – KM 70+000–, para constatar las características de la zona (taludes laterales a la vía).

Figura 29 *Inspección de taludes en campo km 62+060*

Además, para identificar los riesgos en los taludes del tramo en estudio, se empleó la siguiente metodología.

• Identificación del área de interés

El área de interés se ha definido a partir del procedimiento de recolección de datos realizado con un vehículo aéreo no tripulado, lo que permitió generar el ortomosaico.

• Recopilación de la información vectorial

Se obtuvo la información de vectorial correspondientes al área de estudio en formato Shapefile, de la plataforma del Instituto Geográfico Nacional (Ver Anexo 11).

Figura 3

Proyección de la data vectorial.

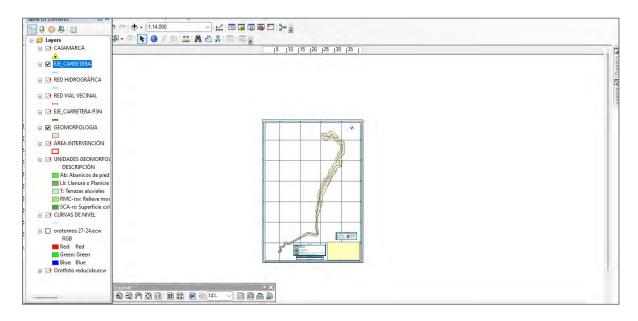
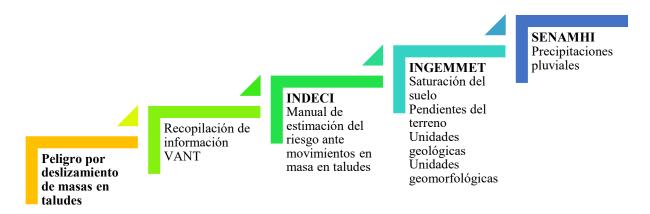
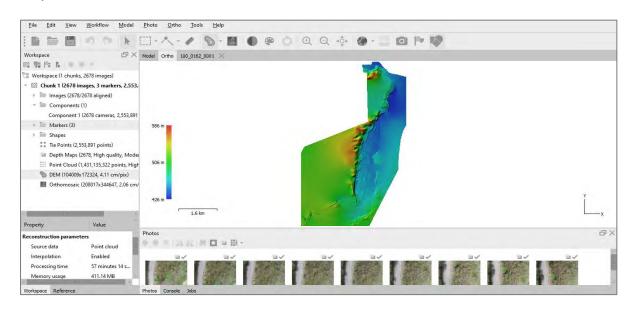



Figura 30

Flujograma del recojo de información sobre peligro de deslizamiento de masas en taludes



• Recopilación de información Ráster

En la determinación de los factores condicionantes, se analizó la pendiente, para lo cual se necesitó la información vectorial del modelo de elevaciones (DEM) obtenidas mediante el Vehículo Aéreo No Tripulado

Figura 3

Proyección de la data vectorial.

· Determinación del nivel de peligrosidad

Se construyó una base de datos en Excel de la información estadística. Posteriormente se identificaron y jerarquizaron los parámetros para evaluar la peligrosidad utilizando la metodología del proceso de análisis jerárquico, según el "Manual para la Evaluación de Riesgos Originados por Fenómenos Naturales 02" proporcionado por el CENEPRED (Ver Anexo 8).

Análisis de vulnerabilidades

Se realizó un análisis de los factores de susceptibilidad e identificación de los posibles daños que podrían ocurrir a causa de deslizamientos de masas en taludes (Ver Anexo 8).

• Determinación de los valores de riesgo

Se elaboró un cuadro de doble entrada con el fin de determinar el nivel de riesgo, para lo cual se utilizó la información sobre el nivel de peligrosidad y vulnerabilidad (Ver Anexo 8).

2.8. Análisis de datos

2.8.1. Análisis de datos recolectados mediante la metodología VANT

Para realizar el análisis de datos mediante la metodología VANT (Vehículos Aéreos No Tripulados), se utilizó el metrado obtenido de la identificación de fallas en el ortomosaico generado por el software Civil 3D (ver Anexo 5).

- a. Utilizando la unidad de muestra UM1 como caso de estudio para el análisis de datos.
- b. Durante el análisis de datos, se realizó la suma del área o longitud total de cada tipo de falla para cada nivel de severidad identificado.

Tabla 6Suma total de las áreas identificadas con fallas en la UM1

FALLAS	SEVERIDAD		CANTIDAD					DENSIDAD	VALOR DEDUCIDO (VD)
10	L	4.295	10.719	7.858	11.991	2.815	37.678		
10	M	2.566	2.502	2.954	31.697		39.719		
10	Н	4.592	5.58	2.25			12.422		
11	M	15.156					15.156		
19	L	5.736	15.082	0.937			21.755		
19	M	5.08					5.08		
2	L	5.736					5.736		
								Total, VD	

La tabla 6, presenta la sumatoria total de las áreas identificadas de la UM1 clasificadas según su nivel de severidad, teniendo que, las grietas longitudinales y transversales tiene la mayor área con 39.719 m2 en nivel de severidad media.

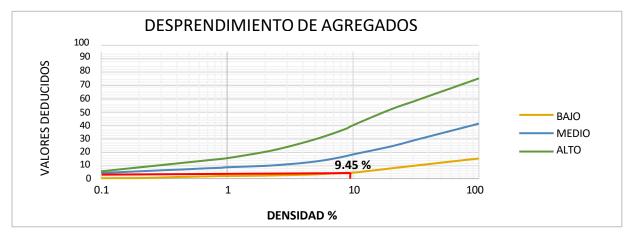
c. Luego se determinó la densidad en porcentaje, calculada al dividir el área, longitud
o unidad total de cada tipo de falla y nivel de severidad entre el área total de la
muestra.

De acuerdo con la fórmula de densidad:

Densidad (%)=
$$\frac{\text{Area total de falla}}{\text{Area total de UM1}}$$

 Tabla 7

 Índice de densidad de fallas detectadas en la unidad de muestra UM1


FALLAS	SEVERIDAD		CA	ANTIDA	D		TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)
10	L	4.295	10.719	7.858	11.991	2.815	37.678	0.1637	
10	M	2.566	2.502	2.954	31.697		39.719	0.1726	
10	Н	4.592	5.58	2.25			12.422	0.054	
11	M	15.156					15.156	0.0659	
19	L	5.736	15.082	0.937			21.755	0.0945	
19	M	5.08					5.08	0.0221	
2	L	5.736					5.736	0.0249	
								Total VD	

La tabla 7, muestra las densidades (%) de los tipos de fallas según su nivel de severidad identificadas de la UM1, teniendo como más presentativa a las Grietas longitudinales y transversales con una densidad de 0.1726, nivel medio.

Se procedió a realizar el cálculo del valor deducido (VD) empleando las curvas específicas de valores deducidos para pavimento flexible asociadas a cada tipo de falla y su respectivo nivel de severidad, las cuales están detalladas en los anexos. La falla de desprendimiento de agregados con severidad leve (19-L) muestra una densidad de 9.45 %, y se localizó en las curvas de valores estimados.

Figura 31

Determinación del Valor Deducido para la falla desprendimiento de agregados en la UM1

Nota. La grafica muestra cómo los valores deducidos del PCI (Índice de Condición del Pavimento) varían según la densidad % y los niveles de severidad.

Se determinó un valor deducido de 4.00 utilizando la curva específica para el nivel leve de severidad en el caso del desprendimiento de agregados. Luego, se procedió a calcular los valores deducidos correspondientes para los demás tipos de fallas.

Tabla 8Cálculo de los valores deducidos por cada tipo de falla de la UM1

FALLAS	SEVERIDAD		CA	ANTIDA	D	TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)	
10	L	4.295	10.719	7.858	11.991	2.815	37.678	0.1637	11
10	M	2.566	2.502	2.954	31.697		39.719	0.1726	24
10	H	4.592	5.58	2.25			12.422	0.054	25
11	M	15.156					15.156	0.0659	26
19	L	5.736	15.082	0.937			21.755	0.0945	4
19	M	5.08					5.08	0.0221	10
2	L	5.736					5.736	0.0249	1
<u>, </u>								Total, VD	101

La tabla 8, presenta los valores deducidos (VD) calculados para cada tipo de falla, en función de su nivel de severidad, teniendo como valores para las grietas longitudinales y transversales, 11 (severidad Leve), 24 (severidad Medio) y 25 (severidad Alto).

Si ninguno o solo un valor deducido individual es mayor que 2, se emplea el máximo de los valores deducidos en lugar del valor deducido para determinar el PCI (ASTM D6433, 2004).

Después de haber obtenido los valores deducidos, se determinó que la cantidad total de todos los valores que superaban 2 eran 6.

Numero de valores deducidos
$$> 2(q) = 6$$

Luego, se procedió a calcular el número máximo de valores admisibles de los valores deducidos utilizando la siguiente fórmula.

$$m = 1 + (9/98) * (100 - HDV) = < 10$$

Dónde:

• m: Número máximo admisible de valores deducidos incluyendo fracciones. (=< 10)

• HDV: El valor deducido más alto encontrado en la unidad de muestra.

En la unidad de muestra UM1, se identificó que el valor deducido individual más alto fue de 26.00, el cual se utilizó en la fórmula.

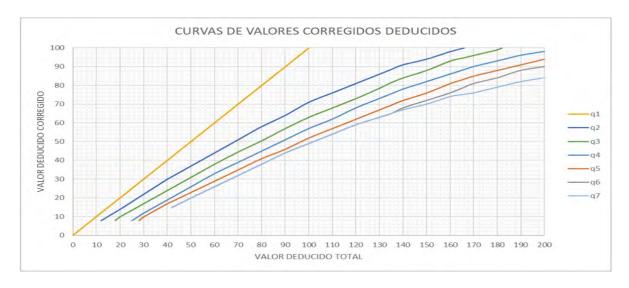
$$m = 1 + (9/98) * (100 - 26) = < 10$$

 $m = 7.80$

Según ASTM D6433 (2004), establece que: "incluyendo la parte fraccionaria. Si se tienen menos valores deducidos (VD) que 'm', se utilizan todos los disponibles"

Se generó una lista de valores deducidos individuales en orden descendente, donde el último valor fue multiplicado por la fracción del máximo permitido. Posteriormente, se realizaron las sumas para obtener el valor deducido total (VDT).

En las filas, se modificó el valor más bajo entre los valores deducidos individuales a 2, procediendo hasta que se igualó a 1.


Tabla 9Valores deducidos totales en la UM1

N°		VALORES DEDUCIDOS					VALORES DEDUCIDOS VDT				VDT	q	VDC
1	26	25	24	11	10	4	100.00						
2	26	25	24	11	10	2	98.00						
3	26	25	24	11	2	2	90.00						
4	26	25	24	2	2	2	81.00						
5	26	25	2	2	2	2	59.00						
6	26	2	2	2	2	2	36.00						
							MAX VI	OC .					

La tabla 9 muestra los valores deducidos (VD) y la cantidad total que estos generan, dando el valor deducido total (VDT).

Se procedió a determinar el VDC para cada VDT, utilizando las curvas de valores corregidos deducidos para el concreto asfáltico.

Figura 32Determinación de valores deducidos corregidos para la UM1

Nota. La figura muestra la relación del valor deducido total y valores deducidos corregidos.

Tabla 10Valores deducidos corregidos para la UM1

N°		VAL	ORES DE	VDT	q	VDC			
1	26	25	24	11	10	4	100.00	6	49
2	26	25	24	11	10	2	98.00	5	51
3	26	25	24	11	2	2	90.00	4	51
4	26	25	24	2	2	2	81.00	3	51
5	26	25	2	2	2	2	59.00	2	43
6	26	2	2	2	2	2	36.00	1	36
							MAX VI	OC	51

La Tabla 10 presenta los valores deducidos corregidos (VDC), donde el análisis se complementa con la gráfica de la Figura 32, que muestra la intersección entre la densidad (q) y el valor deducido total (VDT). Al interceptar estos valores, se identifica un máximo VDC de 51.

Para calcular el índice de condición del pavimento (PCI), se restó el valor máximo deducido corregido (Max. VDC) de 100.

$$PCI = 100 - Max.VDC$$

Se obtuvo un PCI de 49, lo cual clasifica el estado del pavimento como regular según el nivel de PCI.

Tabla 11Resultado de PCI de la UMI

INDICE DE CONDICION DE PAVIMENTO (PCI)	49
CONDICION DEL PAVIMENTO	REGULAR

Tabla 12Clasificación de condición del pavimento

RANGOS (%)	COLORES	CLASIFICACIÓN
85 - 10		Excelente
70 - 85		Muy bueno
55 - 70		Bueno
40 - 55		Regular
25 - 40		Malo
10 - 25		Muy malo
0 -10		Fallado

La tabla 12 considera 7 rangos de clasificación divididas desde: 0-10 (fallado), 10-25 (muy malo), 25-40 (malo), 40-55 (regular), 55-70 (bueno), 70-85 (muy bueno) y 85-100 (fallado).

2.8.2. Análisis de datos obtenidos mediante la metodología tradicional

Para el análisis de datos mediante la metodología tradicional PCI se utilizó el metrado obtenido de la identificación de fallas in situ.

Se siguió el mismo procedimiento descrito en el punto 2.8.1. para obtener los resultados de PCI de cada unidad de muestra, utilizando la metodología Tradicional PCI (Ver Anexo 5).

2.8.3. Análisis comparativo de tiempo y precisión de los datos recopilados por el VANT en la detección de la condición de pavimento frente a la metodología PCI.

El análisis comparativo se centró en evaluar tanto el tiempo empleado y la precisión de los datos recopilados por el VANT en la detección de la condición del pavimento, en comparación con la metodología PCI.

Para ello, se recolectaron tiempos de cada fase del proceso usando una libreta para las metodologías VANT y PCI. Además, se establecieron criterios de comparación, identificando variables clave como horas-hombre y etapas del proceso (Ver Anexo 7).

Tabla 13

Tiempo y personal necesario para la obtención de datos en campo

Variables	PCI usando Dron Phantom 4 RTK	PCI tradicional
Cantidad de Personal	2	4
Cantidad de Días	1	6
Cantidad de horas/día	6	7
Cantidad de unidades de	20	20
muestreo (UM)	30	30

Se registró el tiempo invertido en el procesamiento de datos en gabinete para ambas metodologías.

Tabla 14Tiempo y personal necesario para la obtención de datos en gabinete

Variables	PCI usando Dron Phantom 4 RTK	PCI tradicional
Cantidad de Personal	2	2
Cantidad de Días	6	4
Cantidad de horas/día	7	7
Cantidad de unidades de	20	20
muestreo (UM)	30	30

Los tiempos indicados en la Tabla 13 y Tabla 14 se promediaron teniendo en cuenta la heterogeneidad de las unidades de muestra y asumiendo que no hubo errores en el proceso.

Para calcular la precisión, se utilizó la prueba de muestras emparejadas, comparando los resultados obtenidos del PCI por el método VANT y método tradicional PCI con el programa IBM SPSS Statistics 26. Teniendo en cuenta:

1. Planteamiento de las hipótesis.

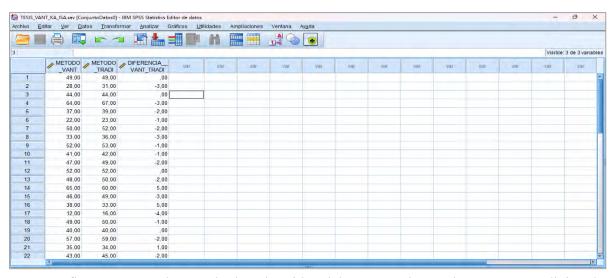
• Hipótesis Nula (Ho)

Ho: No existe diferencia relevante entre las medias de los datos obtenidos por el Método PCI usando un VANT y Método tradicional PCI in situ.

• Hipótesis Alterna (Ha)

Ha: Existe diferencia relevante entre las medias de los datos obtenidos por el Método PCI usando un VANT y Método tradicional PCI in situ.

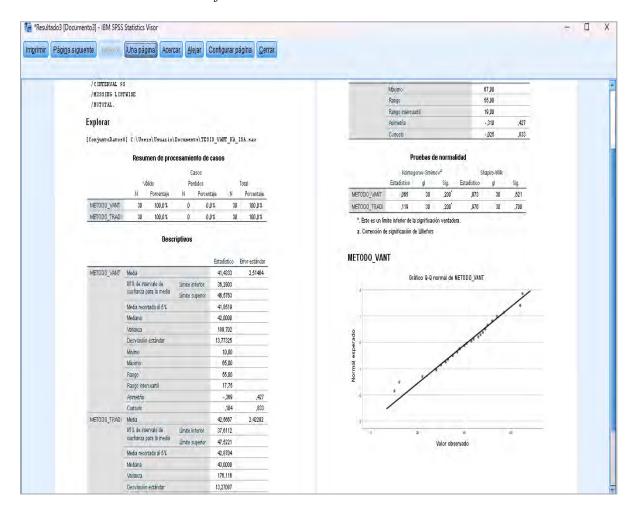
• Nivel de significancia


Intervalo de confianza del 95%

Alfa estadística. ($\alpha = 5\% = 0.05$)

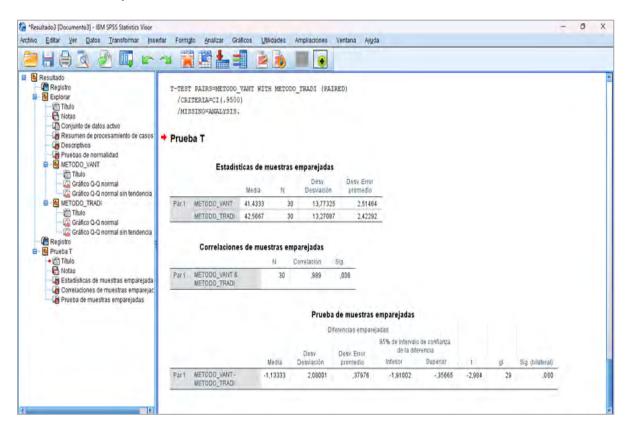
2. Prueba estadística

• Carga de datos al software SPS


Figura 33Determinación de la precisión mediante prueba de muestras emparejadas.

Nota. La figura muestra los resultados obtenidos del PCI por el método VANT y tradicional.

• Prueba de normalidad en el software SPSS


Figura 34Prueba de normalidad en el software SPSS

Al trabajar con una muestra menor a 30, se utilizaron los datos obtenidos mediante la prueba de Shapiro-Wilk para evaluar la normalidad de los datos. En ese caso, la variable dependiente (PCI) mostró un valor de $\alpha=0.7$, que fue mayor que $\alpha=0.05$, lo que permitió aceptar la hipótesis nula (H₀). Esto estuvo en línea con lo expuesto por Hernández et al. (2014). Por lo tanto, se procedió a realizar un análisis paramétrico utilizando la prueba t.

Figura 35

Prueba t en el software SPSS

Nota. La figura presenta los resultados estadísticos de muestras emparejadas.

2.8.4. Análisis de datos para determinar las zonas de riesgo del pavimento flexible a partir de los datos recopilados del Vehículo Aéreo No Tripulado.

Para identificar las zonas de riesgo en relación con el pavimento flexible y el deslizamiento de masas en taludes, se utilizó los datos recopilados por el Vehículo Aéreo No Tripulado Phantom 4 RTK y el método de análisis jerárquico descrito en el Manual para la Evaluación de Riesgos Originados por Fenómenos Naturales, 2.ª versión (CENEPRED, 2014).

CENEPRED (2014) basa en la Ley N° 29664 establece que el riesgo se calcula en función del peligro y la vulnerabilidad de los elementos expuestos, lo cual es expresado de manera matemática mediante la ecuación 1.

$$R = f(PxV)$$
 (ecuación 1)

Donde: R = Riesgo f = En función P = Peligro V = Vulnerabilidad

El Nivel de peligro, se evaluó en función de la susceptibilidad que relaciona factores condicionantes y factores desencadenantes, asociado a un parámetro de evaluación.

$$Suceptibilidad = (F_c x F_d)$$

$$P = f(suceptibilidad \ x \ par\'ametro \ de \ evaluaci\'on)$$
 (ecuaci\'on 2)

 $Donde: P = Peligro, F_c = Factor\ condicionante,\ F_c = Factor\ desencadenante$

2.8.4.1. Análisis y elaboración de niveles de peligro

Para el caso de peligro por deslizamiento, se elaboró la matriz de comparación de pares de los parámetros de evaluación. Además, se utilizó la escala numérica del método de ponderación de SAATY, que permite identificar en qué proporción un atributo es preferible frente a otro.

Tabla 15Parámetros de evaluación

PARÁMETRO EVALUACIÓN	FA	CTORES COND	DICIONANTES	FACTOR DESENCADENANTE	
PE	FC1	FC2	FC3	FD	
Saturación del suelo	Unidades geomorfológicas		Precipitación		
[95% - 100%]: Saturado	Pendientes >40°	Qp-fa: Depósitos Fluvioaluviales	RMC-rsv: Relieve montañoso estructural-erosional en rocas sedimentarias y volcánicas	Extremadamente lluvioso P >36 mm	
[80% - 95%>: Altamente saturado	Pendientes [20°-40°>	Nm-be: Formación Bellavista	SCA-rs: Superficie colinada aluvial en rocas sedimentarias	Muy lluvioso 19.1 mm < P <= 36 mm	
[50% - 80%>: Muy Húmedo	Pendientes [10°-20°>	Qp-ta: Formación Tamborapa	T: Terrazas aluviales	Lluvioso 13.5 mm < P< = 19.1 mm	
[25% - 50%>: Húmedo	Pendientes [5°-10°>	Ji-o: Formación Oyotún	Ab: Abanicos de piedemonte	Moderadamente lluvioso 7.1 mm < RR <= 13.5 mm	
[0% - 25%>: Seco	Pendientes < 5°	Ps-mi: Gpo. Mitu	Lli: Llanura o Planicie inundable	Lluvia usual > 7.1 mm	

Nota. Parámetros para la evaluación del peligro por deslizamientos de masas en taludes (CENEPRED, 2014).

Se presenta el análisis de datos tomando como ejemplo el parámetro de pendientes del terreno. En el anexo 11 se puede ver el mapa de pendientes perteneciente al tramo en estudio.

a. En función al parámetro, se organizó las columnas en orden descendente teniendo en cuenta la importancia relativa para calcular la inversa de las sumas totales.

Tabla 16 *Matriz de comparación de pares*

PENDIENTES DEL TERRENO	Pendientes >40°	Pendientes [20°-40°>	Pendientes [10°-20°>	Pendientes [5°-10°>	Pendientes < 5°
Pendientes >40°	1.00	2.00	3.00	5.00	7.00
Pendientes [20°-40°>	0.50	1.00	2.00	3.00	5.00
Pendientes [10°-20°>	0.33	0.50	1.00	2.00	3.00
Pendientes [5°-10°>	0.20	0.33	0.50	1.00	2.00
Pendientes < 5°	0.14	0.20	0.33	0.50	1.00
Suma 1/suma	2.18 0.46	4.03 0.25	6.83 0.15	11.50 0.09	18.00 0.06

La tabla 16 de la primera fila se lee que el valor de (Pendientes $>40^{\circ}$) es importante comparado (Pendientes $[20^{\circ}-40^{\circ}>)$, por lo que se asigna un valor de 2, asimismo, que la pendiente (Pendientes $>40^{\circ}$) es muy importante comparado con (Pendientes $<5^{\circ}$), por lo que se le asigna un valor de 7.

b. Se construyó la matriz de normalización multiplicando la inversa de las sumas totales por cada elemento de la columna correspondiente, asegurando que la suma de cada columna fuera igual a uno. Luego, se determinó el porcentaje correspondiente.

Tabla 17 *Matriz de normalización, pendientes*

PENDIENTES DEL TERRENO	Pendientes >40°	Pendientes [20°-40°>	Pendientes [10°-20°>	Pendientes [5°-10°>	Pendientes < 5°	VECTOR PRIORIZACIÓ N (Ponderación)	PORCENTAJE %
Pendientes >40°	0.46	0.50	0.44	0.43	0.39	0.444	44.4%
Pendientes [20°-40°>	0.23	0.25	0.29	0.26	0.28	0.262	26.2%
Pendientes [10°-20°>	0.15	0.12	0.15	0.17	0.17	0.153	15.3%
Pendientes [5°-10°>	0.09	0.08	0.07	0.09	0.11	0.089	8.9%
Pendientes < 5°	0.07	0.05	0.05	0.04	0.06	0.053	5.3%
	1	1	1	1	1	1.00	100%

Nota. Elaboración propia. CENEPRED (2014)

De la tabla 17 se observa que las pendientes superiores a 40° tienen un porcentaje de importancia del 44.4%, mientras que las pendientes inferiores a 5° son las menos representativas en el tramo de estudio, con un porcentaje de solo 5.3%.

c. Posteriormente se determinó el vector de suma ponderada multiplicando la matriz de comparación de pares con el resultado del vector de priorización. Luego se dividieron estos valores entre el Vector de Priorización (Ponderación) para obtener en λmáx.

Tabla 18

Vector suma ponderada y "λmáx", pendientes

Vector suma ponderada (VSP)	λ	λmáx
2.24	5.05	
1.32	5.04	
0.77	5.02	5.03
0.45	5.01	
0.26	5.02	

Nota. Elaboración propia. CENEPRED (2014)

La tabla 18 presenta la Matriz de vector suma ponderada, donde las pendientes $> 40^{\circ}$ tienen una importancia de 2.24 y de menos importancia Pendientes $< 5^{\circ}$ con 0.26. Además, se obtuvo un valor promedio de λ máx de 5.03.

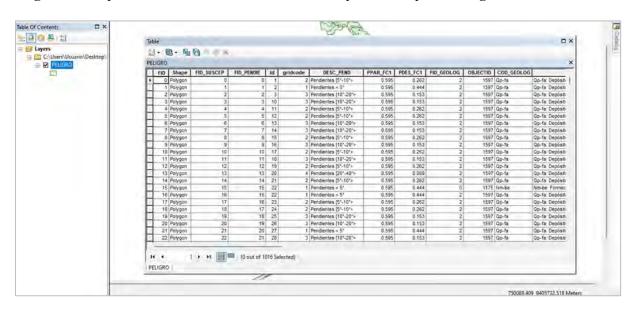
d. Para continuar, se determinó el índice de consistencia (IC) dividiendo el λ máx. entre el número de parámetros menos 1.

Tabla 19Relación de Consistencia

INDICE DE CONSISTENCIA	IC	0.007	OV
RELACIÓN DE CONSISTENCIA<0.10	RC	0.006	OK

En la tabla 19 se verificó que el coeficiente obtenido fue menor al 10% (RC < 0.1), con un valor de 0.006, se confirmó que los criterios utilizados para la comparación de pares eran adecuados.

e. Luego se realizaron los cálculos entre los pesos de los parámetros y descriptores, lo que permitió determinar el nivel de peligrosidad. (Ver Anexo 8)

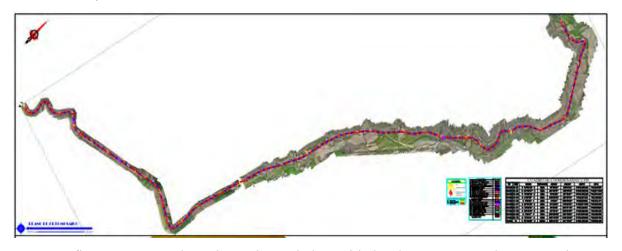

2.8.4.2. Análisis y elaboración de niveles de vulnerabilidad

Con el Manual para la Evaluación de Riesgos Originados por Fenómenos Naturales, 2.ª versión (CENEPRED, 2014) se realiza la Matriz de Comparación de Pares de los Factores y Parámetros, luego Matriz de Normalización de Pares de los Factores, Vector Suma Ponderado, finalmente se determina el Índice de Consistencia y Relación de Consistencia, tanto de Dimensión, Económica y Ambiental.

2.8.4.3. Análisis y elaboración de la matriz de riesgo

Se elaboró un cuadro de doble entrada con el objetivo de determinar el nivel de riesgo, utilizando para ello la información sobre el nivel de peligrosidad y vulnerabilidad (Ver Anexo 8).

Tabla 20
Asignación de ponderación en la tabla de atributos para el mapa de riesgo.


Nota. En la tabla de atributos, se asignó el nivel de riesgo mediante la selección de atributos, de acuerdo la ponderación del rango de riesgo, y se aplicó la simbología correspondiente.

III.RESULTADOS

3.1. Condición superficial del pavimento flexible tramo Jaén – San Ignacio km 60+000 al 70+000 mediante Vehículo Aéreo No Tripulado, Jaén 2024.

En este estudio se evaluó la condición superficial del pavimento flexible en la carretera Jaén – San Ignacio, entre los kilómetros 60+000 y 70+000, utilizando un dron DJI Phantom 4 RTK y una estación móvil D-RTK2 a 30 m de altitud. El procesamiento de imágenes se llevó a cabo en Argisoft Metashape 2.0.4, generando un ortomosaico de 2345x2345 píxeles que fue importado al software Civil 3D. Conforme a la metodología ASTM D-6433, se utilizaron 30 unidades de muestra del ortomosaico para identificar el tipo, nivel de severidad y metrado de cada falla.

Figura 36 *Ortomosaico, Km 60+000 al Km 70+000*

Nota. La figura presenta el seccionamiento de las unidades de muestra en el Ortomosaico.

Se presenta los resultados de las 30 unidades de muestra evaluadas en función a los indicadores de la metodología, siendo éstos.

- a) Metrado de fallas.
- b) Distribución de deterioros.
- c) Condición de pavimento.

3.1.1. Resumen de metrado de fallas

Tabla 21Resumen del metrado de las fallas identificadas mediante VANT

N°	Tipo de fallas	Und. De medida	Nivel de Severidad	Subtotal	%
			L	214.05	96.02%
1	Piel de cocodrilo	m2	M	8.87	3.98%
			Н	0.00	0.00%
			L	270.00	57.96%
2	Exudación de asfalto	m2	M	162.18	34.81%
			H	33.65	7.22%
			L	0.00	0.00%
3	Fisuras en bloque	m2	M	36.17	100.00%
			Н	0.00	0.00%
			L	40.34	25.54%
5	Corrugaciones	m2	M	64.86	41.07%
			Н	52.74	33.39%
			L	34.14	13.03%
7	Fisuras de borde	m	M	206.50	78.80%
			Н	21.42	8.17%
			L	690.97	39.57%
10	Fisuras longitudinales	m	M	745.27	42.68%
	y transversales		Н	310.05	17.75%
			L	0.00	0.00%
11	Parcheo	m2	M	62.39	58.25%
			Н	44.73	41.75%
			L	350.48	28.00%
19	Desprendimiento de	m2	M	450.25	35.97%
	agregados		Н	451.11	36.04%

La Tabla 21 muestra que las fisuras longitudinales y transversales y el desprendimiento de agregados son las más predominantes, con un alto porcentaje en severidad media y alta, destacándose con 745.27 m (42.68%) y 451.11 m² (36.04%), respectivamente. La Piel de Cocodrilo se presenta mayoritariamente en severidad baja con 214.05 m² (96.02%), mientras que las fisuras de borde y el parcheo predominan en severidad media.

3.1.2. Datos generales de unidades de muestra

 Tabla 22

 Fallas identificados en los ortomosaicos de todas las unidades de muestra representativas

N°	TIPO DE FALLAS	UND. DE MEDIDA	SEVERIDAD	UM1	UM20	UM39	UM58	UM77	UM96	UM115	UM134	UM153	UM172	UM191	UM210	UM229	UM248	UM267	SUBTOTAL
			L				34.491	41.145	12.23		29.399								117.26
1	Piel de cocodrilo	m2	М										8.874						8.87
			Н																0.00
	E 1 1/ 1		L	5.736	8.735			6.50											20.97
2	Exudación de asfalto	m2	M						1.571					14.949	31.741				48.26
	asiano		Н																0.00
	r.		L																0.00
3	Fisuras en	m2	M													29.761			29.76
	bloque		Н																0.00
			L									11.261							11.26
5	Corrugaciones	m2	M							39.557			9.746						49.30
	_		Н															52.74	52.74
		m	L														10.246	3.34	13.59
7	Fisuras de borde		M		37.597		17.815	22.883	11.652	4.957								13.088	107.99
			Н															21.42	21.42
	Fisuras		L	37.68	12.84	73.79	10.26			25.91	23.72	12.33	22.50	69.25	47.34	43.80	27.98	23.29	430.69
10	longitudinales y	m	M	39.72	8.79	99.84				53.23	27.68	33.44	56.34	14.10	51.37	45.38	27.98	9.52	467.40
	transversales		Н	12.42											17.95	32.65		15.69	78.70
			L																0.00
11	Parcheo	m2	М	15.16		9.77					12.19								37.12
			Н								35.72								35.72
	D 1		L	21.76		10.19		22.08	20.77			21.58	10.41	12.28	16.58	7.70	5.70	5.38	154.41
19	Desprendimiento	m2	М	5.08	41.71	5.41	35.89	29.95	29.76	20.94			19.64	31.01			5.70		225.10
	de agregados		Н								40.74	21.58			23.60	28.36		61.30	175.58

Nota. La tabla presenta el metrado de cada tipo de falla en las unidades de muestra, clasificado según su nivel de severidad.

La tabla 22 muestra que las fisuras longitudinales y transversales abarcan las áreas más grandes en severidades baja (430.69 m²) y media (467.40 m²). Fisuras de borde y desprendimiento de agregados presentan áreas significativas en severidades media y alta. Las corrugaciones tienen una distribución equilibrada entre todas las severidades, mientras que piel de cocodrilo y parcheo predominan en severidades baja y media. Las exudaciones de asfalto y fisuras en bloque están más presentes en severidades baja y media, sin alta severidad.

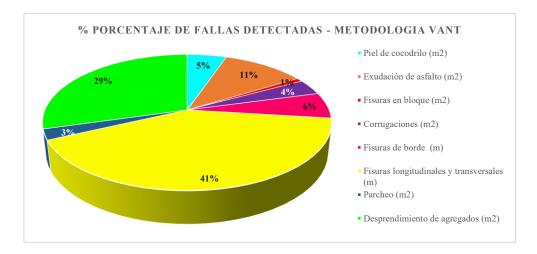
 Tabla 23

 Fallas identificados en los ortomosaicos de todas las unidades de muestra no representativas

N°	TIPO DE FALLAS	UND. DE MEDIDA	NIVEL DE SEVERIDAD	UM4	UM15	UM25	UM34	UM46	UM62	UM70	UM88	UM106	UM162	UM167	UM188	UM204	UM238	UM281	SUBTOTAL
			L						26.47	19.18	6.45	22.84		21.84					96.78
1	Piel de cocodrilo	m2	M																0
			Н																0
	Exudación de		L		19.55				91.98		39.29			61.20			33.43	3.58	249.03
2	asfalto	m2	M				36.06		9.56			0.17	42.82		25.31				113.92
	asiaito		Н															33.65	33.65
	Fisuras en		L																0
3	bloque	m2	M					6.41											6.41
	bioque		Н																0
		m2	L									29.08							29.08
5	Corrugaciones		M							15.56									15.56
			Н																0
		m	L										12.41				8.15		20.56
7	Fisuras de borde		M	21.19							29.827	22.18			25.31				98.51
			Н																0
	Fisuras		L		45.38	26.84	35.80	64.03					8.84				44.55	34.85	260.28
10	longitudinales y	m	M	65.72	52.34	26.84		53.83					14.85			2.73	31.95	29.63	277.87
	transversales		Н	71.88			49.80	38.06									50.33	21.28	231.34
			L																0
11	Parcheo	m2	M				25.27												25.27
			Н				9.00												9.00
	Desprendimiento		L	16.10	11.38			52.64				4.46	40.22	26.392	43.90		0.98		196.06
19	de agregados	m2	M	33.41			4.15	28.98		14.799	10.486	62.76		22.202		21.91	7.14	19.31	225.15
	uc agregados		H		23.22	54.943	3.76		22.827				36.92		37.56	67.20	12.55	16.54	275.53

Nota. La tabla presenta el metrado de cada tipo de falla en las unidades de muestra, clasificado según su nivel de severidad.

La tabla 23 muestra que las fisuras longitudinales y transversales abarcan extensas áreas en severidades baja (260.28 m²), con una notable extensión en alta severidad (231.34 m²). Las exudaciones de asfalto son prominentes en severidades baja (249.03 m²), con menor presencia en alta severidad (33.65 m²). Las corrugaciones y fisuras de borde presentan áreas en severidades baja y media, sin alta severidad. La piel de cocodrilo y fisuras en bloque solo afectan severidades baja y media. El desprendimiento de agregados es significativo en alta severidad (275.53 m²).

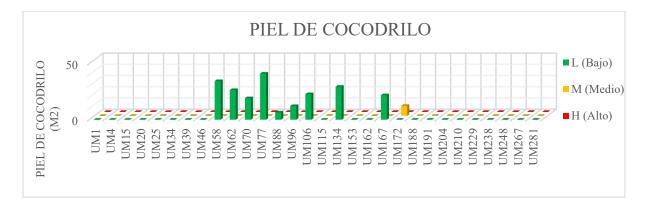

Tabla 24Porcentaje de fallas detectadas – Metodologia VANT

Tipo de fallas	Unidad de medida	Cantidad	% de fallas detectadas – metodología VANT
Piel de cocodrilo	m2	222.92	5.24 %
Exudación de asfalto	m2	465.82	10.96 %
Fisuras en bloque	m2	36.17	0.85 %
Corrugaciones	m2	157.94	3.72 %
Fisuras de borde	m	262.06	6.17 %
Fisuras longitudinales y transversales	m	1746.29	41.09 %
Parcheo	m2	107.12	2.52 %
Desprendimiento de agregados	m2	1251.84	29.45 %
		TOTAL	100.00 %

La tabla 24 muestra que las fisuras longitudinales y transversales representan el mayor daño, con un 41.09 % del total de fallas. El desprendimiento de agregados sigue con un 29.45%. En contraste, las fisuras en bloque muestran el menor daño, con solo un 0.85%.

Figura 37

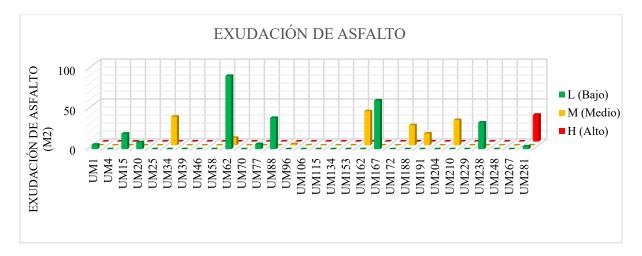
Porcentaje total de fallas detectadas-Metodología VANT


La figura 37 ilustra la distribución fallas detectadas utilizando el dron Phantom 4 RTK, donde las fisuras longitudinales y transversales representan el mayor porcentaje con 41.09%, seguidas por el desprendimiento de agregados con 29.45%.

3.1.3. Distribución de deterioros de la carretera

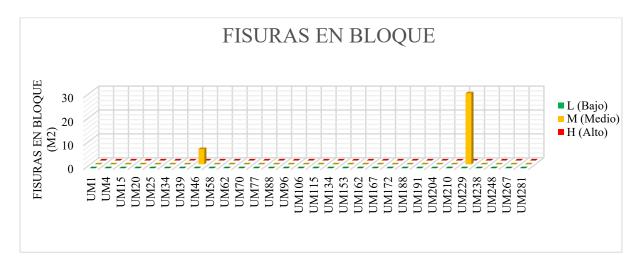
Se presenta la distribución de fallas detectadas en la carretera Jaén – San Ignacio KM 60+000 – KM 70+000 utilizando el dron Phantom 4 RTK a 30 m de altura

Figura 38


Distribución de deterioros en las UM utilizando el método VANT – Piel de Cocodrilo.

La figura 38 muestra que la mayoría de los daños causados por la piel de cocodrilo presentan una severidad baja. El valor más alto se registra en la UM 77, con 41.145 m² afectados, mientras que el valor más bajo se observa en la UM 88, con 6.449 m².

Figura 39


Distribución de deterioros en las UM utilizando el método VANT – Exudación de asfalto

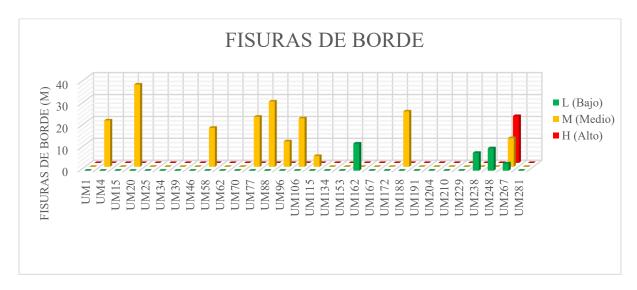
La Figura 39 muestra la distribución del área afectada por exudación de asfalto. La severidad baja es la más común, con la UM62 destacando con 91.98 m². En el nivel medio, la UM162 es la más representativa, con 42.82 m².

Figura 40

Distribución de deterioros en las UM utilizando el método VANT – Fisuras en bloque

La figura 40 muestra que las fisuras en bloque están clasificadas completamente como severidad media. El valor más alto se registra en la UM 229, con 29.76 m² afectados, mientras que el valor más bajo se observa en la UM 46, con 6.41 m².

Figura 41


Distribución de deterioros en las UM utilizando el método VANT – Corrugaciones

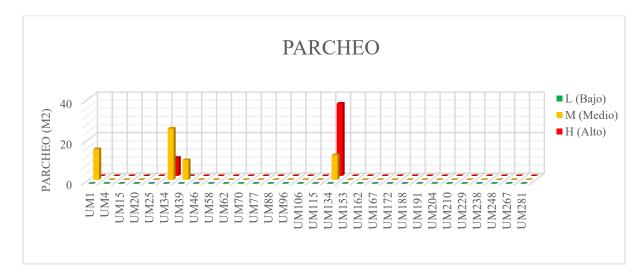
La Figura 41 presenta una distribución balanceada de corrugaciones en tres niveles de severidad. En el nivel bajo, la mayor área corresponde a la UM106, con 29.08 m². En el nivel medio, la UM115 es la más destacada, con un área de 39.56 m². Finalmente, en el nivel alto, la UM267 es la más representativa, con un área de 52.73 m².

Figura 42


Distribución de deterioros en las UM utilizando el método VANT – Fisuras de borde

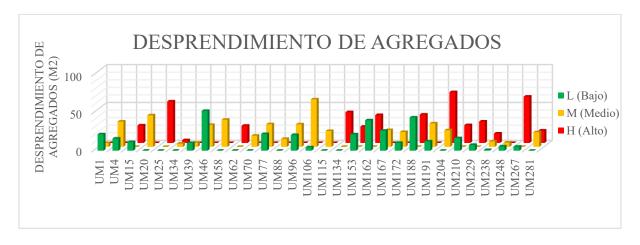
La figura 42 muestra que la mayoría de los daños causados por las fisuras de borde presentan una severidad media. El valor más alto se registra en la UM20, con 37.59 mL afectados, mientras que el valor más bajo se observa en la UM115, con 4.95 mL.

Figura 43


Distribución de deterioros de UM con el método VANT – Fisuras longitudinales

La Figura 43 presenta una distribución balanceada de fisuras longitudinales y transversales en tres niveles de severidad. En el nivel bajo, la mayor área corresponde a la UM39, con 73.78 mL. En el nivel medio, la UM39 es la más destacada, con un área de 99.84 mL. Finalmente, en el nivel alto, la UM4 es la más representativa, con un área de 71.87 mL.

Figura 44


Distribución de deterioros en las UM utilizando el método VANT – Parcheo

La figura 44 muestra que el parcheo tiene una distribución casi equitativa entre severidades media y alta. En el nivel medio, la UM34 es la más destacada, con un área de 25.27 m². Finalmente, en el nivel alto, la UM134 es la más representativa, con un área de 35.72 m².

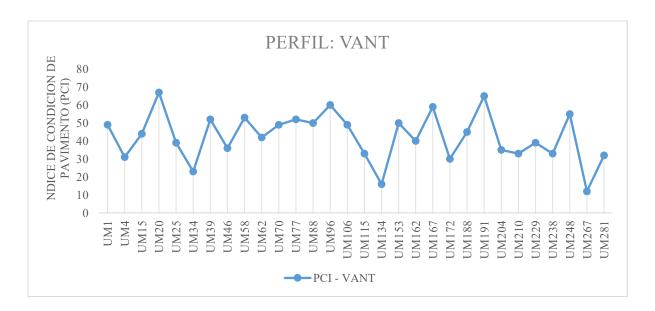
Figura 45

Distribución de deterioros de UM con el método VANT – Desprendimiento de agregados

La Figura 45 muestra una distribución bastante equilibrada del área afectada por desprendimiento de agregados. En el nivel bajo, la mayor área corresponde a la UM46, con 52.63 m². En el nivel medio, la UM106 es la más destacada, con un área de 62.76 m². Finalmente, en el nivel alto, la UM204 es la más representativa, con un área de 67.20 m².

3.1.4. Tabla de resultados mediante el método VANT

Tabla 25Resultados de PCI de las unidades de muestra utilizando el método VANT


N°	Unidades de muestra	Pro. Inicial (Km)	Pro. Final (Km)	Área (m2)	Falla significativa	PCI CON VANT	Clasificación del Pavimento	Simbología (Color)
1	UM1	60 + 000.0	60 + 035.4	230.1	Fisuras longitudinales y transversales	49	Regular	
2	UM4	60 + 106.2	60 + 141.6	230.1	Fisuras longitudinales y transversales	31	Malo	
3	UM15	60 + 495.6	60 + 531.0	230.1	Fisuras longitudinales y transversales	44	Regular	
4	UM20	60 + 672.6	60 + 708.0	230.1	Desprendimiento de agregados	67	Bueno	
5	UM25	60 + 849.6	60 + 885.0	230.1	Desprendimiento de agregados	39	Malo	
6	UM34	61 + 168.2	61 + 203.6	230.1	Fisuras longitudinales y transversales	23	Muy Malo	
7	UM39	61 + 345.2	61 + 380.6	230.1	Fisuras longitudinales y transversales	52	Regular	
8	UM46	61 + 593.0	61 + 628.4	230.1	Fisuras longitudinales y transversales	36	Malo	
9	UM58	62 + 017.8	62 + 053.2	230.1	Desprendimiento de agregados	53	Regular	
10	UM62	62 + 159.4	62 + 194.8	230.1	Exudación de asfalto	42	Regular	
11	UM70	62 + 442.6	62 + 478.0	230.1	Piel de cocodrilo	49	Regular	
12	UM77	62 + 690.4	62 + 725.8	230.1	Desprendimiento de agregados	52	Regular	
13	UM88	63 + 079.8	63 + 115.2	230.1	Exudación de asfalto	50	Regular	
14	UM96	63 + 363.0	63 + 398.4	230.1	Desprendimiento de agregados	60	Bueno	
15	UM106	63 + 717.0	63 + 752.4	230.1	Desprendimiento de agregados	49	Regular	
16	UM115	64 + 035.6	64 + 071.0	230.1	Fisuras longitudinales y transversales	33	Malo	
17	UM134	64 + 708.2	64 + 743.6	230.1	Fisuras longitudinales y transversales	16	Muy Malo	
18	UM153	65 + 380.8	65 + 416.2	230.1	Fisuras longitudinales y transversales	50	Regular	
19	UM162	65 + 699.4	65 + 734.8	230.1	Desprendimiento de agregados	40	Malo	
20	UM167	65 + 876.4	65 + 911.8	230.1	Exudación de asfalto	59	Bueno	
21	UM172	66 + 053.4	66 + 088.8	230.1	Fisuras longitudinales y transversales	34	Malo	
22	UM188	66 + 619.8	66 + 655.2	230.1	Desprendimiento de agregados	45	Regular	
23	UM191	66 + 726.0	66 + 761.4	230.1	Fisuras longitudinales y transversales	65	Bueno	
24	UM204	67 + 186.2	67 + 221.6	230.1	Desprendimiento de agregados	35	Malo	
25	UM210	67 + 398.6	67 + 434.0	230.1	Fisuras longitudinales y transversales	33	Malo	
26	UM229	68 + 071.2	68 + 106.6	230.1	Fisuras longitudinales y transversales	39	Malo	
27	UM238				Fisuras longitudinales y			
		68 + 389.8	68 + 425.2	230.1	transversales Fisuras longitudinales y	33	Malo	
28	UM248	68 + 743.8	68 + 779.2	230.1	transversales Desprendimiento de	55	Regular	
29	UM267	69 + 416.4	69 + 451.8	230.1	agregados	12	Muy Malo	
30	UM281	69 + 912.0	69 + 947.4	230.1	Desprendimiento de agregados	32	Malo	
-					Promedio PCI VANT	43	Regular	

La Tabla 25 proporciona una visión general de las condiciones del pavimento a lo largo del tramo evaluado. Se logró determinar un promedio de Índice de Condición del Pavimento (PCI) de 43, lo que clasifica la mayoría de las unidades de muestra como Regular.

3.1.5. Perfil del PCI mediante metodología VANT

Figura 46

Perfil de los resultados de las unidades de muestra utilizando la metodología VANT.

La figura 46 presenta el perfil de los resultados de las unidades de muestra utilizando la metodología VANT. Este índice refleja el estado del pavimento en cada sección evaluada, con valores que varían entre 12 y 67, indicando el rango de condiciones desde muy malas hasta buena.

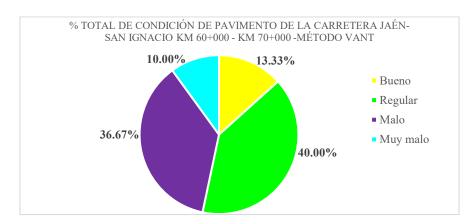
3.1.6. Condición de Pavimento

De acuerdo con Vásquez Velara (2002), es necesario calcular un promedio ponderado para determinar el PCI de toda la vía, si se emplearon unidades de muestreo adicionales y se detectaron fallas puntuales que no debían ser generalizadas, se les asignó un PCI específico o adicional. En este caso, se utiliza un promedio ponderado calculado mediante la fórmula:

$$PCI_S = \frac{[(N-A)xPCI_R] + (AxPCI_A)}{N}$$

Por consiguiente, mediante la metodología VANT se ha obtenido un Índice de condición del pavimento de 44.73, lo que indica que el pavimento flexible de la carretera Jaén – San Ignacio Km 60+000 – Km 70+000, se encuentra en un estado regular.

A continuación, se muestran los porcentajes de cada tipo de condición del pavimento según la metodología VANT.


Tabla 26Porcentaje de Condición de Pavimento mediante el método VANT

RANGO	CLASIFICACIÓN DEL PAVIMENTO	UNIDAD DE MUESTREO	% TOTAL DE PCI
55 - 70	Bueno	4	13.33%
40 - 55	Regular	12	40.00%
25 - 40	Malo	11	36.67%
10 - 25	Muy malo	3	10.00%
		TOTAL	100.00 %

La tabla 26 indica que el 40% de las unidades de muestreo se clasifican como Regular, el 36.67% como Malo, el 13.33% como Bueno, y el 10% como Muy Malo.

Figura 47

Porcentaje de condición del pavimento de la Carretera Jaén-San Ignacio – método VANT.

La figura 47 revela que, de las 30 unidades de muestra evaluadas en la carretera Jaén – San Ignacio, ubicada entre los kilómetros 60+000 y 70+000, solo el 13.33% del pavimento está en buen estado. La mayoría, es decir, el 40.00%, se encuentra en condición regular, mientras que el 36.67% se clasifica como malo y un 10.00% como muy malo.

3.2. Condición superficial del pavimento flexible tramo Jaén – San Ignacio km 60+000 al 70+000 mediante método PCI, Jaén 2024.

Se presenta los resultados de las 30 muestras evaluada en función a los indicadores de la metodología PCI, siendo Metrado de fallas, Distribución de deterioros y Condición.

3.2.1. Resumen de metrado de las fallas superficiales

Tabla 27Resumen del metrado de las fallas superficiales-Método tradicional PCI

N°	Tipo de fallas	Und. De medida	Nivel de Severidad	SUBTOTAL	%
			L	187.05	95.51%
1	Piel de cocodrilo	m2	M	8.80	4.49%
			Н	0.00	0.00%
			L	233.45	47.43%
2	Exudación de asfalto	m2	M	195.75	39.77%
			Н	63.00	12.80%
			L	0.00	0.00%
3	Fisuras en bloque	m2	M	36.20	100.00%
	_		Н	0.00	0.00%
			L	41.05	22.57%
5	Corrugaciones	m2	M	87.70	48.21%
			Н	53.15	29.22%
			L	32.80	13.24%
7	Fisuras de borde	m	M	193.25	78.03%
			Н	21.60	8.72%
	T' 1 '4 1' 1		L	710.50	38.45%
10	Fisuras longitudinales	m	M	825.70	44.69%
	y transversales		Н	311.50	16.86%
			L	0.00	0.00%
11	Parcheo	m2	M	63.80	58.80%
			Н	44.70	41.20%
	D 11 1 1 1		L	311.15	23.92%
19	Desprendimiento de	m2	M	586.10	45.05%
	agregados		Н	403.75	31.03%

La Tabla 27 muestra que las fisuras longitudinales y transversales son predominantes con 825.70 m en severidad media (44.69%). El desprendimiento de agregados también es significativo, con 586.10 m² (45.05%). La piel de cocodrilo se concentra en severidad baja con 187.05 m² (95.51%). Las fisuras en bloque y el parcheo están solo en severidad media, con 36.20 m² y 63.80 m², respectivamente.

3.2.2. Datos generales de fallas en las unidades de muestra

 Tabla 28

 Fallas superficiales identificados en todas las unidades de muestra representativas utilizando el método tradicional PCI

N°	TIPO DE FALLAS	UND. DE MEDIDA	NIVEL DE SEVERIDAD	UM1	UM20	UM39	UM58	UM77	UM96	UM115	UM134	UM153	UM172	UM191	UM210	UM229	UM248	UM267	SUBTOTAL
			L				34.80	41.00	12.10										87.90
1	Piel de cocodrilo	m2	M										8.80						8.80
			Н																0.00
	2 Exudación de		L		9.25			6.30											15.55
2	asfalto	m2	M						1.50					14.25	31.85				47.60
	asiaito		Н								29.30								29.30
	Fisuras en		L																0.00
3	bloque	m2	M													29.70			29.70
	bioque		Н																0.00
			L									11.30							11.30
5	Corrugaciones	m2	M							40.00			9.60						49.60
			H															53.15	53.15
			L																0.00
7	Fisuras de borde	m	M														10.30	3.70	14.00
			Н		38.20		18.20	22.80	12.00	5.00								14.00	110.20
	Fisuras		L															21.60	21.60
10	longitudinales y	m	M	38.30	14.15	75.30	11.00			25.70	28.80	12.20	22.70	72.00	47.85	43.70	28.00	24.70	444.40
	transversales		Н	39.80	11.05	101.40				52.60	28.30	32.50	56.60	14.60	52.15	45.20	84.90	10.20	529.30
			L	12.40											18.00	32.70		15.80	78.90
11	Parcheo	m2	M																0.00
			Н	16.00		10.55					12.50								39.05
	Dogwoodimicato		L								35.70								35.70
19	Desprendimiento de agregados	m2	M	21.70		10.70		22.00	20.80			21.50	11.10	13.50	16.90	7.50	5.80	5.75	157.25
	de agregados	gregados	Н	5.00	43.35	6.15	36.15	29.80	29.70	20.80		21.90	20.00	30.80		28.40	38.10		310.15

La tabla 28 muestra que las Fisuras Longitudinales y Transversales tienen altos valores totales en severidades baja (444.40 m) y media (529.30 m), siendo las más prevalentes. El desprendimiento de agregados también es significativo, especialmente en severidad media (310.15 m) y alta (126.35 m). Las corrugaciones se concentran en severidad alta (53.15m), mientras que las fisuras de borde y el parcheo tienen menos fallas.

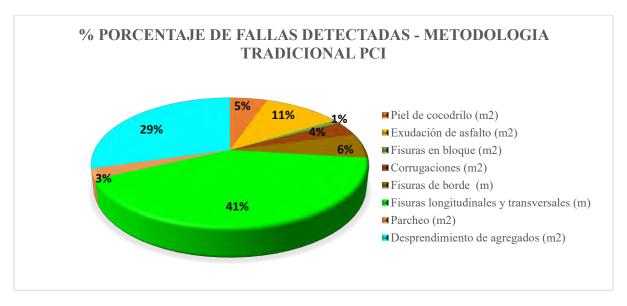
 Tabla 29

 Fallas superficiales identificados en las unidades de muestra no representativas utilizando el método tradicional PCI

N°	TIPO DE FALLAS	UND. DE MEDIDA	NIVEL DE SEVERIDAD	UM4	UM15	UM25	UM34	UM46	UM62	UM70	UM88	UM106	UM162	UM167	UM188	UM204	UM238	UM281	SUBTOTAL
			L						26.50	20.15	6.85	23.20		22.45					99.15
1	Piel de cocodrilo	m2	M																0.00
			Н																0.00
	Exudación de		L		20.25				92.00		39.65			62.30				3.70	217.90
2	asfalto	m2	M			36.00			9.60			0.20	42.8		25.30		34.25		148.15
	asiano		Н															33.70	33.70
	, Fisuras en		L																0.00
3	bloque	m2	M					6.50											6.50
	oroque		Н																0.00
			L									29.75							29.75
5	Corrugaciones	m2	M							16.25	21.85								38.10
			Н																0.00
			L										12.4		6.40				18.80
7	Fisuras de borde	m	M	21.30							30.30	22.60					8.85		83.05
			Н																0.00
	Fisuras		L		46.60	27.70	35.90	64.20					8.4				45.90	35.10	263.80
10	longitudinales y	m	M	65.80	53.20	42.80		53.70					14.9			3.50	32.50	30.00	296.40
	transversales		H	71.90			49.90	38.00									51.30	21.50	232.60
		_	L																0.00
11	1 Parcheo	m2	M				25.40												25.40
			H				9.00												9.00
10	Desprendimiento		L						26.50	20.15	6.85	23.20		22.45					99.15
19	de agregados	m2	M																0.00
	te agregatos		H		1 0 1														0.00

Nota. La tabla presenta el metrado de cada tipo de falla en las unidades de muestra, clasificado según su nivel de severidad.

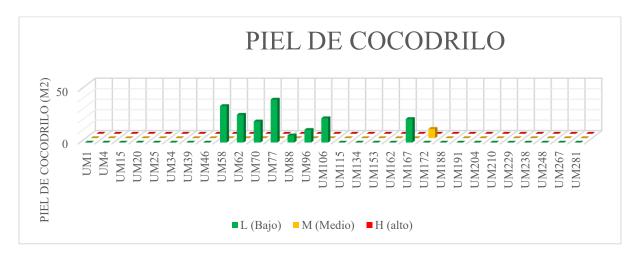
La tabla 29 muestra que las fisuras longitudinales y transversales son predominantes, con altos valores en severidades media (296.40 m). El desprendimiento de agregados también es significativo, especialmente en severidad alta (277.40 m²). Las exudaciones de asfalto tienen mayor incidencia en severidad baja (217.90 m²). La piel de cocodrilo y fisuras en bloque presentan menor severidad y extensión, con 99.15 m² y 6.50 m² respectivamente, en severidad baja y media.


Tabla 30Porcentaje de fallas detectadas en las UM- Metodología tradicional PCI

Tipo de fallas	Und. De medida	Cantidad	Porcentaje de fallas detectadas
Piel de cocodrilo (m2)	m2	195.85	4.44%
Exudación de asfalto (m2)	m2	492.20	11.16%
Fisuras en bloque (m2)	m2	36.20	0.82%
Corrugaciones (m2)	m2	181.90	4.12%
Fisuras de borde (m)	m	247.65	5.61%
Fisuras longitudinales y transversales (m)	m	1847.70	41.89%
Parcheo (m2)	m2	108.50	2.46%
Desprendimiento de agregados (m2)	m2	1301.00	29.49%
		TOTAL	100.00%

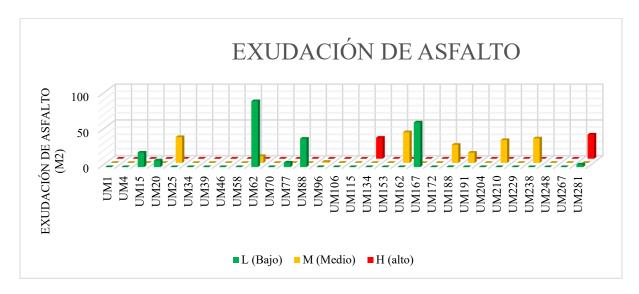
La Tabla 30 indica que la falla más frecuente es fisuras longitudinales y transversales con 1847.70 m. Los Desprendimientos de Agregados es la segunda más común con 1301.00 m². En contraste, las Fisuras en Bloque son las menos detectadas con 36.20 m².

Figura 48


Porcentaje total de fallas detectadas- Metodología tradicional PCI

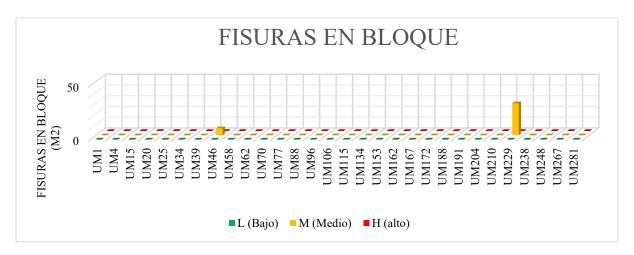
La figura 48 indica que la falla más frecuente es fisuras longitudinales y transversales con (41.00%). La Exudación de Asfalto es la segunda más común con (11.00%). En contraste, las Fisuras en Bloque son las menos detectadas con (1.00%).

Figura 49


Distribución de deterioros en las UM -método tradicional PCI, Piel de Cocodrilo.

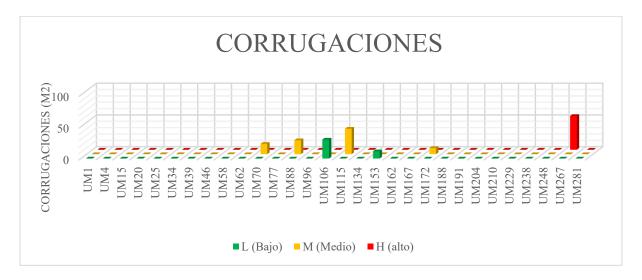
La figura 49 muestra que la mayoría de los daños causados por la piel de cocodrilo presentan una severidad baja. El valor más alto se registra en la UM 77, con 41.00 m² afectados, mientras que el valor más bajo se observa en la UM 88, con 6.85 m².

Figura 50


Distribución de deterioros en las UM – método tradicional PCI, Exudación de asfalto

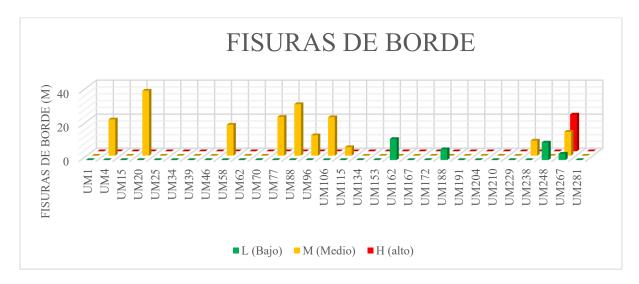
La Figura 50 muestra la distribución del área afectada por exudación de asfalto. La severidad baja es la más común, con la UM62 destacando con 92.00 m². En el nivel medio, la UM162 es la más representativa, con 42.80 m².

Figura 51


Distribución de deterioros en las UM -método tradicional PCI, Fisuras en bloque

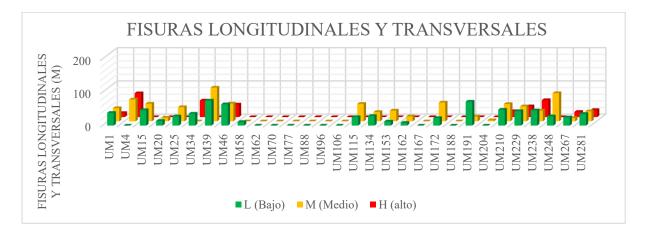
La figura 51 muestra que las fisuras en bloque están clasificadas completamente como severidad media. El valor más alto se registra en la UM 229, con 29.70 m² afectados, mientras que el valor más bajo se observa en la UM 46, con 6.50 m².

Figura 52


Distribución de deterioros en las UM -método tradicional PCI, Corrugaciones

La Figura 52 presenta una distribución balanceada de corrugaciones en tres niveles de severidad. En el nivel bajo, la mayor área corresponde a la UM106, con 29.75 m². En el nivel medio, la UM115 es la más destacada, con un área de 40.00 m². Finalmente, en el nivel alto, la UM267 es la más representativa, con un área de 53.15 m².

Figura 53


Distribución de deterioros en las UM -método tradicional PCI, Fisuras de borde

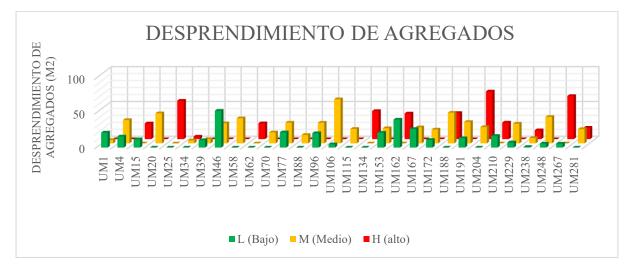
La figura 53 muestra que la mayoría de los daños causados por las fisuras de borde presentan una severidad media. El valor más alto se registra en la UM20, con 38.20 mL afectados, mientras que el valor más bajo se observa en la UM115, con 5.00 mL.

Figura 54


Distribución de deterioros en las UM -método tradicional PCI, Fisuras longitudinales

La Figura 54 presenta una distribución balanceada de fisuras longitudinales y transversales en tres niveles de severidad. En el nivel bajo, la mayor área corresponde a la UM39, con 75.30 mL. En el nivel medio, la UM39 es la más destacada, con un área de 101.40 mL. Finalmente, en el nivel alto, la UM4 es la más representativa, con un área de 71.90 mL.

Figura 55


Distribución de deterioros en las UM -método tradicional PCI, Parcheo

La figura 55 muestra que el parcheo tiene una distribución casi equitativa entre severidades media y alta. En el nivel medio, la UM34 es la más destacada, con un área de 25.40 m². Finalmente, en el nivel alto, la UM134 es la más representativa, con un área de 35.70 m².

Figura 56

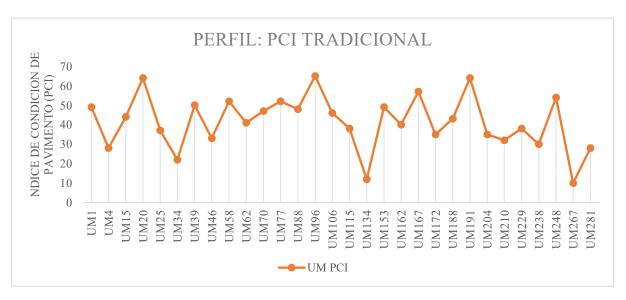
Distribución de deterioros en las UM -método tradicional PCI, Desprendimiento de agregados

La Figura 56 muestra una distribución bastante equilibrada del área afectada por desprendimiento de agregados. En el nivel bajo, la mayor área corresponde a la UM46, con 53.00 m². En el nivel medio, la UM106 es la más destacada, con un área de 63.45 m². Finalmente, en el nivel alto, la UM204 es la más representativa, con un área de 68.65 m².

3.2.3. Tabla de resultados de PCI de las unidades de muestra

Tabla 31Índice de Condición de cada Unidad de Muestra utilizando el método PCI

N°	Unidades de muestra	Pro. Inicial (Km)	Pro. Final (Km)	Área (m2)	Falla significativa	PCI Tradicional	Clasificación del Pavimento	Simbología (Color)
1	UM1	60 + 000.0	60 + 035.4	230.1	Fisuras longitudinales y transversales	49	Regular	
2	UM4	60 + 106.2	60 + 141.6	230.1	Fisuras longitudinales y transversales	28	Malo	
3	UM15	60 + 495.6	60 + 531.0	230.1	Fisuras longitudinales y transversales	44	Regular	
4	UM20	60 + 672.6	60 + 708.0	230.1	Desprendimiento de agregados	64	Bueno	
5	UM25	60 + 849.6	60 + 885.0	230.1	Fisuras longitudinales y transversales	37	Malo	
6	UM34	61 + 168.2	61 + 203.6	230.1	Fisuras longitudinales y transversales	22	Muy malo	
7	UM39	61 + 345.2	61 + 380.6	230.1	Fisuras longitudinales y transversales	50	Regular	
8	UM46	61 + 593.0	61 + 628.4	230.1	Fisuras longitudinales y transversales	33	Malo	
9	UM58	62 + 017.8	62 + 053.2	230.1	Piel de cocodrilo	52	Regular	
10	UM62	62 + 159.4	62 + 194.8	230.1	Exudación de asfalto	41	Regular	
11	UM70	62 + 442.6	62 + 478.0	230.1	Piel de cocodrilo	47	Regular	
12	UM77	62 + 690.4	62 + 725.8	230.1	Desprendimiento de agregados	52	Regular	
13	UM88	63 + 079.8	63 + 115.2	230.1	Exudación de asfalto	48	Regular	
14	UM96	63 + 363.0	63 + 398.4	230.1	Desprendimiento de agregados	65	Bueno	
15	UM106	63 + 717.0	63 + 752.4	230.1	Desprendimiento de agregados	46	Regular	
16	UM115	64 + 035.6	64 + 071.0	230.1	Fisuras longitudinales y transversales	38	Malo	
17	UM134	64 + 708.2	64 + 743.6	230.1	Fisuras longitudinales y transversales	12	Muy malo	
18	UM153	65 + 380.8	65 + 416.2	230.1	Fisuras longitudinales y transversales	49	Regular	
19	UM162	65 + 699.4	65 + 734.8	230.1	Desprendimiento de agregados	40	Malo	
20	UM167	65 + 876.4	65 + 911.8	230.1	Exudación de asfalto	57	Bueno	
21	UM172	66 + 053.4	66 + 088.8	230.1	Fisuras longitudinales y transversales	35	Malo	
22	UM188	66 + 619.8	66 + 655.2	230.1	Desprendimiento de agregados	43	Regular	
23	UM191	66 + 726.0	66 + 761.4	230.1	Fisuras longitudinales y transversales	64	Bueno	
24	UM204	67 + 186.2	67 + 221.6	230.1	Desprendimiento de agregados	35	Malo	
25	UM210	67 + 398.6	67 + 434.0	230.1	Fisuras longitudinales y transversales	32	Malo	
26	UM229	68 + 071.2	68 + 106.6	230.1	Fisuras longitudinales y transversales	38	Malo	
27	UM238				Fisuras longitudinales y	20	M	
28	UM248	68 + 389.8 68 + 743.8	68 + 425.2 68 + 779.2	230.1 230.1	transversales Fisuras longitudinales y transversales	30 54	Malo Regular	
29	UM267				Desprendimiento de	10	Muy malo	
		69 + 416.4	69 + 451.8	230.1	agregados Fisuras longitudinales y	10	wing maio	
30	UM281	69 + 912.0	69 + 947.4	230.1	transversales	28	Malo	
					PROMEDIO PCI	41	REGULAR	


La Tabla 31 muestra que las fisuras longitudinales y transversales son la falla más común, resultando en un promedio **PCI de 41** y clasificación **regular**.

3.2.4. Perfil del PCI de la carretera

A continuación, se presenta el perfil del índice de condición del pavimento para las 30 unidades de muestra de la carretera en estudio, utilizando el método tradicional del PCI.

Figura 57

Perfil de los resultados de las unidades de muestra utilizando el método tradicional PCI

La figura 57 presenta el perfil de los resultados de las unidades de muestra utilizando el método tradicional PCI. Este índice refleja el estado del pavimento en cada sección evaluada, con valores que varían entre 12 y 65, indicando el rango de condiciones desde muy malas hasta buena.

3.2.5. Condición del pavimento mediante el método tradicional PCI

De acuerdo con Vásquez Velara (2002), si se emplearon unidades de muestreo adicionales y se detectaron fallas puntuales que no debían ser generalizadas, se les asignó un PCI específico o adicional. En este caso, se utiliza un promedio ponderado calculado mediante la fórmula adecuada.

$$PCI_S = \frac{[(N-A)xPCI_R] + (AxPCI_A)}{N}$$

Por consiguiente, se obtuvo un **Índice de condición del pavimento de 43.21**, lo que indicó que el pavimento flexible de la carretera Jaén – San Ignacio Km 60+000 – Km 70+000, se encontraba en un **estado regular**.

Seguidamente, se presentan los porcentajes que muestran las diferentes condiciones del pavimento a lo largo de la carretera Jaén – San Ignacio Km 60+000 – Km 70+000.

Tabla 32

Porcentaje que indica el estado del pavimento de la Carretera Jaén-San Ignacio km 60+000

– km 70+000, evaluado mediante el método PCI.

CONDICIÓN DEL PAVIMENTO	UNIDAD DE MUESTREO	% TOTAL DE PCI
Bueno	4	13.33%
Regular	12	40.00%
Malo	11	36.67%
Muy malo	3	10.00%

La tabla 32 indica que la evaluación de las 30 unidades de muestra de la carretera Jaén – San Ignacio km 60+000 – km 70+000, se encuentra en su mayoría en condición regular (40.00%) y mala (36.67%). Solo un 13.33% del pavimento está en buen estado, mientras que el 10.00% está en estado muy malo.

No se registraron tramos en estado excelente, muy bueno o fallado. Esto sugiere que una gran parte del pavimento requiere rehabilitación y mantenimiento

3.3. Comparar el tiempo y precisión de los datos recopilados por el VANT en la detección de la condición del pavimento, contrastándola con los resultados obtenidos mediante el método PCI.

3.3.1. Comparación de tiempo entre la metodología VANT y PCI

Al comparar el tiempo de los datos recopilados por el VANT en la detección de la condición del pavimento con los resultados obtenidos mediante el método tradicional PCI, se obtuvieron diferencias significativas (Ver anexo 7).

El siguiente cuadro indica el tiempo y la cantidad de personal que se requirió para recolectar datos en campo.

 Tabla 33

 Procesamiento de datos recolectados en campo

Tipo de evaluación	Cant. de personal (H)	Días	Cant. (h/día)	Cant. Horas (H)	Cant. Horas Hombre (HH)	Cantidad UM	Ratio
PCI usando Dron	2	1			10	20	0.4
DJI Phantom 4 RTK	2	1	6	6	12	30	0.4
PCI convencional	4	6	7	42	168	30	5.60

La Tabla 33 muestra las horas-hombre empleadas en la recolección de datos en campo.

El VANT requirió 12 horas-hombre, mientras que la metodología tradicional necesitó 168 horas-hombre. Esto resultó en un ratio de 0.4 para el VANT y de 5.60 para la metodología tradicional.

En el siguiente cuadro se detalla el tiempo requerido para procesar los datos en gabinete.

 Tabla 34

 Procesamiento de datos recolectados en gabinete

Tipo de evaluación	Cant. de personal	Días	Cant. (h/día)	Cant. Horas (H)	Cant. Horas Hombre (HH)	Cantidad UM	Ratio
PCI usando Dron							
DJI Phantom 4 RTK	2	6	7	42	84	30	2.80
V2.0							
PCI convencional	2	4	7	28	56	30	1.87

La Tabla 34 muestra que la recolección de datos en gabinete requirió 84 horas-hombre para el VANT (Vehículo Aéreo No Tripulado) y 56 horas-hombre para la metodología

tradicional, resultando en ratios de eficiencia de 2.87 para el VANT y 1.87 para la metodología tradicional.

Tabla 35

Total de horas hombre usadas para las metodologías VANT y PCI.

Tipo de evaluación		ras Hombre IH)	Total (HH)	Cantidad	Ratio
	Campo	Gabinete	, ,	UM	
PCI usando Dron Phantom 4 RTK V2.0	12	84	96	30	3.20
PCI convencional	168	56	224	30	7.47

La Tabla 35 muestra el total de horas-hombre utilizadas en ambas metodologías, 96 horas-hombre para el VANT y 224 horas-hombre para la metodología tradicional, con ratios de 3.20 para el VANT y 7.47 para el PCI tradicional.

Tabla 36Rendimiento en horas-hombre para cada metodología

Tipo de evaluación	Área de muestra (m2)	Cantidad de muestras	Total (m2)	Total, de trabajo campo y gabinete (HH)	Rendimiento	Relación HH, DRON Y PCI Convencional	Reducción tiempo del Dron en HH	
PCI usando Dron		•		96	0.014 hh/m2	4.207		
PCI convencional	230	30	6900	224	0.032 hh/m2	43%	57%	

La Tabla 36 muestra la eficiencia de cada método de inspección al calcular el tiempo requerido por metro cuadrado, revelando que el uso del dron DJI Phantom 4 RTK reduce los tiempos de inspección en un 57% HH en comparación con el método tradicional PCI.

3.3.2. Comparación de precisión entre la metodología VANT y PCI

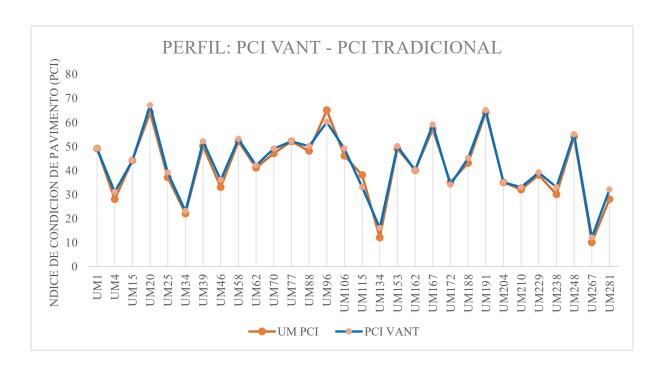
En la siguiente tabla se presentan los datos obtenidos mediante el Método tradicional PCI y el uso de un dron, los cuales se comparan para calcular el valor absoluto de la diferencia del PCI. (Ver Anexo 7).

Tabla 37Diferencia de valor absoluto del PCI entre el método tradicional PCI y método VANT

UM	Área (m2)	Progr	resiva	Mé	etodo usando Dron		Método PCI onvencional	Diferencia en valor
	(1112)	Inicial	Final	PCI	Clasificación	PCI	Clasificación	absoluto
1	230.1	60 + 000.0	60 + 035.4	49	Regular	49	Regular	0
2	230.1	60 + 106.2	60 + 141.6	31	Malo	28	Malo	3
3	230.1	60 + 495.6	60 + 531.0	44	Regular	44	Regular	0
4	230.1	60 + 672.6	60 + 708.0	67	Bueno	64	Bueno	3
5	230.1	60 + 849.6	60 + 885.0	39	Malo	37	Malo	2
6	230.1	61 + 168.2	61 + 203.6	23	Muy Malo	22	Muy malo	1
7	230.1	61 + 345.2	61 + 380.6	52	Regular	50	Regular	2
8	230.1	61 + 593.0	61 + 628.4	36	Malo	33	Malo	3
9	230.1	62 + 017.8	62 + 053.2	53	Regular	52	Regular	1
10	230.1	62 + 159.4	62 + 194.8	42	Regular	41	Regular	1
11	230.1	62 + 442.6	62 + 478.0	49	Regular	47	Regular	2
12	230.1	62 + 690.4	62 + 725.8	52	Regular	52	Regular	0
13	230.1	63 + 079.8	63 + 115.2	50	Regular	48	Regular	2
14	230.1	63 + 363.0	63 + 398.4	60	Bueno	65	Bueno	5
15	230.1	63 + 717.0	63 + 752.4	49	Regular	46	Regular	3
16	230.1	64 + 035.6	64 + 071.0	33	Malo	38	Malo	5
17	230.1	64 + 708.2	64 + 743.6	16	Muy Malo	12	Muy malo	4
18	230.1	65 + 380.8	65 + 416.2	50	Regular	49	Regular	1
19	230.1	65 + 699.4	65 + 734.8	40	Malo	40	Malo	0
20	230.1	65 + 876.4	65 + 911.8	59	Bueno	57	Bueno	2
21	230.1	66 + 053.4	66 + 088.8	34	Malo	35	Malo	1
22	230.1	66 + 619.8	66 + 655.2	45	Regular	43	Regular	2
23	230.1	66 + 726.0	66 + 761.4	65	Bueno	64	Bueno	1
24	230.1	67 + 186.2	67 + 221.6	35	Malo	35	Malo	0
25	230.1	67 + 398.6	67 + 434.0	33	Malo	32	Malo	1
26	230.1	68 + 071.2	68 + 106.6	39	Malo	38	Malo	1
27	230.1	68 + 389.8	68 + 425.2	33	Malo	30	Malo	3
28	230.1	68 + 743.8	68 + 779.2	55	Regular	54	Regular	1
29	230.1	69 + 416.4	69 + 451.8	12	Muy Malo	10	Muy malo	2
30	230.1	69 + 912.0	69 + 947.4	32	Malo	28	Malo	4

La Tabla 37 presenta los resultados de la evaluación de la condición de cada tramo seleccionado, junto con su clasificación correspondiente. Además, muestra la diferencia en valor absoluto entre las distintas metodologías, destacando que los valores más altos de diferencia son 5, 4 y 3.

 Tabla 38


 Clasificación de la condición superficial por el método tradicional PCI y método VANT

Tipo de evaluación	Valor PCI	Clasificación
Método tradicional PCI	41	Regular
Método VANT	43	Regular

La Tabla 38 presenta la clasificación de la condición superficial del pavimento. Según el método tradicional PCI, se obtuvo un valor de 41, lo que indica una condición regular. Por otro lado, el método VANT arroja un valor de 43, también indicando una condición regular.

Figura 58

Comparación de los valores de PCI en cada unidad de muestra

En el software IBM SPSS Statistics 21, se generó el siguiente cuadro a partir de la prueba de muestras relacionadas.

Figura 59

Prueba de muestras relacionadas en el software SPSS

El p-valor obtenido de significancia fue de 0.060, lo cual es superior al nivel de significancia establecido de $\alpha=0.05$ (p-valor = $0.060>\alpha=0.05$). Esto indica que no hay una diferencia significativa entre las medidas de los dos métodos. Confirmando que la metodología VANT presenta datos precisos.

3.4. Zonas de riesgo del pavimento flexible tramo Jaén - San Ignacio km 60+000 al 70+000 a partir de los datos recopilados del vehículo aéreo no tripulado

3.4.1. Identificación de peligros

Con base en las condiciones físicas naturales encontradas en la zona, los peligros identificados que afectan el lugar de investigación se sintetizan en la tabla 39.

Tabla 39Peligros detectados en el tramo de estudio

TIPO DE FENÓMENO	PELIGROS PRESENTE EN TALUDES		
Fenómenos de geodinámica externa	Deslizamientos de tierra, rocas, erosión		
Fenómenos Meteorológicos	Desborde de ríos y quebradas		

3.4.1.1. Niveles de peligro

Se calcularon los pesos ponderados de los parámetros relacionados con las pendientes del terreno, las unidades geológicas, las unidades geomorfológicas, la precipitación y la saturación del suelo, en función de los efectos de deslizamientos y las caídas de rocas a lo largo

del tramo en estudio, tal como se muestra en el anexo 8. Con los valores obtenidos, se establecieron escalas de niveles de peligrosidad, las cuales se detallan en la tabla 40.

Tabla 40Niveles de peligrosidad

NIVEL DE PELIGRO	DESCRIPCIÓN		RANGO		
Peligro Muy Alto	Predomina: Saturación del suelo "Altamente Saturado", con pendientes [30°-50°> y pendientes mayores que 50°, unidad geomorfológica RMC-ri: Relieve colinado en rocas intrusivas y RMC-rv: Relieve colinado en rocas volcánicas, unidad geológica NM-be: Formación bellavista, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P<= 19.1 mm"	0.263	≤ P <	0.473	
Peligro Alto	Predomina: Saturación del suelo "Muy húmedo", con pendientes [15°-30°>, unidad geomorfológica SCA-rs: Altiplanicie aluvial en rocas sedimentarias, unidad geológica Qp-fa: Depósitos Fluvioaluviales, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P< = 19.1 mm"	0.143	≤ P <	0.263	
Peligro Medio	Predomina: Saturación del suelo "Húmedo", con pendientes [5°-15°>, unidad geomorfológica T: Terrazas aluviales, unidad geológica Qp-ta: Formación Tamborapa, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P<= 19.1 mm"	0.077	≤ P <	0.143	
Peligro Bajo	Predomina: Saturación del suelo "[0% - 25%>: Seco"] y [25% - 50%>: Húmedo]", con pendientes menores que 5°, unidad geomorfológica Lli: Llanura y Ab: Abanico de piedemonte, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P< = 19.1 mm"	0.043	≤ P <	0.077	

Nota. Adaptado de CENEPRED (2014)

De manera particular, al estudiar los fenómenos naturales que ocurren dentro del ámbito del proyecto, se puede destacar lo siguiente:

- Según las pendientes del terreno, la geomorfología y la geología, el peligro de deslizamientos y caídas de rocas se clasifica como "Muy alto" y "Alto".
- Las zonas con mayor peligro potencial y volumen de material susceptible de contribuir a un deslizamiento se encuentran entre las progresivas: Km 61+918.56 al 61+928.98, Km 67+671.22 al 67+800.54, Km 67+899.85 al 68+038.19, Km 69+586.66 al 69+628.91, Km 61+867.62 al 62+070.89, Km 66+802.40 al 66+920.71 y Km 69+572.65 al 69+661.97., lo cual se aprecia en el mapa del anexo 12.

3.4.2. Identificación de vulnerabilidades

La vulnerabilidad fue evaluada considerando tres aspectos clave: exposición, fragilidad y resiliencia, utilizando el método PAJ para calcular el peso relativo de cada parámetro. Con base en los datos obtenidos y los cálculos detallados en el anexo 8, se elaboró la matriz de valoración de vulnerabilidad, que se presenta en la tabla 41.

Tabla 41Niveles de vulnerabilidad

NIVEL DE VULNERABILIDAD	DESCRIPCION		RANGO		
	Exposición: Ubicación en zona de alta pendiente y taludes inestables. Alta frecuencia de lluvias intensas y sismos. Infraestructuras cercanas a taludes sin medidas de protección. Población altamente expuesta a desastres. Fragilidad: Infraestructuras mal construidas y sin mantenimiento				
Muy Alta	adecuado. Uso agrícola o urbanización intensiva en áreas inestables. Poca o nula gestión del riesgo.	0.265	≤ v <	0.481	
	Resiliencia: Baja capacidad de respuesta ante emergencias. Escasos recursos para la recuperación y la reconstrucción. Poca o nula preparación en la comunidad. No existe un plan de mitigación.				
	Exposición: Zonas de pendiente moderada a alta, con riesgo de deslizamientos frecuentes debido a lluvias intensas o actividad sísmica. Carreteras y caminos de acceso en riesgo.				
Alta	Fragilidad: Población en riesgo, debido a la falta de planificación en el uso de la tierra y taludes inestables. Infraestructura de transporte y servicios limitados, con protección insuficiente contra desastres.	0.140	≤ v <	0.265	
	Resiliencia: Existen algunos planes de respuesta, pero son insuficientes. Algunas medidas de protección (barreras o muros de contención), pero con recursos limitados para la respuesta ante desastres.				
	Exposición: Áreas con pendiente moderada y algunos taludes estables. Los deslizamientos son menos frecuentes y se producen principalmente por lluvias extremas o actividad				
Media	Fragilidad: Población rural dispersa y viviendas construidas en zonas de riesgo moderado. Algunas infraestructuras agrícolas o rurales no están protegidas adecuadamente, pero los asentamientos son menos densos.	0.073	≤ v <	0.140	
	Resiliencia: Planes básicos de respuesta a desastres, pero con capacidades limitadas. La comunidad tiene algún nivel de preparación en términos de evacuación y medidas preventivas, como drenajes o barreras en algunos puntos críticos.				
Baja	Exposición: Zonas rurales de baja pendiente con terreno estable. Deslizamientos muy poco frecuentes. Las vías de acceso son seguras y las precipitaciones no generan grandes riesgos.				
	Fragilidad: Poca densidad poblacional y viviendas dispersas en terrenos seguros. Las viviendas son generalmente más resistentes y los servicios básicos están disponibles.	0.041	≤ v <	0.073	
	Resiliencia: La comunidad tiene capacidad para enfrentar desastres, acceso a servicios básicos y viviendas de buena calidad. La infraestructura rural está mantenida y con planes de contingencia en caso de desastres.				

Nota. Adaptado de CENEPRED (2014)

3.4.3. Identificación de riesgos

Se identificaron los peligros a los que está expuesta el área geográfica en estudio y se evaluó el nivel de susceptibilidad al deslizamiento, considerando los factores que influyen en la vulnerabilidad. Con esta información, se procedió a integrar los distintos elementos para determinar el nivel de riesgo en la zona analizada, tal como se presenta en el anexo 8. Para este análisis, se utilizó la tabla 42, que muestra la escala de los posibles niveles de riesgo.

Tabla 42 *Niveles de riesgo*

NIVEL DE RIESGO	DESCRIPCIÓN		RANGO		
Muy Alto	Predomina: Saturación del suelo "Altamente Saturado", con pendientes [30°-50°> y pendientes mayores que 50°, unidad geomorfológica RMC-ri: Relieve colinado en rocas intrusivas y RMC-rv: Relieve colinado en rocas volcánicas, unidad geológica NM-be: Formación bellavista, con escenario crítico factor+C6:C8 desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P<= 19.1 mm" Fragilidad: Infraestructuras mal construidas y sin mantenimiento adecuado. Uso agrícola o urbanización intensiva en áreas inestables. Poca o nula gestión del riesgo. Resiliencia: Baja capacidad de respuesta ante emergencias. Escasos recursos para la recuperación y la reconstrucción. Poca o nula preparación en la comunidad. No existe un plan de mitigación.	0.077	≤ R <	0.228	
Alto	Predomina: Saturación del suelo "Muy húmedo", con pendientes [15°-30°>, unidad geomorfológica SCA-rs: Altiplanicie aluvial en rocas sedimentarias, unidad geológica Qp-fa: Depósitos Fluvioaluviales, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P< = 19.1 mm" Fragilidad: Población en riesgo, debido a la falta de planificación en el uso de la tierra y taludes inestables. Infraestructura de transporte y servicios limitados, con protección insuficiente contra desastres. Resiliencia: Existen algunos planes de respuesta, pero son insuficientes. Algunas medidas de protección (barreras o muros de contención), pero con recursos limitados para la respuesta ante desastres.	0.020	≤ R <	0.077	
Medio	Predomina: Saturación del suelo "Húmedo", con pendientes [5°-15°>, unidad geomorfológica T: Terrazas aluviales, unidad geológica Qp-ta: Formación Tamborapa, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P<= 19.1 mm" Fragilidad: Población rural dispersa y viviendas construidas en zonas de riesgo	0.006	≤R <	0.020	

NIVEL DE RIESGO	DESCRIPCIÓN		RANGO		
	Predomina: Saturación del suelo "[0% - 25%>: Seco"] y [25% - 50%>: Húmedo]", con pendientes menores que 5°, unidad geomorfológica Lli: Llanura y Ab: Abanico de piedemonte, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P<= 19.1 mm"				
Bajo	Fragilidad: Poca densidad poblacional y viviendas dispersas en terrenos seguros. Las viviendas son generalmente más resistentes y los servicios básicos están disponibles.	0.002	≤ R <	0.006	
	Resiliencia: La comunidad tiene capacidad para enfrentar desastres, acceso a servicios básicos y viviendas de buena calidad. La infraestructura rural está mantenida y con planes de contingencia en caso de desastres naturales.				

Nota. Adaptado de CENEPRED (2014)

La Tabla 42 presenta rangos específicos de riesgo, donde el nivel más bajo se encuentra entre 0.002 y 0.006, mientras que el nivel más alto oscila entre 0.077 y 0.228. Esto permite una cuantificación precisa del riesgo en la zona evaluada.

A partir de los datos procesados en el programa ArcGIS 10.5, se generó el mapa de riesgo que muestra los cuatro niveles de riesgo. Los resultados indican que:

- Se identificaron cuatro zonas con riesgo muy alto, caracterizadas por un mayor riesgo potencial y un volumen significativo de material susceptible de contribuir a un deslizamiento. Estas zonas se localizan entre las siguientes progresivas: (Km 61+918.56 Km 61+928.98), (Km 67+671.22 Km 67+800.54), (Km 67+899.85 Km 68+038.19) y (Km 69+586.66 Km 69+628.91), con rangos de riesgo que varían entre 0.070 y 0.228.
- Se identificaron tres zonas con riesgo alto, donde el volumen de material susceptible de contribuir a un deslizamiento presenta un riesgo potencial significativo. Estas zonas se ubican entre las siguientes progresivas: (Km 61+867.62 Km 62+070.89), (Km 66+802.40 Km 66+920.71) y (Km 69+572.65 Km 69+661.97). Los rangos de riesgo en estas áreas varían entre 0.020 y 0.070, como se detalla en el mapa del anexo 12.

IV. DISCUSIÓN

Según los aportes de esta investigación, las fallas más comunes en la vía evaluada mediante la metodología VANT son las fisuras longitudinales y transversales (41.09%), seguidas del desprendimiento de agregados (29.45%), y las menos frecuentes, las fisuras en bloque (0.85%) y el parcheo (2.52%), el PCI promedio obtenido fue de 43, indicando un estado regular del pavimento. Se confirma la hipótesis planteada, ya que el uso del vehículo aéreo no tripulado permitió clasificar el pavimento como regular. Los hallazgos coinciden con los de Quispe (2021), quien evaluó 33 Unidades de Muestra en la Av. Miraflores, Comas, obteniendo un PCI de 50 y un 48% de grietas longitudinales y transversales, y con Paredes (2022), quien, al evaluar 20 muestras en la Carretera Saramiriza reportó un PCI de 46 y un 10.28% de fisuras longitudinales y transversales, ambos en condición regular. Estas similitudes se deben al uso del dron Phantom a 30 m de altura y el software de procesamiento. Sin embargo, nuestros resultados difieren de los de Ventura (2020), quien utilizó un dron DJI Mavic 2Pro a 27 m de altura en la Circunvalación Este, Huanta, y reportó como falla predominante la piel de cocodrilo 42.8% y un PCI de 23, lo que indica una condición pobre del pavimento. Estas diferencias se deben a las características del pavimento, el tipo de dron, la altura de vuelo y las condiciones específicas de cada estudio, como lo sugiere Malek (2023), ya que estos factores afectan la resolución de las imágenes y la precisión en la detección de fallas.

Según los hallazgos de esta investigación, las fallas más comunes en el pavimento flexible evaluado en 30 unidades muestrales del tramo km 60+000 al km 70+000 de la carretera Jaén - San Ignacio utilizando la metodología tradicional PCI, son las fisuras longitudinales y transversales, que afectan 1847.70 m (41.89%), seguidas por los desprendimientos de agregados, que abarcan 1301.00 m² (29.49%); además, el estado del pavimento se distribuye en 40.00% en estado regular, 36.67% en malo, 13.33% en bueno y 10.00% en muy malo, con un PCI promedio de 43, indicando un estado regular. Estos daños pueden atribuirse a las

condiciones climáticas adversas y un proceso constructivo deficiente. Comparando estos hallazgos difieren con lo investigado por Paliza (2022), quien evaluó un tramo de 32.36 km en la carretera 28G (Cusco – Pisac) y reportó fisuras longitudinales y transversales en el 11.94% de la superficie y desprendimientos de agregados en el 10.45%, con un PCI de 45.80 en estado regular. Asimismo, Cubas (2021) evaluó 18 muestras en la Av. Los Conquistadores, San Isidro, reportando un 36.7% de piel de cocodrilo y un PCI promedio de 59 de estado bueno. A su vez con Campos y Núñez (2021), que analizaron 887.5 m de la Av. Pacasmayo –Callao, obteniendo un PCI de 45 que refleja un estado regular. Las discrepancias con este estudio se deben a las diferencias funcionales entre las vías, ya que la primera es una carretera rural y las otras son avenidas urbanas, lo que, junto a la antigüedad del pavimento y a las variaciones climáticas, explica las diferencias en los resultados.

La evaluación realizada con el dron reveló que el levantamiento de 10 km se completó en 6 horas con 1 piloto y 1 ayudante, seguido de 42 horas para el procesamiento de datos. En comparación, el método tradicional necesitaba 42 horas con 4 operarios para la toma de muestras y 28 horas para procesar los resultados. Como consecuencia, el uso del VANT redujo el tiempo de inspección en un 57%HH. Estos hallazgos difieren con los de Cubas (2021) quien reportó que el vuelo para evaluar 678 m tomó 18.40 min con 1 persona, mientras que el método PCI convencional requirió 14 h con 3 personas para evaluar 18 unidades de muestra. De manera similar, Paredes y Torres (2022) realizaron un levantamiento de 3 km en 1 h y 18 min con 1 piloto, mientras que el procesamiento de los resultados tomó 48 h, en contraste con el método PCI convencional, que requirió 8 días con 3 operarios y 1 día adicional para procesar los resultados. Estas diferencias se deben a que el tiempo de vuelo con el dron está influenciado por las condiciones geométricas de la vía y la cantidad de tramo a evaluar. En cuanto a la precisión, el PCI promedio fue de 41 con el método tradicional y de 43 con el dron Phantom 4 RTK, obteniendo una precisión aproximada del 95% de la metodología VANT respecto a la

tradicional. Asimismo, los resultados son consistentes con los reportados por Fernández et al. (2021) quienes obtuvieron un 94.4% de similitud con el uso de drones y con Quispe (2020) quien obtuvo un 95% de confiabilidad con el uso del dron DJI Phantom 4 Pro. Se corrobora que las similitudes con este estudio se deben a que se evaluó la precisión de los datos de ambos pavimentos flexibles utilizando la misma metodología de prueba de hipótesis y el programa IBM SPSS Statistics.

Según los hallazgos de esta investigación, basándonos en el ortomosaico obtenido mediante dron y utilizando los rangos de ponderación del Proceso de Análisis Jerárquico (PAJ), se identificaron 4 zonas de riesgo muy alto, ubicadas en los tramos (Km 61+918.56 - Km 61+928.98), (Km 67+671.22 – Km 67+800.54), (Km 67+899.85 – Km 68+038.19) y (Km 69+586.66 - Km 69+628.91), con rangos de riesgo que oscilan entre 0.070 y 0.228. También, se detectaron 3 zonas con riesgo alto en los tramos (Km 61+867.62 – Km 62+070.89), (Km 66+802.40 - Km 66+920.71) y (Km 69+572.65 - Km 69+661.97), con rangos de riesgo entre 0.020 y 0.070. Se confirma la hipótesis planteada, ya que el uso del vehículo aéreo no tripulado permitió generar mapas que identifican las zonas de riesgo en el tramo Jaén - San Ignacio. Los hallazgos muestran diferencias con los resultados de Oliva et al. (2019), quienes evaluaron los riesgos de deslizamientos de taludes utilizando la ponderación de Saaty, obteniendo valores entre 0.17 y 0.40, que correspondieron a riesgos medio y muy alto. También difieren con Fierro (2021), quien evaluó un tramo de 37.89 km utilizando el mismo método de ponderación, obteniendo un rango de peligrosidad de 0.181 y un rango de riesgo de 0.027, ambos clasificados como "altos". Estas diferencias coinciden con lo mencionado por Alonso (2021), quien señala que la metodología permite que el agente decisor estructure un modelo jerárquico, lo que implica que los parámetros de identificación no siempre serán los mismos.

V. CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

La evaluación del pavimento flexible en el tramo Jaén - San Ignacio, comprendido entre el Km 60+000 y el Km 70+000, se llevó a cabo utilizando un dron Phantom 4RTK a una altura de 30 metros. Durante el proceso, se capturaron 2,678 imágenes, lo que generó una nube de puntos de 1,431,135,322 unidades que permitió la creación de ortomosaicos para un análisis exhaustivo de las fallas. Los hallazgos indican que las fallas predominantes son las fisuras longitudinales y transversales con 1,746.29 m² (41.09%), desprendimiento de agregados con 1,251.84 m² (29.45%) y exudación de asfalto con 465.82 m² (10.96%); esto resulta en un Índice de Condición del Pavimento (PCI) promedio de 43, catalogando el estado general del pavimento como regular. El uso del dron Phantom 4 RTK es efectivo para evaluar la condición del pavimento, mejora la seguridad de los evaluadores y disminuye la necesidad de cierres parciales en las vías.

La evaluación de la condición superficial del pavimento flexible en el tramo Jaén - San Ignacio, utilizando el método PCI, arrojó un PCI promedio de 41, lo que indica un estado general catalogado como regular. Las principales fallas identificadas incluyen fisuras longitudinales y transversales (41.89%), desprendimiento de agregados (21.49%) y exudación de asfalto (11.16%). Es importante destacar que la inspección visual en campo permite identificar, categorizar y cuantificar de manera adecuada las fallas existentes en la zona de estudio. Sin embargo, esta actividad expone al personal de campo a riesgos debido al tránsito vehicular, que puede ser alto o regular.

El uso del dron DJI Phantom 4 RTK para evaluar el pavimento en el tramo Jaén - San Ignacio (Km 60+000 a Km 70+000) permitió realizar el levantamiento fotogramétrico y procesamiento de datos en 48 horas, en contraste con las 70 horas del método tradicional, lo

que representa un ahorro de 22 horas y una reducción del 57% HH en el tiempo de inspección. Ambos métodos indicaron que el pavimento flexible se encuentra en un estado regular, con un PCI promedio de 43 para el uso del dron y 41 para el método convencional. Al aplicar el análisis estadístico con un 95% de precisión, se concluye que, aunque ambos métodos evalúan aspectos similares, el uso del VANT no solo proporciona resultados consistentes, sino que también optimiza el tiempo y aumenta la eficiencia en el proceso de evaluación del pavimento.

El análisis realizado a partir del ortomosaico obtenido con el dron y los rangos de ponderación del Proceso de Análisis Jerárquico (PAJ) ha revelado importantes riesgos en la vía, afectando un 10% de las zonas del pavimento, que presentan un deterioro muy malo con índices de PCI entre 10 y 23. Además, se han identificado peligros en los taludes circundantes, donde se han producido deslizamientos de rocas y tierras, así como erosión fluvial, exacerbados por las lluvias. Estos factores han interrumpido la transitabilidad de las unidades móviles en 7 zonas del tramo en estudio. Jaén-San Ignacio. Dentro de estas zonas, 4 se clasifican en un estado de riesgo muy alto, localizadas en los tramos (Km 61+918.56 – Km 61+928.98), (Km 67+671.22 – Km 67+800.54), (Km 67+899.85 – Km 68+038.19) y (Km 69+586.66 – Km 69+628.91), con rangos de riesgo que oscilan entre 0.070 y 0.228. Por otro lado, 3 zonas presentan un riesgo alto, ubicándose en los tramos (Km 61+867.62 – Km 62+070.89), (Km 66+802.40 – Km 66+920.71) y (Km 69+572.65 – Km 69+661.97), con rangos de riesgo entre 0.020 y 0.070. Por lo tanto, el uso del dron DJI Phantom 4 RTK ha sido fundamental para establecer un diagnóstico preciso sobre las áreas de riesgo y el estado del pavimento.

5.2. Recomendaciones

- Se sugiere realizar la inspección visual del terreno con personal capacitado para reducir errores en la identificación de deficiencias del pavimento. Además, es aconsejable realizar la evaluación de la condición del pavimento y la identificación de zonas de riesgo en condiciones meteorológicas favorables, ya que factores como viento, lluvia o niebla pueden comprometer el rendimiento y la seguridad de los drones.
- Utilizar el dron Phantom 4RTK en la evaluación de tramos de pavimento flexible, realizando comparaciones de vuelos a alturas de 50, 100 y 150 metros que proporcionen datos sobre la estabilidad del dron y la capacidad de la cámara en la captura de detalles relevantes que faciliten la evaluación y la identificación de zonas de riesgo.
- Documentar y comparar los costos de vuelo a diferentes altitudes y condiciones, evaluando la eficiencia de cada método en función de la calidad de los datos obtenidos.
- Integrar sensores multiespectrales en el dron, permitiendo un análisis cuantitativo de la reflectancia del pavimento en diferentes longitudes de onda, lo que puede ayudar a identificar materiales y condiciones de superficie con una precisión mayor al 95%.

VI. REFERENCIAS BIBLIOGRAFICAS

- ASTM International. (2003). Standard practice for pavement condition index surveys of roads and parking lots (ASTM D6433-03). American Society for Testing and Materials.
- Alonso Gómez, L. F. ., y Chaves Pabon, S. B. (2021). *Uso de drones y sensores remotos para el monitoreo de laderas: una revisión*. Ingenierías USBMed, 12(2), 65–73. https://revistas.usb.edu.co/index.php/IngUSBmed/article/view/5158
- Campos La Serna, E. y Nuñez Gonzales, J. (2020). Evaluación superficial del pavimento flexible comparando la metodología del PCI y uso del dron en la av. Pacasmayo Callao, 2020 [Tesis de pregrado, Universidad César Vallejo]. Repositorio Digital Universidad César Vallejo. https://repositorio.ucv.edu.pe/handle/20.500.12692/75564
- Contreras, P. y Alindor, Y. (2021). Evaluación superficial de pavimento rígido, mediante el método PCI del Casco Urbano de Cutervo, Cajamarca, 2021 [Tesis de pregrado, Universidad César Vallejo]. Repositorio Digital Universidad César Vallejo. https://alicia.concytec.gob.pe/vufind/Record/UCVV_a355ac3f281307b0ccee748c5a 681a0f
- Cubas Fernández, J. E. (2021). Uso de un dron para optimizar la evaluación superficial del pavimento flexible por el método PCI en la Av. Los Conquistadores, distrito de San Isidro, Lima-2021 [Tesis de pregrado, Universidad Privada del Norte]. Repositorio Institucional Universidad Privada del Norte. https://repositorio.upn.edu.pe/handle/11537/29126
- De Carvalho, ELA, da Cruz Teixeira, N., de Almeida, GAG y de Carvalho, DM (2023). Detección de Manifestaciones Patológicas en Pavimentos Asfálticos mediante

Drone. *UNICIÊNCIAS*, 27 (1), https://uniciencias.pgsscogna.com.br/uniciencias/article/view/10206

71-76.

- Fernández, RTV, Cabral, AF, Dantas, GCB, Tinoco, VNV, da Silveira, BDA y Junior, AMS (2021). Mapeo de manifestaciones patológicas en pavimento asfáltico mediante drones. *Revista ALCONPAT*, *11* (1), 61-72. https://www.scielo.org.mx/scielo.php?pid=S2007-68352021000100006&script=sci_arttext&tlng=es
- Fernández Collantes, P. y Jiménez Elera, R. (2021). Evaluación superficial del pavimento flexible mediante los métodos VIZIR, PCI, IRI en la carretera Bagua Grande-Cajaruro, Amazonas-2021 [Tesis de pregrado, Universidad César Vallejo].

 Repositorio Digital Universidad César Vallejo. https://repositorio.ucv.edu.pe/handle/20.500.12692/78503
- Fierro Leon, F. (2021). Evaluación de riesgos ante deslizamiento de taludes en el diseño geométrico del camino vecinal Pampahuasi Huariños Santa Virginia distrito de Panao, provincia de Pachitea Huánuco, 2021 [Tesis de pregrado, Universidad Continental]. Repositorio Institucional Continental. https://repositorio.continental.edu.pe/handle/20.500.12394/13453
- Flores Díaz, A. (2023). Análisis de las condiciones asfáltica, por el método índices de pavimento flexible, tramo: intersección con la carretera Fernando Belaunde Terry y el distrito La Coipa km 0+ 000 al km 3+ 000, provincia de San Ignacio, Cajamarca-2021 [Tesis de pregrado, Universidad Nacional de Jaén]. Repositorio Institucional de Universidad Nacional de Jaén http://repositorio.unj.edu.pe/handle/UNJ/522
- Gil Merino, J. y Pauccar Alhuay, C. (2021). Evaluación mediante el método PCI para determinar el estado superficial del pavimento flexible de la carretera Jaén-

- Chamaya, Jaén, Cajamarca-2020 [Tesis de pregrado, Universidad César Vallejo].

 Repositorio Digital Universidad César Vallejo.

 https://repositorio.ucv.edu.pe/handle/20.500.12692/61234
- Giler Stalin, F. y Mogrovejo Carrasco, D. (2023). Evaluación funcional del pavimento flexible en la red vial rural de Portoviejo, ecuador. *Revista científica multidisciplinaria arbitrada YACHASUN-ISSN: 2697-3456*, 7(13), 212-235. https://editorialibkn.com/index.php/Yachasun/article/view/404/680
- Hernández-Ávila, C. y Escobar, N. A. (2019). Introducción a los tipos de muestreo. *Alerta, Revista científica del Instituto Nacional de Salud*, 2(1), 75-79. https://camjol.info/index.php/alerta/article/download/7535/7746
- Idrogo Marrufo, J. (2020). *Aplicación de la metodología VIZIR en la evaluación superficial del pavimento flexible de la avenida Naranjal, Los Olivos, 2020* [Tesis de pregrado, Universidad César Vallejo]. Repositorio Digital Universidad César Vallejo. https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/106123/Idrogo_MJ-SD.pdf?sequence=1&isAllowed=y
- Ji, A., Xue, X., Wang, Y., Luo, X. y Wang, L. (2021). Evaluación basada en imágenes del riesgo de grietas en carreteras utilizando una red neuronal convolucional y un vehículo aéreo no tripulado. Control Estructural y Vigilancia de la Salud, 28 (7), e2749. https://onlinelibrary.wiley.com/doi/epdf/10.1002/stc.2749
- Leiva Romero, Y. (2021). Comparación de la metodología PCI para la evaluación de las condiciones del pavimento de forma convencional y con el uso de un dron, Cajamarca 2021 [Tesis de pregrado, Universidad Privada del Norte]. Repositorio Institucional Universidad Privada del Norte https://repositorio.upn.edu.pe/handle/11537/29696

- Martín Rodríguez, D. y Gómez León, C. (2020). Diagnóstico visual para la estructura del pavimento flexible de la vía "Camino Ganadero" calle 21 sur entre la carrera 22 y la intersección de la avenida los Maracos que comunica la zona sur de Villavicencio [Tesis de pregrado, Universidad Santo Tomas]. Repositorio Institucional Universidad Santo Tomas. https://repository.usta.edu.co/bitstream/handle/11634/30685/2020duvarmartin.pdf?s equence=7&isAllowed=y
- Małek, A. (2023). Evaluación del uso de vehículos aéreos no tripulados para el estudio del estado del pavimento de carreteras. *Carreteras y Puentes-Drogi i Mosty*, 22 (4), 331-345. https://www.rabdim.pl/index.php/rb/article/view/804
- Olaya Álvarez, F. y Ramos Aguirre, R. (2021). Evaluación superficial del pavimento flexible del Paseo Turicarami, Sullana-Piura utilizando tecnología VANT. https://repositorio.ucv.edu.pe/handle/20.500.12692/69510
- Oliva, Aldo; Ruiz, Alex, Gallardo, Romel & Jaramillo, Hayde. (2019). *Landslide risk assessment in slopes and hillsides. Methodology and application in a real case*. Dyna rev.fac.nac.minas [online]. 2019, vol.86, n.208, pp.143-152. ISSN 0012-7353. https://doi.org/10.15446/dyna.v86n208.72341.
- Paliza Gamarra, V. H., & Chuyacama Caceres, B. J. (2022). Evaluación del estado actual del pavimento flexible mediante la metodología tradicional del PCI y la metodología VANT en la Carretera Transversal 28G (Cusco Pisac) [Tesis de licenciatura, Universidad Andina del Cusco]. Repositorio Universidad Andina del Cusco. https://repositorio.uandina.edu.pe/handle/20.500.12557/5257
- Paredes Asalde, C. R., & Torres Alcántara, Y. S. (2022). Evaluación del pavimento flexible mediante métodos del PCI y VIZIR con dron en un tramo de la carretera Reposo –

- Saramiriza, Bagua, Amazonas, para una propuesta de mejora [Tesis de maestría, Universidad Tecnológica del Perú.] Repositorio Universidad Tecnológica del Perú. https://repositorio.utp.edu.pe/handle/20.500.12867/7136
- Pastor, B. F. R. (2019). Población y muestra. *Pueblo continente*, 30(1), 245-247. http://journal.upao.edu.pe/PuebloContinente/article/view/1269/1099
- Polanía Reyes, C. L., Cardona Olaya, F. A., Castañeda Gamboa, G. I., Vargas, I. A., Calvache Salazar, O. A., & Abanto Vélez, W. I. (2020). Metodología de investigación Cuantitativa & Cualitativa. https://repositorio.uniajc.edu.co/handle/uniajc/596
- Quispe Maucaylle, X. R. (2021). Metodología PCI empleando VANT, para determinar la condición superficial del pavimento flexible en la Avenida José María Arguedas San Jerónimo, 2021 [Tesis de pregrado, Universidad César Vallejo]. Repositorio Digital Universidad César Vallejo. https://repositorio.ucv.edu.pe/handle/20.500.12692/65540
- Quispe Enriquez, O. C. (2021). Evaluación de confiabilidad del Drone Phantom 4 Pro V2. 0

 para calcular el índice de condición del pavimento flexible en Av. Miraflores del

 distrito de Comas, Lima-2020 [Tesis de pregrado, Universidad Privada del Norte].

 Repositorio Institucional Universidad Privada del

 Norte.https://repositorio.upn.edu.pe/handle/11537/25498
- Ríos Cotazo, N. X., Bacca Cortés, B., Caicedo Bravo, E. y Orobio Quiñónez, A. (2020).

 Revisión de métodos para la clasificación de fallas superficiales en pavimentos flexibles. *Ciencia e Ingeniería Neogranadina*, 30(2), 109-127. http://www.scielo.org.co/scielo.php?pid=S0124-81702020000200109&script=sci arttext

- Sosa, J., & Campos, M. (2021). Evaluación de fallas del pavimento flexible comparando los métodos PCI y VIZIR en la carretera Jaén Aeropuerto en Cajamarca [Tesis de pregrado, Universidad César Vallejo]. Repositorio Digital Universidad César Vallejo. https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/76085/Bustamante_SK -Julon CHE-SD.pdf?sequence=1&isAllowed=y
- Soto Silva, P. E. (2020). Condición superficial de pavimentos flexibles determinados mediante métodos convencionales empleando un vehículo aéreo no tripulado, carretera anexo Fátima, Piura 2020 [Tesis de pregrado, Universidad César Vallejo]. Repositorio Digital Universidad César Vallejo. https://repositorio.ucv.edu.pe/handle/20.500.12692/75900
- Sotomayor, M. P. P., & Torres, B. A. Z. (2020). Empleo de VANT para determinar fallas superficiales en pavimentos flexibles. *Avances Investigación en Ingeniería*, 17(2). https://revistas.unilibre.edu.co/index.php/avances/article/view/6626/6219
- Tocas, T. y Ulises, B. (2021). Evaluación del estado superficial y análisis estructural en zonas críticas del pavimento flexible de la autopista Chiclayo—Pimentel utilizando el método índice de condición del pavimento, región Lambayeque, 2019 [Tesis de pregrado, Universidad Católica Santo Toribio de Mogrovejo]. Repositorio Institucional Universidad Católica Santo Toribio de Mogrovejo. https://tesis.usat.edu.pe/handle/20.500.12423/3626
- Urzola, M. (2020). Métodos inductivo, deductivo y teoría de la pedagogía crítica. *Revista Crítica Transdisciplinar*, *3*(1), 36-42. https://petroglifosrevistacritica.org.ve/wp-content/uploads/2020/08/D-03-01-05.pdf

- Vargas Cordero, Z.R., (2009). La investigación aplicada: una forma de conocer las realidades con evidencia científica. Revista Educación, 33(1), 155-165. https://www.redalyc.org/pdf/440/44015082010.pdf
- Ventura Fernández, E. (2020). Evaluación superficial del pavimento flexible con el Método PCI mediante la fotogrametría aérea en la Circunvalación Este, Huanta-Ayacucho-2019 [Tesis de pregrado, Universidad César Vallejo]. Repositorio Digital Universidad César Vallejo. https://repositorio.ucv.edu.pe/handle/20.500.12692/51287
- Villegas Marin, E. (2020). Evaluación superficial mediante el método VIZIR para mejorar el pavimento flexible de la carretera Celendín-Balsas, Cajamarca-2020 [Tesis de pregrado, Universidad César Vallejo]. Repositorio Digital Universidad César Vallejo. https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/58192/Villegas_ME-SD.pdf?sequence=1&isAllowed=y

AGRADECIMIENTO

Agradecemos a Dios por brindarnos la protección, la fortaleza y la vida necesaria para

llevar a cabo este proyecto tan anhelado. A nuestros padres, por su apoyo incondicional y por

animarnos en cada momento de este proceso, ayudándonos a cumplir nuestro sueño de

convertirnos en ingenieros civiles. A nuestros hermanos, por su amor y respaldo constante a lo

largo de esta formación.

Extendemos nuestro agradecimiento al Ing. Mg. Cayatopa Calderón Billy Alexis y al

Ing. Palomino Ojeda José Manuel por su invaluable apoyo, orientación y asesoramiento

durante todo el proceso de investigación.

Agradecemos a los docentes de la Carrera Profesional de Ingeniería Civil de la

Universidad Nacional de Jaén, quienes con sus conocimientos rigurosos y precisos han dejado

una huella significativa en nuestra vida.

Agradecemos profundamente a nuestros amigos por su apoyo y confianza, que fueron

cruciales durante este proceso. Reconocemos que el camino no fue fácil, pero logramos superar

las adversidades. Este logro nos enseña a nunca rendirse y a luchar por nuestros sueños.

¡Muchas gracias a todos!

Chuquibala Guerrero Karen Jhoana

Guerrero Martinez Isaías

105

DEDICATORIA

Dedico esta tesis a Dios, por brindarme la fortaleza y la determinación necesaria para superar cada desafío en este camino.

A mis padres Lino y Veronica, cuyo amor y apoyo incondicional han sido mi mayor inspiración y pilar en cada etapa de esta aventura.

A mis hermanos Diana y Anthony, por su constante aliento y por ser mi mayor apoyo y motivación.

A mi compañero de tesis, porque con esfuerzo y dedicación alcanzaremos nuestro objetivo.

Karen Jhoana

En primer lugar, a Dios por brindarme salud y protegerme en cada momento.

A mis amados padres Noé Guerrero y Estefanía Martinez, quienes me apoyaron en todo momento, quienes me llevaron por el buen camino y cultivaron en mí buenos valores brindándome su amor, consejos y apoyo constantemente.

A mis tres hermanos Mirian, Jesús Samuel y Eliseo, por su buen ejemplo, por darme las fuerzas y por apoyarme en todo momento.

A mi compañera de tesis Karen Jhoana, con quien con esfuerzo y dedicación alcanzaremos nuestro objetivo.

Isaías

ANEXOS

ANEXO 1

MATRIZ DE CONSISTENCIA Y OPERACIONALIZACIÓN DE VARIABLES

Tabla 1. Matriz de consistencia

PROBLEMA GENERAL	OBJETIVOS OBJETIVO GENERAL	HIPÓTESIS GENERAL	Variables depe	ndientes	DIMENSIONES	INDICADOR	UNIDAD	TÉCNICA DE RECOLECCIÓN DE DATOS	INSTRUMENTO DE RECOLECCIÓN DE INFORMACIÓN	METODOLOGÍ A	POBLACIÓN, MUESTRA, MUESTREO
	Identificar las zonas de riesgo y condición del pavimento flexible Jaén - San Ignacio km 60+000 al					Dimensionamiento de Fallas	m	Observación			POBLACIÓN
	70+000 mediante vehículo aéreo no tripulado, Jaén 2024.				Grietas	Nivel de Severidad	Alto, Medio, Bajo	Observación	Ficha de obtención de recolección de		La población estará
	OBJETIVOS ESPECÍFICOS			Condición del Pavimento		Valor de PCI	0 a 100	Observación	datos		compuesta por el tramo de la carretera
				Flexible	Deformaciones	Número de deformaciones por unidad de longitud	Und.	Observación			comprendida entre Jaén – San Ignacio del Km 00+000 al KM 100+000, Provincia de Jaén, Departamento de
	Evaluar la condición superficial del pavimento flexible tramo Jaén - San Ignacio km 60+000 al 70+000 mediante vehículo aéreo no tripulado, Jaén 2024.		Variables dependientes		Condicion física	Estado del pavimento	Excelente, Muy bueno, Bueno, Regular, Malo, Muy malo, Fallado	Observación	Norma ASTM D6433		Cajamarca
					Ubicación espacial	Coordenadas geograficas de las zonas de riesgo	Und.	Posicionamiento de puntos	Drone Phantom 4 RTK		MUESTRA
¿Cuáles son las zonas		El uso del vehículo aéreo no tripulado permite clasificar la condición del		Zonas de Riesgo	Obicación espaciai	Area total de las zonas de riesgo	m2	Posicionamiento de puntos	Ficha de recolección de datos		MUESTRA
de riesgo y condición del pavimento flexible	San Ignacio km 60+000 al 70+000	pavimento como bueno, regular o malo y elaborar mapas que identifican las zonas de riesgo del tramo	no o que mas umo io I unte		Peligro por Geodinamica externa	Deslizamiento en taludes	Und.	Análisis documental	Dron Phantom 4 RTK. Manual de evaluación de riesgo. CENEPRED. INGEMMET.	Método inductivo, tipo aplicada, enfoque cuantitativo de diseño no experimental	
Jaén 2024?		Jaén - San Ignacio km 60+000 al 70+000 mediante vehículo aéreo no tripulado, Jaén			Calidad de imágenes georreferenciadas	Resolución de las imágenes capturadas	Pixeles	Monitoreo del vuelo VANT	Drone Phantom 4 RTK		La muestra será un parte de la vía Jaén - San Ignacio, del KM 60+000 al KM 70+000 ubicado
		2024.			Proceso fotogramétrico	Plan de vuelo	Und.	Análisis computacional de datos	IPad 5 Mini, DJI GO 4		específicamente entre el CP. Puerto Tamborapa – CP. Perico.
						Ejecución del vuelo	Und.	Monitoreo del vuelo VANT	Dron Phantom 4 RTK		
	Comparar el tiempo y precisión de los datos recopilados por el VANT en la detección de la condición del				Altitud de Vuelo	Altura promedio de vuelo del VANT	30 m	Monitoreo del vuelo VANT	Dron Phantom 4 RTK		
	pavimento, contrastándola con los resultados obtenidos mediante el método PCI.		Variable Independiente	Vehiculo Aéreo No Tripulado	Tiempo	Tiempo promedio de vuelo del VANT	minutos	Monitoreo del vuelo VANT	Ficha de Inspección		MUESTREO
						Ortomosaico, DEM	Und.	Análisis computacional de datos	Agisoft Metashape Professional		
	Determinar las zonas de riesgo del pavimento flexible tramo Jaén - San Ignacio km 60+000 al 70+000 a partir de los datos recopilados del vehículo aéreo no tripulado, Jaén 2024.				Procesamiento de datos	Inspección de fallas	m2, m	Análisis computacional de datos	Agisoft Metashape Professional, Civil 3D		Deducimos que nuestra investigación se centra en un enfoque probabilístico.

Tabla 2. Operacionalización de Variables

Va	riables	Dimensiones	Indicador	Unidad	Técnica de recolección de datos	Instrumento de recolección de información
			Dimensionamiento de Fallas	m2, m	Observación	
		Grietas	Nivel de Severidad	Alto, Medio, Bajo	Observación	Ficha de obtención de
	Condition to		Valor de PCI	0 a 100	Observación	recolección de datos
	Condición del Pavimento Flexible	Deformaciones	Número de deformaciones por unidad de longitud	Und.	Observación	
Variables dependientes		Condición física	Estado del pavimento	Excelente, Muy bueno, Bueno, Regular, Malo, Muy malo, Fallado	Observación	Norma ASTM D6433
		Ubicación espacial	Coordenadas geograficas de las zonas de riesgo	Und	Posicionamiento de puntos	Drone Phantom 4 RTK
	Zonas de Riesgo	Oblicación espaciai	Area total de las zonas de riesgo	m2	Posicionamiento de puntos	Fichade recolección de datos
	Zonas de Mesgo	Peligro por Geodinamica externa	Deslizamiento en taludes	Und.	Análisis documental	Dron Phantom 4 RTK. Manual de evaluación de riesgo. CENEPRED. INGEMMET.
		Calidad de imágenes georreferenciadas	Resolución de las imágenes capturadas	Pixeles	Monitoreo del vuelo VANT	Dron Phantom 4 RTK
		Proceso fotogramétrico	Plan de vuelo	Und.	Análisis computacional de datos	IPad 5 Mini, DJI GO 4
		1104500 1010g.u	Ejecución del vuelo	Und.	Monitoreo del vuelo VANT	Dron Phantom 4 RTK
Variable	Vehiculo Aéreo No	Altitud de Vuelo	Altura promedio de vuelo del VANT	30 m	Monitoreo del vuelo VANT	Dron Phantom 4 RTK
Independiente	Tripulado	Tiempo	Tiempo promedio de vuelo del VANT	minutos	Monitoreo del vuelo VANT	Ficha de Inspección
			Ortomosaico, DEM	Und.	Análisis computacional de datos	Agisoft Metashape Professional
		Procesamiento de datos	Inspección de fallas	m2, m	Análisis computacional de datos	Agisoft Metashape Professional, Civil 3D

ANEXO 2

VALIDACIÓN DE INSTRUMENTOS DE INSPECCIÓN

UNIVERSIDAD NACIONAL DE JAÉN

Ley de Creación N.º 29304 Universidad Licenciada con Resolución del Consejo Directivo Nº 002-2018-SUNEDU/CD

INFORME DE OPINIÓN SOBRE INSTRUMENTO

I. DATOS GENERALES

Apellidos y nombres del experto: Ing. JOAQUIN FLORENTINO FACUNDO FRIAS

Institución donde labora: UNIVERSIDAD NACIONAL DE JAÉN

Instrumento de evaluación: FORMATO DE INSPECCIÓN DE CAMPO PARA LA METODOLOGÍA

PCI Y VEHÍCULO AÉREO NO TRIPULADO (VANT)

Tesistas del instrumento: Est. KAREN JHOANA CHUQUIBALA GUERRERO y Est. ISAÍAS

GUERRERO MARTINEZ.

MUY DEFICIENTE (1) DEFICIENTE (2) ACEPTABLE (3) BUENA (4) EXCELENTE (5)

CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Esta formulado con lenguaje apropiado y libre de ambigüedades acorde con los sujetos muestrales.					x
OBJETIVIDAD	Las instrucciones y los ítems del instrumento permiten recoger la información objetiva sobre la variable, en todas sus dimensiones en indicadores operacionales y conceptuales a través de la aplicación de dicho formato.					x
ACTUALIDAD	El instrumento demuestra vigencia acorde con el conocimiento científico, tecnológico, innovación y legal inherente a la variable: VANT.				Ì	x
ORGANIZACIÓN	Los items del instrumento reflejan organicidad lógica entre la definición operacional y conceptual respecto a la variable, de manera que permiten hacer inferencias en función a las hipótesis, problema y objetivos de la investigación.					x
SUFICIENCIA	Los items del instrumento son suficientes en cantidad y calidad acorde con la variable, dimensiones e indicadores.				T	X
INTENCIONALIDAD	Los items del instrumento son coherentes con el tipo de investigación y responden a los objetivos, hipótesis y variable de estudio: VANT.					x
CONSISTENCIA	La información que se recoja a través de los items del instrumento, permitirá analizar, describir y explicar la clasificación del agregado, como parte de la investigación.					x
COHERENCIA	Los items del instrumento expresan relación con los indicadores de cada dimensión de la variable: VANT.					x
METODOLOGÍA	La relación entre la técnica y el instrumento propuestos responden al propósito de la investigación, desarrollo tecnológico y experimental.					x
PERTINENCIA	La redacción de los ítems concuerda con la escala valorativa del instrumento.					x
	PUNTAJE TOTAL			50		

(Nota: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje mínimo de 41 "Excelente"; sin embargo, un puntaje menor al anterior se considera al instrumento no válido ni aplicable)

IL OPINIÓN DE APLICABILIDAD

El instrumento está listo para ser aplicado.

PROMEDIO DE VALORACIÓN: 50

Joaquín Florentino Facundo Frias Ingeniero Civil

oaguinte

	3				EVALUACIÓN		FACULTAD DE INGENIERÍA PROFESIONAL DE INGENIEI JPERFICIAL DEL PAVIMENTO	FACULTAD DE INGENIERÍA LA PROFESIONAL DE INGENIERÍA CIVIL SUPERFICIAL DEL PAYMENTO FLEXIBLE	IA CIVIL.	2			*	
					HO	HOJA DE REGISTRO DE INSPECCIÓ	GISTRO	DE INSP	RCCIÓN					
PROVECTO BE TESIS:	TDENTIFICACIÓN	V DE ZONA	S DE RIES	GO Y DOW	MCTÓN DE	PAVIMENT	HEXIBLE	JAËN-SAN	INGNACIO	KM 60+00	OALKM 70	+ 000 MED	TIDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICTIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNÁCIO KM 60 + 001 AL KM 70 + 000 MEDIANTE VEHÍCULO AÈREO NO TRIPULADO, JAÉN 3024	EN 2024 "
NOMBRE DEL TRAMO:	Jacin San Ignacio				DEPARTAMENTO:	(ENTO:	Casmarca						Avtowates die is vie 10 km	
INIDAD DE MUESTRO:					LUGAR									_
PROGRESTVA INICIAL:					FEBCA:							1	4 8 4	
PROGRESTVA FINAL:					EVALUADORES	RES	Est Karen	Es. Karen Boans Chaquibala Guerrero	hala Guerren			ä	12 12 14	
REA DE LA UNIDAD:		in.2			200	3.00	Saias Guerr	Saias Guerrero Martace					10 18 13	
				ш	TIPOS DE FALLAS								21 22 23 24 25	
Pict de coordeile	N. C.			2 1	Parchon-			1	PA de	1	T I	I	11	
French on Monte	018		ľ	13	If Bores	achori			H		Und	T		
Abultanicains o Hundanicaiss	AH	1		Ĥ	14. Cruce de viu fe	is force.			S. C.		70			
. С отпрасова	00:	18.		700	15	carito			AH		Tas.		Unitied de muestra por impaccionar	tr.
Demoison	ag	4		7	16. Desplace	nonio.			DZ		Zu.			
Tourse de borde	Ε.	00		B	17. Gricta parabolic	sholica			db.		7			
Greeks de reflexiones de juntos	GRO	200			16 Personal	A Hinchamonic			42	1	99	T	Familias colorina	chauficación
O. Fourte combidence y Introverse	100				T. Ivenimen	The same of the sa	-			1		T	11.2	May busing
					100	TPGS DE FALLAS EXISTENTES	SEXISTEN	ES					35 - 70	Buento
		×	2	-	N	H	-	N.	Н	1	N. N.	0	40 - 52 75 - 40	Megalar
													1015	May male.
												T	0-10	Fallade
TOTAL POR FALLA					91					9				ŀ
		*			*		-	- No.			12		FALLS SEVENDED AVEAUATE	MUNICIPAL
		10			100			8		1				\parallel
1000												T		H
TOTAL POR FALLS							1			1				Ц
	7	N N	25	9	- N	н	T	N.	я	2	i k			Н
														H
TOTAL DOREALLA										T				
VALOR DEUDGIDO			CHOROTORE	PAGE NO			30		N.	VALORES DELIDOROS	SOCIOCIO		VOT 4 CIV	
		Nimon	Numero de drahaides > 2 [4]	1 > 2 (4)							H	H		П
									1	1	+	t		Т
Ш		Valor da	Valor dedocráo mas alto	in (HDV)								H		П
		Numero ma	Numero maximo de valores o	robbindos es										1
- tor-			Ī											
							1						WAX CDV	
						Constitution		THO NO			T		Appeals the symmetried yourth, de mestitle	

Instrumento de inspección utilizando metodología VANT firmado por experto 01

					FACULTAD DE D LA PROFESIONAL D	NGENERA.				*		
2.0					REGISTRO D	ELVANT				- 10		
PROVECTO BE TESTS:	TOONTO	ACTION DE ZON	AS DE RESIX	O Y CONDICIÓN DEL PAY	TMINTO ILEXBLE	TAÉN - SAN IN	GUACID EM	ALL KM TO	- min MEDIAVI	II VIIIKULO AL	RED SO TRIPULADO	July 2017
NOMBRE DEL TRANCE	Jalo – Karlguicio			DEFARIAMENTO:	Сапия					- 85	entionates	
PRIOGRAPHE METSTRO: PRIOGRAPHA INCIAL:				PERIOD C	_				- 1	2 2	1 1	10
PROCRESTVA FINAL:					Fe Ken Busi	Chapthile Gen	min	- 1		11 12	. 13 . 18	15
AREA DE LA ENIDADE		al		EVALUADORES	Issia Guerro Ma	rist.				9 11	8 9	
L Pal deponden	1 7		11000	I Patine		-	PA I	nú.	-	31 11	28 28	
2. Embaio de etido			pi.	II. Agresal register.			NP SA	152		41 11	187	-
A Anatomora y Hardinano	NA A		pl.	O. Harrie (Bades) 14 Care à six Sessa			CVF	104. HJ				
S.C. ortogiculus.	- 0	8.	102	S Albertanian			AD .	rd	-	Manua	miertys pår Pripaccinsis	
h Digramar	_	pr I	16	16 Department			02	10	7	-		
Fram & hors France & oderans & pon-	G		-	D Reported			III	ed ed	-			
9 Doneyo partitioner	D.	_		H. Deposition stage	egalec		DO:	10	4			
18 Francingstitutes y traceron	R	1			_					_		
inias minum				- 01	TOID		_			12001	sinion	vioreinico
							- /					
			_	_		_		_	-	_		
		11 11										
			-	1	_				-			
			_									
			_			_			$\overline{}$			
			_			_	_				WinCDV	
_		5 80		VALUES	DELTATION	- 1	M	1 4	-39/		Bigs	circlocon
	total ici	-	_		_	_	-			_	B-15- B-6-	Carriera -
Please in Albert	ptsmi	_									11-70	Buero
Valid the late of	NORTH IN					_	_			_	11-55 25-60	MgGD*
4	CADU -		_		1		_		1	_	11-76	Myssio
Report Associated to	MANAGES STREET										1-11	Falligo
7			- 1				1	MAX COV	1			
									-			
					-							
		CII	SIN WYDER									
		,	MADMENTO	19								
				-								
									- 6	-		
4										-		
									_	=		
									_			
									ПГ			
									L			
		/							L			
		/		200						_		
		(,	2005	-11/1								
		-10	Jougue	Hiller					-	_		
		Jose	uín Flor	entino Facundo	Evice							
		oute	Inge	eniero Civil	rrias				1 5			
				22.2						-		
									1			
									F			

UNIVERSIDAD NACIONAL DE JAÉN

Ley de Creación N.º 29304 Universidad Licenciada con Resolución del Consejo Directivo Nº 002-2018-SUNEDU/CD

INFORME DE OPINIÓN SOBRE INSTRUMENTO

I. DATOS GENERALES

Apellidos y nombres del experto: Ing. WILMER ROJAS PINTADO Institución donde labora: UNIVERSIDAD NACIONAL DE JAÉN

Instrumento de evaluación: FORMATO DE INSPECCIÓN DE CAMPO PARA LA METODOLOGÍA

PCI Y VEHÍCULO AÉREO NO TRIPULADO (VANT)

Tesistas del instrumento: Est. KAREN JHOANA CHUQUIBALA GUERRERO y Est. ISAÍAS

GUERRERO MARTINEZ.

MUY DEFICIENTE (1) DEFICIENTE (2) ACEPTABLE (3) BUENA (4) EXCELENTE (5)

CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Esta formulado con lenguaje apropiado y libre de ambigüedades acorde con los sujetos muestrales.			F		x
OBJETIVIDAD	Las instrucciones y los ítems del instrumento permiten recoger la información objetiva sobre la variable, en todas sus dimensiones en indicadores operacionales y conceptuales a través de la aplicación de dicho formato.					x
ACTUALIDAD	El instrumento demuestra vigencia acorde con el conocimiento científico, tecnológico, innovación y legal inherente a la variable: VANT.				ļ	x
ORGANIZACIÓN	Los items del instrumento reflejan organicidad lógica entre la definición operacional y conceptual respecto a la variable, de manera que permiten hacer inferencias en función a las hipótesis, problema y objetivos de la investigación.					x
SUFICIENCIA	Los items del instrumento son suficientes en cantidad y calidad acorde con la variable, dimensiones e indicadores.					x
INTENCIONALIDAD	Los Items del instrumento son coherentes con el tipo de investigación y responden a los objetivos, hipótesis y variable de estudio: VANT.					ĸ
CONSISTENCIA	La información que se recoja a través de los ítems del instrumento, permitirá analizar, describir y explicar la clasificación del agregado, como parte de la investigación.					x
COHERENCIA	Los ítems del instrumento expresan relación con los indicadores de cada dimensión de la variable: VANT.					x
METODOLOGÍA	La relación entre la técnica y el instrumento propuestos responden al propósito de la investigación, desarrollo tecnológico y experimental.					x
PERTINENCIA	La redacción de los items concuerda con la escala valorativa del instrumento.					×
	PUNTAJE TOTAL			50		

(Nota: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje minimo de 41 "Excelente"; sin embargo, un puntaje menor al anterior se considera al instrumento no válido ni aplicable)

II. OPINIÓN DE APLICABILIDAD

El instrumento está listo para ser aplicado.

PROMEDIO DE VALORACIÓN: 50

Ing. Wilmer Rojas Pintado DNI Nº 41000674 CIP Nº 173245

	3		ESCUELA PR EVALLACION SUPE	FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERIA CIVIL. ACIÓN SUPERFICIAL DEL PAYDIENTO FLEXIBI	FACULTAD DE INGENIERÍA HEA PROFESIONAL DE INGENIERÍA CI N SUFERFICIAL DEL PAYMENTO FLE:	M CIVIL FLEXIBLE - P.C.			*	
			HOJA DE 1	HOJA DE REGISTRO DE INSPECCIÓN	R INSPEC	TON				
PROVECTO DE TESIS:	TDENTIFICACIÓN DE ZON.	AS DE RIESGO Y CONI	NCTON DEL PAVIME	STO FLEXIBLE D	VEN-SAN ING	NACIO KM 60+	000 AL KM 70 + 00	10 MEDIANTE V	TDENTIFICACIÓN DE ZONAS DE RESGO Y CONDRIGIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNÁCIO KM 60 + 0001 AL KM 70 + 000 MEDICANTE VEHÍCULO AÈREO NO TRIPULADO, JAÉN 3024	TADO, JAEN 2024 "
NOMBRE DEL TRAMO:	Juču - San Ignacio		DEPARTAMENTO:	Cajamanca					Moentra de la via 10 len	imi
UNIDAD DE MUESTRO:			LUGAR					T	-	n
PROGRESIVA INITIAL:			FEBCA:	4	The state of the s				00 F	+
AREA DE LA CAMANA	-		EVALUADORES	balas Guerrem Martare	Est. Nation Thomas Citedannia Contrery Nation Conserves Martines	diameter		Tal.	2 2	4 8
		TIBOGII	THOSE REPAIRSO						10 10	ł
. Pied de cucudarilo	- BC	-	11. Parches		-	PA	200	T	1 1 11	+
1. Exteducion de avfalto	EX	200	12. Agregados pulidos			AP.	95	П	32 33	ł
3. Finance on bloque	BLO	Tip .	11 Bucos (Baches)			HUE	740	П		
4. Abultanicales y Handaments	AH	87	14 Cruce de via forca.			No.	2 7	T	United de maestra por imperatoriar	mipecialism
S. Depressions	DP	i a	16. Deeplayamento		+	20	12	T]	
7. Thomas de bande	FB	- III	17. Gricta parabolica			GP.	700	П		
K. Greeto de reflexione de jurtie	CRD	ш	18. Hindamicalio			¥	200	T	н.	chafficación
9. Dotavel camindma. 0. Freins lossitudes in visuoversil	200	EE	19. Degreenditaction de agregodo	graphter		IXI	70	T	01-10 01-10	May busine
IV. rouse confincing y introduce			TIPOS DE FAI	THOS DE FALLAS EXISTENTES					25 - 70	Buento
	**		- 2		N-		N.		4055	Regular
	T N	B T	M H	1	H W	J.	9 N	П	75 40	Mula
								Т	0-10	Mov malo.
								П		
TOTAL POR FALLA								1	ł	ſ
	T W	1 8	M H	1	M E	J	N B		FALLA SEVENDAD	MEANT DESIDAN
								Т		
								П		
TOTAL POR FALLA				100						
	200	-	2		- N	1	N N			
								П		
								T		
VALOR DELICOR										
		Part of the last o		372		VALORES	VALORES DELIDODOS	-	at toy	CIV
		CALLEGIBLING								I
	Nime	Numero de drahoddes > 2 (4)			H					
	Valor de	Valor dedocráts mas allo (HDV)								
								-		I
	Numero ma	Numero maximo de valores dedisaldos								
vor-	<u> </u> 				-				Apply Contra	
		00								
		ma from		CONDICTON DEL	N DET		T		Invent de systemacy unid, de mac	- FI
		Wilmer Rojas Pintado	s Pintado	PAVIMENTO	NTO OTN		1	W c	Constant presides	

Instrumento de inspección utilizando metodología VANT firmado por experto 02

	W				IVERSIDAD NACIO FACULTAD DE IN A PROFESIONAL DE	GENERA		*		
4					REGISTRO DE	LVANT				
PROYECTO DE TESE:		DESTRUCACIÓN	DE ZONAS DE RES	GOY CONDICIÓN DEL PAY	MINTO ILEXBLE	IAÈN - SAN INGRACIO	EM 80+800 AL EM 70+0	MEDIANTE VIRILEAN	DE LOS O TERROLADO	Lubyini:
NOMBRE DEL TRANCE	Jain - Sonig	(col		DEFARIAMENTO:	Сапил	1777			nation decount	
ENDAD BE METSTRO:				LUGARE				- 2		1
PROGRSIVA PARTAL: PROGRESIVA FINAL:	_			PERCAL	De Ken Busic	huga bala Garanto	Tet.	41	13 34	13
AREA BE LA ENIDADE		ed.		EVALUADORES	Suin Guerro Mar			28 12		
	7 4			OSBETALLAS		4 4	y 1	21 - N		
l. Ful drosnisir 2. Embriede elike		K:	142 142	II Pather II Aparaloguian		PA AP	(c)	41 14		3.39
1 Francis on Magain		84.0-	al.	O. Bairre (Bades)		HEE	184			
6 Andrewson y Hardwinson 5 C otto pulses		AM COR.	102	18 Cour de sie Simin 15 Albertanierie		CVS AB	ed ed	Medical	Al-mainten par Propocoresa	
h Digramma		D)	16	16 Department		DZ	10	_		
Time & hori-		R.		A Great partition		16F	ed .			
F Griego, de trafessoras de parte: 9 Deservir partifessora	_	DCB		II Degradassprütge	_	BS DC	ed ed			
18 Francingstained y trees	-	FLT		11. Language or ope	len.	- 00	-			
77.7				The second			1	-	page 1	California de la Califo
HALLAS SERVICE	-			an	100			1000	SINION	VERNINGER
-	-						1 1 1			4
11/				-15-			4 1 1 1 1 1	1 5.		
-					_					-
	_								WasCDV	
									Nonasary	+
Planet de de de la company de de de la company de de la company de la co		ALIANIE	CHMIR THY III				MAS CDV		10-15 10-8 10-76 10-96 10-	Commits Barrio Barrio Region Mail Mai
			Wilmo	er Rojas Pintad geniero Civil	lo					

UNIVERSIDAD NACIONAL DE JAÉN

Ley de Creación N.º 29304 Universidad Licenciada con Resolución del Consejo Directivo Nº 002-2018-SUNEDU/CD

INFORME DE OPINIÓN SOBRE INSTRUMENTO

I. DATOS GENERALES

Apellidos y nombres del experto: Dra. Ing. ZADITH NANCY GARRIDO CAMPAÑA

Institución donde labora: UNIVERSIDAD NACIONAL DE JAÉN

Instrumento de evaluación: FORMATO DE INSPECCIÓN DE CAMPO PARA LA METODOLOGÍA

PCI Y VEHÍCULO AÉREO NO TRIPULADO (VANT)

Tesistas del instrumento: Est. KAREN JHOANA CHUQUIBALA GUERRERO y Est. ISAÍAS

GUERRERO MARTINEZ.

MUY DEFICIENTE (1) DEFICIENTE (2) ACEPTABLE (3) BUENA (4) EXCELENTE (5)

CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Esta formulado con lenguaje apropiado y libre de ambigüedades acorde con los sujetos muestrales.			1		x
OBJETIVIDAD	Las instrucciones y los items del instrumento permiten recoger la información objetiva sobre la variable, en todas sus dimensiones en indicadores operacionales y conceptuales a través de la aplicación de dicho formato.					x
ACTUALIDAD	El instrumento demuestra vigencia acorde con el conocimiento científico, tecnológico, innovación y legal inherente a la variable: VANT.					x
ORGANIZACIÓN	Los items del instrumento reflejan organicidad lógica entre la definición operacional y conceptual respecto a la variable, de manera que permiten hacer inferencias en función a las hipótesis, problema y objetivos de la investigación.					x
SUFICIENCIA	Los items del instrumento son suficientes en cantidad y calidad acorde con la variable, dimensiones e indicadores.	14		H		x
INTENCIONALIDAD	Los ítems del instrumento son coherentes con el tipo de investigación y responden a los objetivos, hipótesis y variable de estudio: VANT.					x
CONSISTENCIA	La información que se recoja a través de los items del instrumento, permitirá analizar, describir y explicar la clasificación del agregado, como parte de la investigación.					x
COHERENCIA	Los ítems del instrumento expresan relación con los indicadores de cada dimensión de la variable: VANT.					x
METODOLOGÍA	La relación entre la técnica y el instrumento propuestos responden al propósito de la investigación, desarrollo tecnológico y experimental.	Ī				x
PERTINENCIA	La redacción de los items concuerda con la escala valorativa del instrumento.					x.
	PUNTAJE TOTAL					

(Nota: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje minimo de 41 "Excelente"; sin embargo, un puntaje menor al anterior se considera al instrumento no válido ni aplicable)

II. OPINIÓN DE APLICABILIDAD

El instrumento está listo para ser aplicado.

PROMEDIO DE VALORACIÓN: 50

Dra. Ing. Zadith Nancy Garrido Campaña

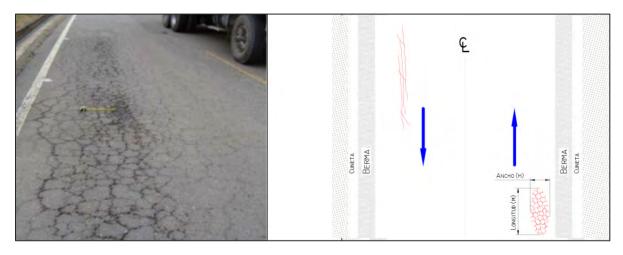
THE THE PROPERTY	The state of the s			EVALUACIÓN	FACUL JELA PROFE WASUPERFIC	FACULTAD DE INGENIERIA PROFESIONAL DE INGENIEI PERFICIAL DEL PAYDIENT	FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERIA CIVIL ACTOR SUPERFICIAL DEL PAYMENTO FLEXIBI	CIVIL EXTRLE-PC							
TENNS TOENTHICACIÓN DE ZONAS DE RIESCO Y				HO1/	V DE REG	ISTRO D	E INSPEC	CIÓN							
Parks - San gencies		IÓN DE ZONAS DE BIE		CIÓN DEL P	AVIMENTO	TEXIBLE IV	VEN-SAN IN	GNACIO KM 8	0+000 AL R	M 70 + 000 M	EDIANTE VE	ELCULO AÈ	NO TRIP	TADO, JAEN	2024
FILICAR	John - San lg			PERMITAN	ENTO	Symmotor						Mo	Movement do la via 10 km	her.	
NAME	DAD DE MUESTRO:			DGAR								1 1	ri		
Forest Chapter Fore	DGRSIVA INICIAL:			EBCA:								9	99	100	
The base of the control of the con	DGRESIVA FINAL:			OUVE IVA		St. Karen Ibo	ana Chaquibal.	Guerrero		E		11 15	#	14 15	
10 10 10 10 10 10 10 10	EA DE LA UNIDAD:	m2				aias Guerren.	Martinez					12	110	13 20	
NAME			TIPOS DE	FALLAS	Ì							21 24	23	14 PA	
1			7	1. Parchon-				PA		475		25 27	舞	M M	
March Marc			4	2. Apropados,	alidos			AP		200		31 31	13.		
1			-	Ruccow (Bar	heal			HUE		Und	L				
Figure F	manuscript.		17	C Abellande	de la companya de la			AH		1		- Contract	nidad de muestra por impecratorar	e mipecatonir	
Fig. 10 1 Coloring methodists COP ma2 Max Coloring methodists COP Max Coloring methodists COP Max COLORING methodists CO			1	6. Deeplassing	mio.			- 70		200		1			
			- 40	7. Gricta parab	olica			-GP		- 754					
Times 10 Description of appropriate DOL M	de juntum		ш	8. Hinchamon				H		200		- Nameson	CONTRA	Chall	cación
TETAL POR VALLA				ш		Ap.		DO		200	-	65-10		Eve	- Appropri
TOTAL POR MALK N	Indentity y Introvenesia		H									70 85		May the	District
TETAL POR FALLA				TIPO	OF FALLAS	EXISTENT	2		-		1	N-82		O Common	num.
		ŀ	-			-	ŀ	1	2	U		25-40		N N	Majorar
TUTA FOR FALLA N		+				1	+				_	10-15		Maymak	malo
TOTAL FOR FALLA N												0-10		200	Fallace
10741 POR MALIA 18	TOTAL POR FALLA			ì											
TOTAL POT FALLA TOTAL POT				1			No.		1.00		112	-	Greenfan.	O CHEEK OF	OWNERS
TOTAL POR FALLA N	-	W B	-	M	Н	1	W	H	N	B	-	Н	- Lander	П	
TOTAL POR FALLA N							+		-						ľ
TOTAL POR FALLA N									-						
L	TOTAL POR FALLA					1301			1						
TUTAL POLIFALL VALOUE VELOCION 18		1/2		12			100		3.0						
VALOR DELECTION CALCILLO DEL PCT Nimum de dahocifo nos dio (UDV) Valor dahocifo nos dio (UDV) (Asserto maximo de calecte debaidas (in)	1	+	4	M	H	4	W	H	*	=		+	1	Ī	
VALOU DELOCIONALE VALOU DELOCIDO CALCILLO DEL PCI Nimum de danisales > 2 (a) Valor debación um sino de salecto deducidos (m)															
VALOR DELOCIDO: CALCILLO DEL PCI Nimum de danisidos > 2 (q) Valor dadacción um sino (di DV) (basego maximo de salece dedacidos (m)	ALLES BOR SALLS														
CALTILO DEL PCT Simons de darbaños » 2 (a) Valor dabación una sino (UDV) (banacio maximo de salace dedacidas (m)	VALOR DELOCIDO														
Value de datación ma dire (UDV) Value datación ma dire (UDV) (Vanezo maximo de salece deducidas (m)		The state of the s	2000	1		30		VALOR	ES DEUDCIE	90		Jos		CIV	
Walve deducçilo rme silto (HDV) Valve deducçilo rme silto (HDV) Valve deducçilo rme silto (HDV) (Americo movimos de esderes deducidos (m)		CARDI	OBELPG												
Valve dedución uma sino (UEDV) Nomeron umatimos de subrero declarádos (ma)		Numero de drahaid	m > 2 (e)				+	+	+						
Nomero maximo de valores dedincidos		Valor deducido mas	(AGDA)		_		\parallel		$\ $						
Nonecto maximus de salvere deduzidos								13							
		Numero maximo de sulo	ros deducidos	Ī		1	+		+						
	vor -	ī			_				-						
												WAX CDV	DA AG		
The state of the s					12		Ц			П	Min	task the severeta	misel yould, de me	otte	
Des Total Option Service Consisted in 1970 1971				Dra	Ing Zadith Name		VIO				10	American investig	-	Ī	
Campain					Same and Same					Ī					

Instrumento de inspección utilizando metodología VANT firmado por experto 03

	W			FACULTAD DE PIGE	NEEKA				
	teams at judge	100	_	REGISTRO DEL			400.		
WOYLCTO BE TISS:	minume acalema	ZONAS DE REISGO Y CONDUCIÓN DEL			100	racional ruracion	namica santra a	transactions and	ubeinte
					IN - NAN DALAKAL BU BU	A MI - MIN AL RAL TI - MIN		24-47-343	MADY 2029
OMBRE DEL TRANCI: NIDAD DE MLESTRO:	lain - Sat Ignica	DEPARTAMENTO LUGAR:	1:	Caurana		_	1 2 1 2	ention dens	
RIDGRSIVA INKTAL:		PERICE					B	2010	13
RINGRESIVA FINAL: REA BELA I NIBAD:	al	EVALUADORES		See Kann House Che base Guerro Marin		list.	31 12	18 19	15
RES DE LA CARGO	-	TIPOS DE FALLAS	-	Print Gallery (Gallery			21 1		. 6
Ful drosadsio	X	ral Patilier			PA	- m2	B 2	2 2	
Explorede effilia France de began	EX.	pd. II. Agregalis printer pd. II. Hunger Binden:			AP HEE	104	41 1/	100	
Andrewson y Radinasse	All	a H. Care it in Son			585	m2	the same of	martin par Papaconski	
Cottopicatus Digramma	C18.	of Statement	_		AD DZ	ed ed		and the same	
Francis have	lib.	as II Gara pariette			W.	rid.			
Grisse & Halistens & Julie	(32)	to U. Regionarija			HS	ed.			
Doneyal partitioners France longitudinales y transcension	FLT	a R.Deposition of	or agrees	part.	90.	40			
	- 10		Jane 1			-	and the same of	at a common of	Salandara
HALLAS SERVICE	1 1 1		comm	_			1980	ninion	videntoucos
			-						
_			-						
					-			Min,CDV	
		No. 1 194140	are n	erreme-		ur I a I	-001	may .	ciretescon
CMCTON	DRL PCI		-					B-12-	- Committee
Planter de débation	28		_					31-6	Stylbero
1.000 0.000 0.000	-		-	1 -				11-70 41-54	Rumo Mgdb*
Valor (Madernal), Sans, Sales	pary							76-6	100
Planes remined ratios	deficie minacis		-	1				H-76 0-11	May issio Fallingo
164			_						
-						MALCOV 1			
		and the same of th							
		EMPHENIO DEL		_					
		7000							
-						36			
			1						
			1						
		14.	4				1 1 1 1		
	-	0)07							
		Dra. Ing. Zadith Nan	cy (Garrido					
		Campaña	30						
							100		
							10		

.

ANEXO 3 CATÁLOGO DE FALLAS EN PAVIMENTOS

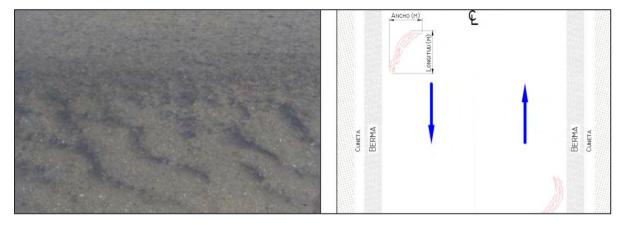

1. PIEL DE COCODRILO (m2)

Son una serie de grietas interconectadas en el pavimento son causadas por el debilitamiento por fatiga de la capa de rodadura asfáltica bajo cargas vehiculares repetidas, especialmente en las áreas afectadas por las ruedas. Este problema estructural, a menudo acompañado de ahuellamiento, se caracteriza por grietas cuyo tamaño máximo típico no excede los 0.60 m.

Sistema de medida	m2 del área superficial afectada.
	NIVELES DE SEVERIDAD
L (Low: Bajo):	Son grietas delgadas y longitudinales, paralelas y sin descascaramiento entre sus bordes.
M (Medium: Medio):	Desarrollo posterior de grietas piel de cocodrilo del nivel L, en un patrón o red de grietas que pueden mostrar ligeramente descamación.
H (High: Alto):	Patrón de grietas con segmentos definidos y descamación en los bordes; algunos segmentos pueden moverse con el tránsito.
	OPCIONES DE REPARACIÓN
L (Low: Bajo):	No se realiza ninguna reparación; simplemente se aplica un sellado superficial.
M (Medium: Medio):	Reparación parcial o completa hasta la profundidad total.
H (High: Alto):	Parcheo parcial, carpeta de asfalto o reconstrucción.

Nota. (ASTM D6433, 2004)

Piel de cocodrilo (m²)


2. EXUDACIÓN (m2)

Es una capa de material bituminoso brillante y reflectante que puede volverse pegajosa en la superficie del pavimento. Esto ocurre por un exceso de asfalto en la mezcla, aplicación excesiva de sellante asfáltico o falta de vacíos de aire adecuados, especialmente en altas temperaturas ambientales, donde el asfalto llena los vacíos de la mezcla y se expande hacia la superficie.

Sistema de medida:	m2 del área superficial afectada.		
NIVELES DE SEVERIDAD			
L (Low: Bajo):	La exudación es leve y perceptible solo durante algunos días al año, sin adherirse al calzado o vehículos.		
M (Medium: Medio):	La exudación ha llegado al punto en el que el asfalto se adhiere a los zapatos y vehículos solo durante algunas semanas al año.		
H (High: Alto):	La exudación ha sido significativa, con una cantidad considerable de asfalto que adhiere a los zapatos y vehículos durante varias semanas al menos cada año.		
OPCIONES DE REPARACIÓN			
L (Low: Bajo):	No se lleva a cabo ninguna acción o intervención.		
M (Medium: Medio):	Se aplica arena / agregados y cilindrado.		
H (High: Alto):	Se aplica arena / agregados y cilindrado (precalentando si fuera necesario).		

Nota. (ASTM D6433, 2004)

Exudación (m2)


3. AGRIETAMIENTO EN BLOQUE (m2)

Son grietas interconectadas que dividen el pavimento en bloques rectangulares de tamaño variable (0.30 m x 0.30 m hasta 3.0 m x 3.0 m), causadas por la contracción del concreto asfáltico y cambios diarios de temperatura. Este daño puede extenderse ampliamente en el pavimento y se diferencia del agrietamiento en piel de cocodrilo por formar bloques más grandes y uniformes.

Sistema de medida:	m2 del área superficial afectada.			
	NIVELES DE SEVERIDAD			
L (Low: Bajo):	Bloques definidos por grietas de baja severidad, como se define para grietas			
J /	longitudinales y transversales.			
M (Medium: Medio):	Bloques definidos por grietas de severidad media.			
H (High: Alto):	Bloques definidos por grietas de alta severidad.			
OPCIONES DE REPARACIÓN				
L (Low: Bajo):	Sellado de grietas con ancho superior a 3.0 mm. Riego de sello.			
M (Medium: Medio):	Sellado de grietas, reciclado superficial. Escarificado en caliente y sobrecarpeta.			
H (High: Alto):	Sellado de grietas, reciclado superficial. Escarificado en caliente y sobrecarpeta.			

Nota. (ASTM D6433, 2004)

Agrietamiento en bloque (m2)

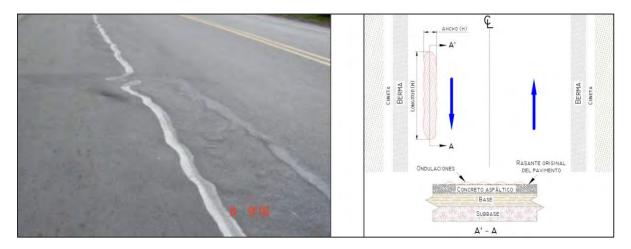
4. ABULTAMIENTOS (BUMPS) Y HUNDIMIENTOS (m2)

Los abultamientos son pequeñas elevaciones localizadas en el pavimento, causadas por factores como el levantamiento de losas de concreto o la expansión debido a la congelación. En contraste, los hundimientos son descensos abruptos en la superfície del pavimento, mientras que las ondulaciones afectan áreas extensas y se conocen como "hinchamientos".

Sistema de medida:	Su medida es en mL del área superficial afectada			
NIVELES DE SEVERIDAD				
L (Low: Bajo):	Calidad de tránsito de baja severidad.			
M (Medium: Medio):	Calidad de tránsito de severidad media.			
H (High: Alto):	Calidad de tránsito de severidad alta.			
OPCIONES DE REPARACIÓN				
L (Low: Bajo):	No se realiza ninguna acción.			
M (Medium: Medio):	Reciclado en frío, Parcheo profundo o parcial.			
H (High: Alto):	Reciclado (fresado) en frío. Parcheo profundo o parcial. Sobrecarpeta.			

Nota. (ASTM D6433, 2004)

Abultamiento (m2)

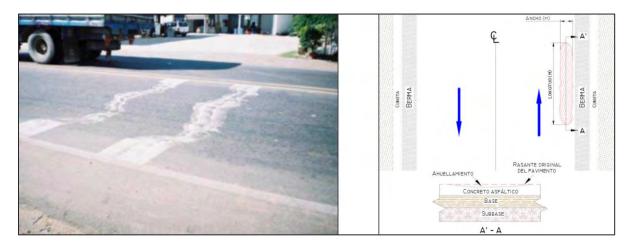

5. CORRUGACIÓN (m²)

La corrugación, conocida coloquialmente como "lavadero", se refiere a crestas y depresiones que están próximas entre sí, con intervalos regulares menores de 3.0 m y dispuestas perpendicularmente al flujo de tráfico. Este tipo de deterioro suele originarse debido a una base o carpeta inestables afectadas por la carga del tránsito.

Sistema de medida	Su medida es en m2 del área superficial afectada.			
NIVELES DE SEVERIDAD				
L (Low: Bajo): Producen una calidad de tránsito de baja severidad.				
M (Medium: Medio):	Producen una calidad de tránsito de mediana severidad.			
H (High: Alto):	Producen una calidad de tránsito de alta severidad.			
OPCIONES DE REPARACIÓN				
L (Low: Bajo):	No se realiza ninguna acción.			
M (Medium: Medio):	Se procede a realizar la reconstrucción.			
H (High: Alto):	Se procede a realizar la reconstrucción.			

Nota. (ASTM D6433, 2004)

Corrugación (m²)

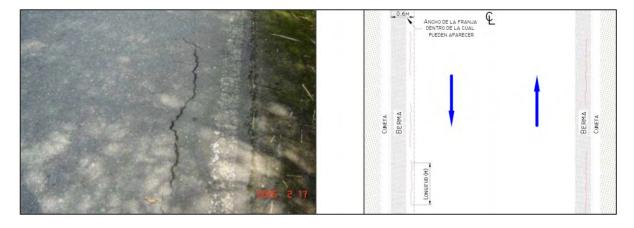

6. DEPRESIÓN (m²)

Las depresiones son áreas localizadas en la superficie del pavimento que se encuentran ligeramente más bajas que el pavimento circundante. Frecuentemente, estas depresiones suaves sólo son visibles después de la lluvia, cuando el agua acumulada forma un "baño de pájaros" (bird bath). En pavimento seco, las depresiones pueden identificarse por las manchas dejadas por el agua acumulada.

Sistema de medida	Su medida es en m ² del área superficial afectada.			
NIVELES DE SEVERIDAD				
L (Low: Bajo):	El intervalo está entre 13.0 a 25.0 mm			
M (Medium: Medio):	El intervalo está entre 25.0 a 51.0 mm.			
H (High: Alto):	Más de 51.0 mm.			
OPCIONES DE REPARACIÓN				
L (Low: Bajo):	No se realiza ninguna acción.			
M (Medium: Medio):	Se procede a realizar parcheo superficial, parcial o profundo.			
H (High: Alto):	Se procede a realizar parcheo superficial, parcial o profundo.			

Nota. (ASTM D6433, 2004)

Depresión (m²)

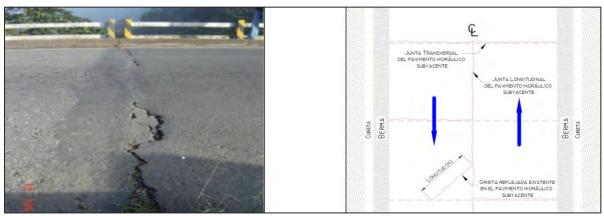

7. GRIETA DE BORDE (ml)

Las grietas de borde son paralelas y se encuentran típicamente a una distancia de 0.30 a 0.60 m del borde del pavimento. Este daño es exacerbado por las cargas del tránsito y puede originarse por debilitamiento debido a condiciones climáticas adversas o problemas en la base o subrasante cerca del borde del pavimento.

Sistema de medida	Su medida es en mL del área superficial afectada.				
NIVELES DE SEVERIDAD					
L (Low: Bajo):	Agrietamiento bajo o moderado sin ruptura ni desprendimiento de fragmentos.				
M (Medium: Medio):	Grietas moderadas con cierta fragmentación y desprendimiento.				
H (High: Alto):	Fragmentación o desprendimiento significativo a lo largo del borde.				
OPCIONES DE REPARACIÓN					
L (Low: Bajo):	No se realiza ninguna acción. Se sellan grietas que tienen un ancho superior a 3 mm.				
M(Medium:Medio):	Sellado de grietas. Parcheo parcial - profundo.				
H (High: Alto):	Parcheo parcial – profundo.				

Nota. (ASTM D6433, 2004)

Grieta de borde (ml)

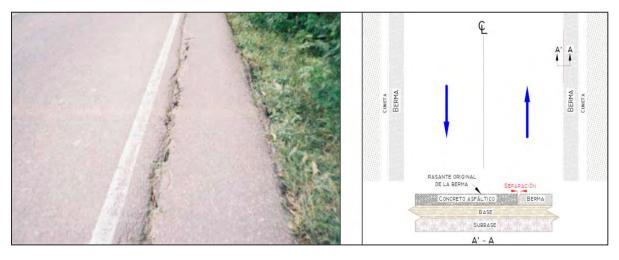

8. GRIETA DE REFLEXIÓN DE JUNTA (ml)

Son exclusivas de pavimentos con superficie asfáltica sobre losa de concreto de cemento Pórtland. Se originan por el movimiento de la losa de concreto debido a cambios de temperatura o humedad bajo la superficie de concreto asfáltico. Es esencial registrar por separado la longitud y severidad de cada grieta; por ejemplo, una grieta de 15.0 m puede incluir 3.0 m de grietas de alta severidad, que deben documentarse individualmente.

Sistema de medida	Su medida es en mL del área superficial afectada.		
NIVELES DE SEVERIDAD			
L (Low: Bajo):	 Grieta < 10.0 mm de ancho sin relleno. Grieta rellena en condiciones satisfactorias, cualquier ancho. 		
M (Medium: Medio):	 Grieta sin relleno: ancho de 10.0 mm a 76.0 mm. Grieta sin relleno: cualquier ancho hasta 76.0 mm Grieta rellena: cualquier ancho, con ligero agrietamiento. 		
H (High: Alto):	 Cualquier grieta rellena o no, rodeada de un agrietamiento aleatorio de media o alta severidad. Grietas sin relleno que superen los 76.0 mm de ancho. 		
OPCIONES DE REPARACIÓN			
L (Low: Bajo):	Sellado para anchos superiores a 3.00 mm.		
M (Medium: Medio):	Sellado de grietas. Parcheo de profundidad parcial.		
H (High: Alto):	Parcheo de profundidad parcial. Reconstrucción de la junta.		

Nota. (ASTM D6433, 2004)

Grieta de reflexión de junta (ml)


9. DESNIVEL CARRIL / BERMA

Es una diferencia de niveles entre el borde del pavimento y la berma. Este daño ocurre debido a la erosión de la berma, su asentamiento o la adición de capas de pavimento sin ajustar el nivel de la berma.

Sistema de medida:	Su medida es en mL (metro lineal) del área superficial afectada.			
NIVELES DE SEVERIDAD				
L (Low: Bajo):	La variación en altura entre el borde del pavimento y la berma oscila entre			
	25.0 y 51.0 mm.			
M (Medium: Medio):	La variación está entre 51.0 mm y 102.0 mm.			
H (High: Alto):	La variación en elevación es mayor que 102.00 mm.			
OPCIONES DE REPARACIÓN				
L (Low: Bajo):				
M (Medium: Medio):	Renivelación de las bermas para ajustar al nivel del carril.			
H (High: Alto):				

Nota. (ASTM D6433, 2004)

Desnivel de carril/berma (ml)

10. GRIETAS LONGITUDINALES Y TRANSVERSALES (ml)

Las grietas longitudinales son paralelas al eje del pavimento y pueden ser causadas por:

- 1. Junta de carril mal construida.
- 2. Contracción del concreto asfáltico debido a bajas temperaturas, endurecimiento del asfalto o ciclos diarios de temperatura.
- 3. Grieta de reflexión desde la capa de base, incluyendo grietas en losas de concreto Pórtland, excluyendo juntas de pavimento de concreto.

Sistema de medida	Su medida es en mL (metro lineal) del área superficial afectada.			
	NIVELES DE SEVERIDAD			
L (Low: Bajo):	1. Grieta sin relleno: ancho menor que 10.0 mm.			
L (Low. Bajo).	2. Grieta rellena: cualquier ancho (con condición satisfactoria del material llenante).			
	1. Grieta sin relleno: ancho de 10.0 mm a 76.0 mm.			
M (Medium: Medio):	2. Grieta sin relleno: cualquier ancho hasta 76.0 mm			
	3. Grieta rellena: cualquier ancho, con pequeñas grietas aleatorias cercanas.			
	1. Grieta rodeada por pequeñas grietas aleatorias de severidad media o alta.			
H (High: Alto):	2. Grieta sin relleno: ancho superior a 76.0 mm.			
	3. Grieta con algunas fracturas en las pulgadas, de cualquier ancho.			
OPCIONES DE REPARACIÓN				
L (Low: Bajo):	No se toma ninguna acción. Se sellan las grietas con un ancho superior a 3.0 mm			
M (Medium: Medio):	Se procede al sellado de grietas			
H (High: Alto):	Se procede al sellado de grietas. Parcheo parcial.			

Nota. (ASTM D6433, 2004)

Grietas longitudinales (ml)

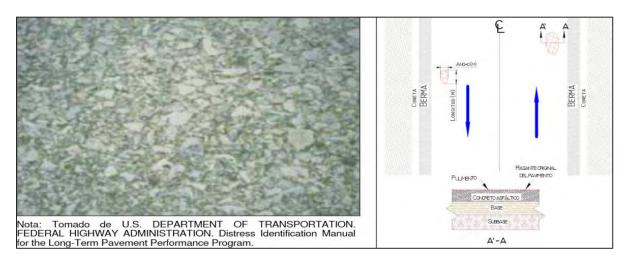
11. PARCHEO (m²)

Zona del pavimento que ha sido reemplazada con material nuevo para reparar el pavimento existente. Se considera un defecto, sin importar su desempeño, ya que generalmente un área parchada o la adyacente no se comportan tan bien como la sección original del pavimento. Este daño suele estar asociado con alguna rugosidad. Si un único parche presenta áreas con diferentes niveles de severidad, estas deben medirse y registrarse por separado.

Sistema de medida	m2			
NIVELES DE SEVERIDAD				
L (Low: Bajo):	bw: Bajo): El parche está en buena condición y es satisfactorio, con una calidad del tránsito calificada como de baja severidad o mejor.			
M (Medium: Medio):	El parche está moderadamente deteriorado o la calidad del tránsito se califica como de severidad media			
H (High: Alto):	El parche muestra un deterioro significativo o la calidad del tránsito se considera de alta severidad, necesitando ser reemplazado pronto.			
OPCIONES DE REPARACIÓN				
L (Low: Bajo):	No se toma ninguna acción.			
M (Medium: Medio):	No se toma ninguna acción. Sustitución del parche.			
H (High: Alto): Sustitución del parche.				

Nota. (ASTM D6433, 2004)

Parcheo (m²)


12. PULIMENTO DE AGREGADOS (m²)

El pulimento de agregados es causado por la carga repetida del tráfico, suavizando la superficie del agregado y reduciendo la adherencia con las llantas de los vehículos. Cuando hay poco agregado expuesto, la textura del pavimento no ayuda a reducir la velocidad. Se debe considerar el pulimento de agregados si la inspección muestra que el agregado expuesto es susceptible al desgaste y tiene una superficie suave al tacto.

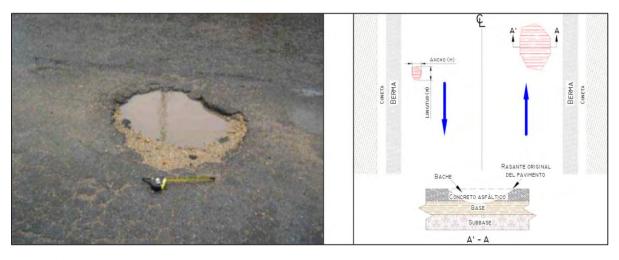
Sistema de medida	m² del área superficial afectada.		
NIVELES DE SEVERIDAD			
L (Low: Bajo):	No se especifica un nivel de severidad específico. No obstante, el		
M (Medium: Medio):	grado de pulimento debe ser notable antes de ser considerado er		
H (High: Alto):	una evaluación de la condición y registrado como defecto.		
OPCIONES DE REPARACIÓN			
L (Low: Bajo):	N		
M (Medium: Medio):	No se toma ninguna acción. Tratamiento superficial. Sobrecarpet Fresado y sobrecarpeta.		
H (High: Alto):			

Nota. (ASTM D6433, 2004)

Pulimiento de agregados (m²)

13. HUECOS (und)

Los huecos son pequeñas depresiones en el pavimento, generalmente con diámetros menores a 0.90 m y forma de tazón, con bordes afilados y lados verticales cerca de la parte superior. Su crecimiento puede acelerarse por la acumulación de agua. Se forman cuando el tráfico desprende fragmentos pequeños de la superficie del pavimento. Si los huecos son causados por una piel de cocodrilo severa, deben ser registrados como huecos y no como meteorización.


Sistema de medida:	Los huecos se miden contando aquellos que sean de severidades baja, media y				
Sistema de medida:	alta, y registrándolos separadamente.				
	NIVELI	ES DE SEVERID	OAD		
L (Low: Bajo):	Profundidad máxima del	Diâmetro medio (mm)			
M (Medium: Medio):	hueco.	102 a 203 mm	203 a 457 mm	457 a 762 mm	
	12.7 a 25.4 mm	L	L	M	
	> 25.4 a 50. 8 mm	14-	M	Н	
H (High: Alto):	> 50.8 mm	M	M	Н	
OPCIONES DE REPARACIÓN					
L (Low: Bajo):	No se realiza ninguna acción. Parcheo parcial o profundo.				
M (Medium: Medio):	Se realiza parcheo parcial o profundo.				

Se realiza parcheo profundo.

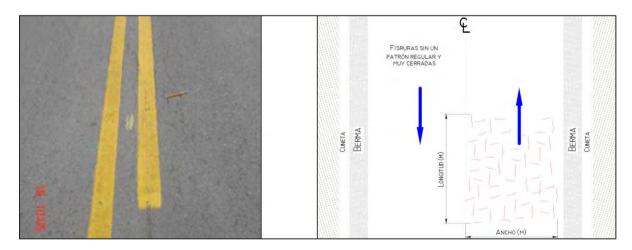
Nota. (ASTM D6433, 2004)

Hueco (und)

H (High: Alto):

CRUCE DE VÍA FÉRREA (M2)						
Se define como abultamientos o depresiones que se encuentran alrededor o entre los rieles, o ambos.						
Sistema de medida	Su medida es en m² (metro cuadrado) del área superficial.					
NIVELES DE SEVERIDAD						
L (Low: Bajo):	Cuando genera una calidad de tránsito de baja severidad					
M (Medium: Medio):	Cuando genera una calidad de tránsito de mediana severidad					
H (High: Alto):	Cuando genera una calidad de tránsito de alta severidad					
OPCIONES DE REPARACIÓN						
L (Low: Bajo):	No se hace nada					
M (Medium: Medio):	Parcheo superficial o parcial de la aproximación. Reconstrucción del					
(cruce.					
H (High: Alto):	Parcheo superficial o parcial de la aproximación. Reconstrucción del					
11 (111511. 1110).	cruce.					

Cruce de via férrea (m2)

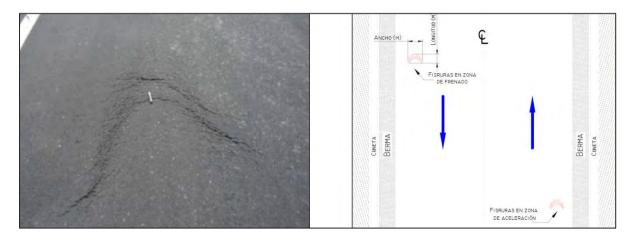

15. AHUELLAMIENTO (m²)

Es una depresión en la superficie causada por las huellas de las ruedas, a veces solo visible cuando estas están llenas de agua después de la lluvia. Se origina por deformación permanente en alguna capa del pavimento o subrasante, típicamente debido a la consolidación o desplazamiento lateral de materiales bajo la carga del tránsito. Un ahuellamiento significativo puede provocar una falla estructural considerable en el pavimento.

Sistema de medida	Su medida es en m² (metro cuadrado) del área superficial afectada.				
NIVELES DE SEVERIDAD					
L (Low: Bajo): Se encuentra en el rango de 6.0 a 13.0 mm.					
M (Medium: Medio):	Está en el rango >13.0 mm a 25.0 mm.				
H (High: Alto):	Se encuentra en un rango > 25.0 mm.				
OPCIONES DE REPARACIÓN					
L (Low: Bajo):	No se realiza ninguna acción. Fresado y sobrecarpeta.				
M (Medium: Medio):	Se realiza parcheo superficial, parcial o profundo.				
H (High: Alto):	Fresado y sobrecarpeta.				

Nota. (ASTM D6433, 2004)

Ahuellamiento (m2)


16. DESPLAZAMIENTO (m²)

Es el desplazamiento longitudinal y permanente de un área específica de la superficie del pavimento causado por las cargas del tránsito. Cuando el tránsito ejerce presión sobre el pavimento, genera una onda corta y abrupta en su superficie. Este tipo de daño generalmente ocurre en pavimentos que utilizan mezclas de asfalto líquido inestables (cutback o emulsión).

Sistema de medida	Su medida es en m ² del área superficial afectada.						
NIVELES DE SEVERIDAD							
L (Low: Bajo):	El desplazamiento resulta en una calidad de tránsito de baja severidad.						
M (Medium: Medio):	El desplazamiento resulta en una calidad de tránsito de media severidad.						
H (High: Alto):	El desplazamiento resulta en una calidad de tránsito de alta severidad.						
	OPCIONES DE REPARACIÓN						
L (Low: Bajo):	No se realiza ninguna acción o Fresado						
M (Medium: Medio):	Se realiza fresado.						
H (High: Alto):	Parcheo parcial o profundo.						

Nota. (ASTM D6433, 2004)

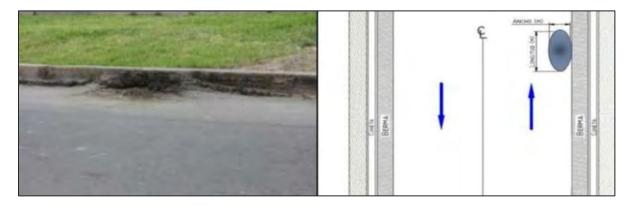
Desplazamiento (m²)

17. GRIETAS PARABÓLICAS (SLIPPAGE)

Son grietas en forma de media luna creciente causadas por el deslizamiento o la deformación de la superficie del pavimento cuando las ruedas frenan o giran. Este tipo de daño suele ocurrir en pavimentos con mezclas asfálticas de baja resistencia o con una unión deficiente entre la superficie y la capa subyacente en la estructura del pavimento.

Sistema de medida	Su medida es en m2 del área superficial afectada.							
NIVELES DE SEVERIDAD								
L (Low: Bajo):	El ancho promedio de la grieta menor que 10.0 mm.							
	1. Ancho promedio de la grieta entre 10.0 mm y 38.0 mm.							
M (Medium: Medio):	2. El área alrededor de la grieta está fracturada en pequeños pedazos							
	ajustados.							
	1. Ancho promedio de la grieta mayor que 38.0 mm.							
H (High: Alto):	2. El área alrededor de la grieta está fracturada en pedazos							
	fácilmente removibles.							
OPCIONES DE REPARACIÓN								
L (Low: Bajo):	No se realizará ninguna acción antes de mejorar el drenaje. Aplicación de emulsión bituminosa para sellar la superficie afectada.							
M (Medium: Medio):	Reparación de fisuras con emulsión bituminosa o asfalto líquido. Reparación parcial del pavimento con capa asfáltica utilizando							
H (High: Alto):	mezclas asfálticas en caliente. Remoción y reemplazo de la capa asfáltica existente.							

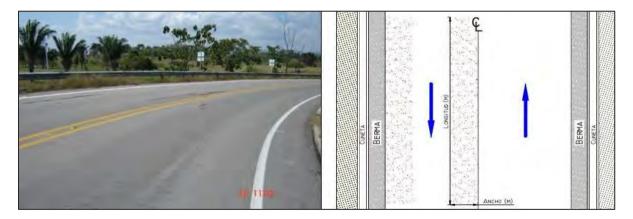
Nota. (ASTM D6433, 2004)


Grietas parabólicas (m²)

18. HINCHAMIENTO (m²) Se describe como un levantamiento gradual y largo de la superficie del pavimento, formando una onda con una longitud superior a 3.0 m. Este problema a menudo se presenta junto con grietas superficiales y suele ser causado por el congelamiento en la subrasante o por suelos que tienen potencial de expansión. Sistema de medida Su medida es en m2 del área superficial afectada. **NIVELES DE SEVERIDAD** El hinchamiento provoca una calidad de tránsito de baja severidad. A veces, L (Low: Bajo): el hinchamiento de baja severidad no es fácil de detectar visualmente, pero puede notarse al conducir a la velocidad límite sobre la sección de pavimento. M (Medium: Medio): El hinchamiento resulta en una calidad de tránsito de severidad media. El hinchamiento conduce a una calidad de tránsito de severidad alta. H (High: Alto): OPCIONES DE REPARACIÓN No se realiza ninguna acción. L (Low: Bajo): No se realiza ninguna acción; vigilar posible evolución. M (Medium: Medio): Perfilado frío tratamiento superficial. Bacheo profundo; incluida reposición de base granular. Reparación profunda de baches, que incluye la reposición de la base granular. Remoción parcial del pavimento existente seguido de reconstrucción con nueva base y capa asfáltica, o aplicación de tratamiento asfáltico según el H (High: Alto): tráfico. Mejora o renovación del sistema de drenaje superficial y/o profundo, posiblemente combinado con las técnicas mencionadas anteriormente.

Nota. (ASTM D6433, 2004)

Hinchamiento (m²)


19. DESPRENDIMIENTO DE AGREGADOS (m²)

Se trata de la pérdida de la capa superficial del pavimento debido a la falta de adherencia del ligante asfáltico y la liberación de partículas de agregado. Este problema indica que el ligante asfáltico ha endurecido en exceso o que la calidad de la mezcla es deficiente. Además, ciertos tipos de tránsito, como vehículos de orugas, pueden causar este desprendimiento.

Sistema de medida:	Su medida es en m2 del área superficial afectada.					
NIVELES DE SEVERIDAD						
L (Low: Bajo):	Hay pérdida de agregados o ligante en algunas áreas, con la superficie comenzano hundirse. Con derrames de aceite, hay una mancha visible, pero la superficie si siendo dura y no se hunde bajo presión de moneda.					
M (Medium: Medio):	Se ha producido la pérdida de agregados o ligante, resultando en una textura superficial moderadamente rugosa y ahuecada. En áreas con derrames de aceite, la superficie es suave y puede penetrarse con una moneda.					
H (High: Alto):	Se observa una pérdida considerable de agregados o ligante, resultando en una superficie muy rugosa y profundamente ahuecada. Las áreas ahuecadas tienen diámetros menores a 10.0 mm y profundidades de hasta 13.0 mm; las más grandes se clasifican como huecos.					
	OPCIONES DE REPARACIÓN					
L (Low: Bajo):	No se realiza ninguna acción. Sello superficial. Tratamiento superficial.					
M (Medium: Medio):	Sello superficial. Se realiza tratamiento superficial. Sobrecarpeta.					
H (High: Alto):	Bacheo superficial; mezcla asfáltica de frío/en caliente. Sellado de la superficie afectada con material bituminoso y recubrimiento Sellado de la superficie afectada con lechada asfáltica					

Nota. (ASTM D6433, 2004)

Desprendimiento de agregados (m²)

UNIVERSIDAD NACIONAL DE JAÉN FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

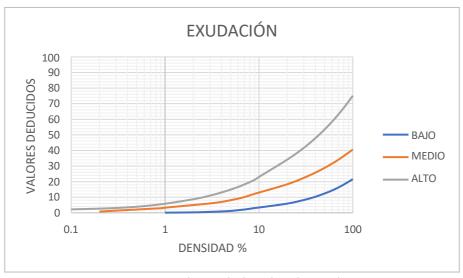
TESIS: "IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

PATRON DE EVALUACIÓN POR CADA TIPO DE FALLA

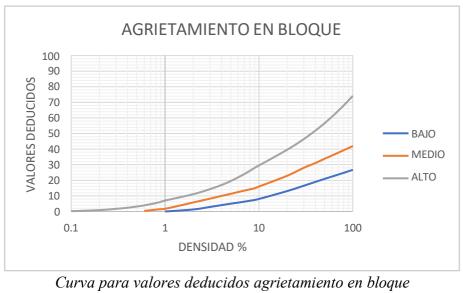
					SEVERIDAD		
N°	CLASE DE FALLA	SÍMBO	UNIDAD	CADACTEDISTICAS	L	M	Н
	CLASE DE FALLA	LO	UNIDAD	CARACTERISTICAS	Low (Baja)	Medium (Medio)	High (Alta)
1 Piel de Cocodrilo		m2	Severidad de grietas	s < 10mm	10mm < s < 30mm	s > 30mm	
	PC		Interconexión	Baja	Definida	Bien definida	
			Descascaramientos Desprendimientos	NP (no presenta) NP (no presenta)	Ligero NP (no presenta)	Bien definido Bien definido	
		EX	m2	Grado de exudación	Ligero	Medio	Intenso
2	Exudación de asfalto			El asfalto se pega a las ruedas de vehiculos y zapatos	Pocos días al año	Pocas semanas al año	Varias semanas al año
3	Fisuras en Bloque	BLO	m2	Severidad de grietas que definen los bloques	s < 10mm	10mm < s < 76mm	s > 76mm
4	Abultamientos y Hundimientos	ABH	m	Severidad del tránsito	baja	media	alta
5	Corrugación	COR	m2	Severidad del tránsito	baja	media	alta
6	Depresión	DEP	m2	Severidad del tránsito	13mm< h <25mm	25mm< h <51mm	h > 51mm
_				Fragmentación o desprendimientos	NP (no presenta)	Poco Definido	Bien definido
7	Fisuras de Borde	GB	m	Severidad	s < 10mm	10mm < s < 76mm	s > 76mm
				Agrietamiento	bajo	medio	severo
8	Grieta de Reflexión de Junta	GR	m	Grieta sin relleno Grieta con relleno	s < 10mm	10mm < s < 76mm	s > 76mm
9	Desnivel Carril/ Berma	DN	m	Elevacion entre el borde del pavimento y la berma	25mm< h <51mm	51mm< h <102mm	h > 102mm
10	Grietas Longitudinales y Transversales	GLT	m	Severidad de las grietas	s < 10mm	10mm < s < 76mm rodeado o no por grietas aleatorias	s > 76mm rodeado por grietas aleatorias de severidad M o H
11	Parcheo	PA	m2	Condición del parche	Buen estado	Moderadamente deteriorado	Muy deteriorado
				Severidad del tránsito	baja	media	alta
12	Pulimiento de Agregados	PU	m2	Grado de pulimiento deberá ser significativo para ser considerado como defecto.	ND (no definido)	ND (no definido)	ND (no definido)
		HUE		Huecos con diametro menor a 762mm (d < 762mm)	102mm< d < 203mm h < 25.4mm	102mm< d < 203mm h > 50.8mm	203mm< d < 457mm h > 50.8mm
			unid		102mm< d < 203mm	203mm< d < 457mm	457mm< d < 762mm
13 Huecos (Baches)	Huecos (Baches)				25.4mm< h <50.8mm	25.4mm< h <50.8mm	25.4mm< h <50.8mm
					203mm< d < 457mm h < 25.4mm	457mm< d < 762mm h < 25.4mm	457mm< d < 762mm h > 50.8mm
				Huecos con diametro mayor a 762mm (d > 762mm) N = A/0.47	No definido	$h \leq 25 mm$	$h \geq 25 mm$
14	Cruce de vía férrea	CVF	m2	Severidad del tránsito	baja	media	alta
15	Ahuellamientos	AHU	m2	Profundidad media del ahuellamiento (mm)	6mm< h <13mm	13mm< h <25mm	h > 25mm
16	Desplazamientos	DES	m2	Severidad del tránsito	baja	media	alta
17	Grieta Parabólica	GP	m2	Severidad de la grieta	s < 10mm	10mm < s < 38mm	s > 38mm
1,	Oriem a di divinca			Área alrededor de la grieta	Normal	Fracturada levemente	Fracturada severeamente
18	Hinchamiento	HN	m2	Severidad del tránsito	baja	media	alta
19	Desprendimiento de Agregados	DAG	m2	Desprendimientos	bajo	regular	considerable
				Textura superficial	Normal	Moderadamente rugosa y ahuecada	Muy rugosa y severamente ahuecada
					No puede penetrarse con una moneda	Puede penetrarse con una moneda	Agregados sueltos

ANEXO 4

CURVAS DE VALOR DEDUCIDO (VD) Y VALORES DEDUCIDOS CORREGIDO (VDC) PARA PAVIMENTOS ASFÁLTICOS


1 PIEL DE COCODRILO			
DENGIDA	VALOR DEDUCIDO		
DENSIDA D	BAJO	MEDI	ALTO
		О	
0.1	3.1	6.4	11.8
0.2	3.8	9.3	15.6
0.3	4.6	11.6	18.4
0.4	5.3	13.5	20.6
0.5	6.1	15.3	22.6
0.6	6.9	16.8	24.3
0.7	7.6	18.3	25.9
0.8	8.4	19.7	27.3
0.9	9.1	20.9	28.6
1	9.9	22	29.9
2	16.7	28.2	40.05
3	20.7	32.5	45.5
4	23.6	35.6	49.3
5	25.8	38	52.2
6	27.6	39.9	54.6
7	29.1	41.6	56.7
8	30.5	43	58.4
9	31.6	44.3	60
10	33	45.6	61.3
20	40.8	55.4	70.4
30	45.9	60.9	75.8
40	49.5	64.8	79.5
50	52.4	67.8	82.5
60	54.7	70.2	84.9
70	56.6	72.3	86.9
80	58.3	74.1	88.6
90	59.8	75.7	90.2
100	61.1	77.1	91.6

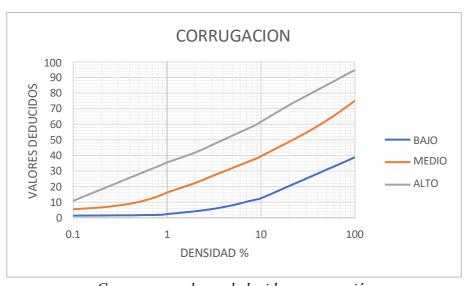
Curva para valores deducidos de piel de Cocodrilo


Datos para valores deducidos de exudación

	2 EXUDACION			
DENGIDA	VALOR DEDUCIDO			
DENSIDA D	BAJO	MEDIO	ALTO	
0.1			2.2	
0.2		0.8	2.7	
0.3		1.4	3.1	
0.4		1.8	3.5	
0.5		2.1	3.9	
0.6		2.4	4.3	
0.7		2.6	4.7	
0.8		2.8	5.1	
0.9		2.95	5.5	
1	0.1	3.3	5.8	
2	0.3	5	8.7	
3	0.6	6	11	
4	0.9	7	13.1	
5	1.2	8.1	14.9	
6	1.7	9.1	16.6	
7	2.1	10.1	18.2	
8	2.6	11.2	19.7	
9	3.1	12.2	21.1	
10	3.4	13	23	
20	5.9	18.3	34.1	
30	8.2	22.4	41.6	
40	10.3	25.8	47.9	
50	12.4	28.8	53.4	
60	14.3	31.5	58.4	
70	16.2	34	63	
80	18.1	36.4	67.3	
90	19.9	38.6	71.3	
100	21.6	40.6	75.1	

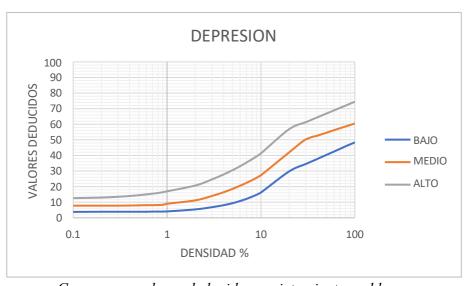
Curva para valores deducidos de exudación

3 AGRIETAMIENTO EN BLOQUE			
DENCIDA	VALOR DEDUCIDO		
DENSIDA D	BAJO	MEDI	ALTO
		О	
0.1			0.2
0.2			0.9
0.3			1.7
0.4			2.4
0.5			3.2
0.6		0.4	3.9
0.7		0.8	4.7
0.8		1.2	5.4
0.9		1.5	6.2
1	0	1.7	7
2	1.3	5.8	11.1
3	2.9	8.2	14.3
4	4.1	10	17
5	5	11.3	19.5
6	5.7	12.5	21.9
7	6.3	13.4	24
8	6.9	14.2	26.1
9	7.4	14.9	28
10	8	16	29.5
20	13.1	22.9	39.6
30	16.5	28	46.4
40	19	31.1	51.9
50	20.9	33.8	56.6
60	22.4	35.9	60.8
70	23.7	37.7	64.6
80	24.8	39.3	68
90	25.8	40.7	71.2
100	26.7	42	74.2


4 ABULTAMIENTOS Y HUNDIMIENTOS				
DENSIDA	V	VALOR DEDUCIDO		
DENSIDA D	BAJO	MEDIO	ALTO	
0.1				
0.2				
0.3		4.4	20.5	
0.4	0.9	6.4	23.1	
0.5	1.6	7.9	25.3	
0.6	2.2	9.2	27.3	
0.7	2.7	10.2	29.1	
0.8	3.2	11.2	30.8	
0.9	3.6	12	32.3	
1	3.9	12.7	33.7	
2	6.8	17.6	44.8	
3	8	21.9	50.5	
4	9.2	25.5	55	
5	10.4	28.7	58.8	
6	11.5	31.7	62.1	
7	12.7	34.4	65	
8	13.9	36.9	67.6	
9	15.1	39.3	70	
10	16.3	41.6	72.3	
20	28.1	60.2	88.8	
30	39.9	74.8	100.2	
32	40	75	100.3	
50				
60				
70	_			
80				
90				
100				

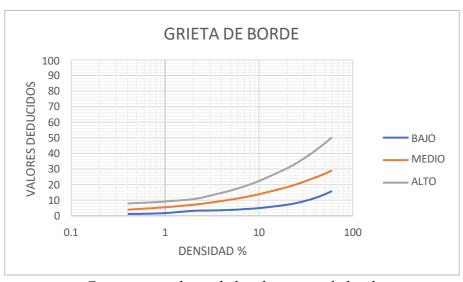
Curva para valores deducidos de abultamientos y hundimientos

Datos para valores deducidos de piel de corrugación


5 CORRUGACION				
DENGIDAD	V	VALOR DEDUCIDO		
DENSIDAD	BAJO	MEDIO	ALTO	
0.1	1.4	5.5	10.9	
0.2	1.5	6.7	18.3	
0.3	1.6	7.9	22.6	
0.4	1.6	9	25.7	
0.5	1.7	10.2	28	
0.6	1.8	11.4	30	
0.7	1.8	12.6	31.6	
0.8	1.9	13.8	33	
0.9	2	15	34.3	
1	2.4	16.2	35.5	
2	4.2	22.4	41.9	
3	5.6	26.7	46.7	
4	6.9	29.7	50.1	
5	8.1	32	52.8	
6	9.2	33.9	55	
7	10.3	35.5	56.8	
8	11.1	36.9	58.4	
9	11.8	38.1	59.8	
10	12.5	39.5	61.6	
20	20.4	48.8	72.3	
30	25	54.4	78	
40	28.3	58.8	82	
50	30.9	62.4	85.1	
60	32.9	65.5	87.6	
70	34.7	68.3	89.8	
80	36.2	70.8	91.7	
90	37.6	73	93.3	
100	38.8	75.1	94.8	

Curva para valores deducidos corrugación

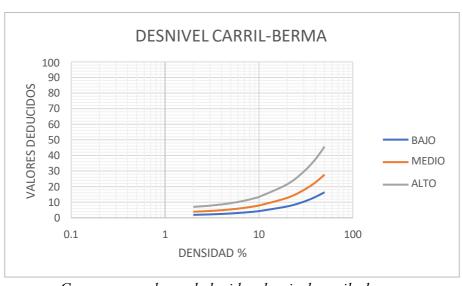
Datos para valores deducidos de depresión


	6 DEPRESION			
DENCIDA	VALOR DEDUCIDO			
DENSIDA D	BAJO	MEDIO	ALTO	
0.1	3.8	7.8	12.6	
0.2	3.9	7.8	13	
0.3	3.9	7.8	13.5	
0.4	3.9	7.9	14	
0.5	3.9	8	14.5	
0.6	3.9	8.1	15	
0.7	4	8.1	15.5	
0.8	4	8.2	15.9	
0.9	4	8.3	16.4	
1	4.1	9	17	
2	5.4	11.2	20.7	
3	6.8	14	24.6	
4	8.1	16.4	27.8	
5	9.4	18.6	30.6	
6	10.8	20.6	33.1	
7	12.1	22.4	35.4	
8	13.5	24.1	37.5	
9	14.8	25.7	39.4	
10	16.2	27.3	41.3	
20	29.8	42	56.9	
30	34.5	50.3	61.3	
40	37.8	52.7	64.5	
50	40.4	54.6	66.9	
60	42.5	56.2	68.9	
70	44.3	57.5	70.6	
80	45.9	58.6	72	
90	47.2	59.6	73.3	
100	48.4	60.5	74.5	

Curva para valores deducidos agrietamiento en bloque

Datos para valores deducidos de grieta de borde

7 GRIETA DE BORDE			
DENSIDA	VALOR DEDUCIDO		
D	BAJO	MEDIO	ALTO
0.1			
0.2			
0.3			
0.4	1.2	3.9	7.9
0.5	1.2	4.3	8.2
0.6	1.3	4.6	8.4
0.7	1.4	4.8	8.6
0.8	1.5	5.1	8.8
0.9	1.6	5.3	9
1	1.7	5.5	9.2
2	3.2	7.1	10.7
3	3.4	8.4	12.9
4	3.6	9.5	14.7
5	3.8	10.4	16.2
6	4	11.2	17.6
7	4.3	11.9	18.9
8	4.5	12.6	20.1
9	4.7	13.2	21.2
10	4.9	13.8	22.3
20	7.1	18.4	30.5
30	9.3	21.8	36.7
40	11.5	24.6	41.9
50	13.7	26.9	46.4
60	15.9	29.1	50.4
70			
80			
90			
100			


Curva para valores deducidos grieta de borde

8 GRIETA DE REFLEXION DE JUNTA				
DENSIDA	V	VALOR DEDUCIDO		
DENSIDA D	BAJO	MEDIO	ALTO	
0.1				
0.2				
0.3				
0.4		1.6	2.8	
0.5		1.8	4	
0.6		2	5	
0.7		2.1	5.8	
0.8		2.3	6.5	
0.9		2.5	7.1	
1	0.4	2.6	7.1	
2	1.1	4.3	11.2	
3	1.9	5.9	14.4	
4	2.6	7.5	17.3	
5	3.3	9.2	19.9	
6	4	10.8	22.3	
7	4.7	12.5	24.5	
8	5.4	14.1	26.7	
9	6.1	15.7	28.7	
10	6.6	16.6	30.7	
20	10.1	26.2	49.5	
30	12.9	31.8	59	
40	15.3	36.1	63.8	
50	17.5	38.1	66.6	
60	19.5	39.8	68.9	
70	21.5	41.2	70.8	
80	23.3	42.2	72.5	
90	25	43.5	73.9	
100	26.6	44.4	75.3	

Curva para valores deducidos de grieta de reflexión de junta

9 DESNIVEL CARRIL-BERMA			
DENGIDA	VALOR DEDUCIDO		
DENSIDA D	BAJO	MEDIO	ALTO
0.1			
0.2			
0.3			
0.4			
0.5			
0.6			
0.7			
0.8			
0.9			
1			
2	1.9	3.9	7
3	2.2	4.4	7.8
4	2.5	4.9	8.6
5	2.8	5.4	9.4
6	3.1	5.9	10.2
7	3.4	6.4	11
8	3.7	6.9	11.8
9	4	7.4	12.6
10	4.3	7.9	13.4
20	7.3	12.8	21.5
30	10.3	17.8	29.6
40	13.4	22.7	37.6
50	16.4	27.7	45.7
60			
70			
80			
90			
100			

Curva para valores deducidos desnivel carril - berma

10 GRIETAS LONGITUDINALES Y TRANSVERSALES				
DENGIDA	V.	VALOR DEDUCIDO		
DENSIDA D	BAJO	MEDIO	ALTO	
0.1				
0.2				
0.3				
0.4			4.3	
0.5			4.9	
0.6		1.4	5.6	
0.7		1.7	6.2	
0.8		1.9	6.7	
0.9		2.1	7.3	
1		2.4	7.8	
2	0.1	4.6	12.3	
3	2	6.9	16.1	
4	3.3	9.2	19.5	
5	4.3	11.5	22.6	
6	5.1	13	25.5	
7	5.8	14.3	28.2	
8	6.4	15.8	30.8	
9	7	17.1	32.5	
10	8	18.3	34.3	
20	12.2	26.1	50.3	
30	15.1	30.6	59.7	
40	17.7	33.9	66.3	
50	19.9	36.4	71.5	
60	22	38.4	75.7	
70	23.9	40.1	79.3	
80	25.6	41.6	82.3	
90	27.3	43	85.1	
100	28.9	44.2	87.5	

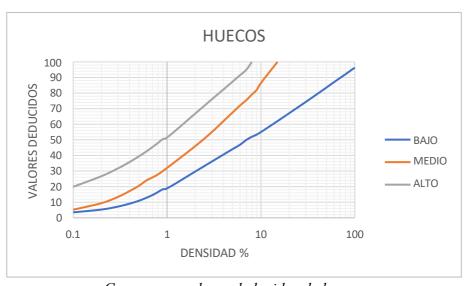
Curva para valores deducidos de grietas longitudinales y transversales

Datos para valores deducidos de parcheo

11 PARCHEO			
DENSIDA	VALOR DEDUCIDO		
DENSIDA D	BAJO	MEDIO	ALTO
0.1		3.7	6.5
0.2		4.5	9.2
0.3		5.2	11.2
0.4		6	12.9
0.5	1.2	6.7	14.4
0.6	1.4	7.5	15.8
0.7	1.6	8.2	17.1
0.8	1.9	9	18.3
0.9	2.1	9.7	19
1	2.3	10.1	20
2	4.4	14.3	26
3	6.6	17.4	30.8
4	8	20.1	34.8
5	9.9	22.4	38.2
6	11.7	24.6	41.2
7	13.2	26.5	44
8	14.6	28.3	46.5
9	15.7	30	48.9
10	16.8	31.5	52
20	23.7	41	67.5
30	27.8	47.9	73.1
40	30.7	53.4	77
50	32.9	58.2	80.1
60			
70			
80			
90			
100			

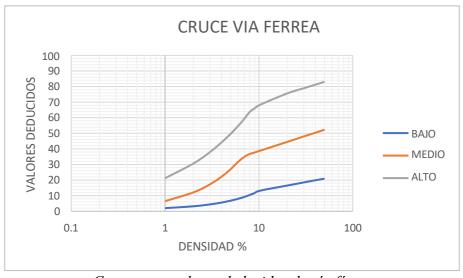
Curva para valores deducidos de parcheo

Datos para valores deducidos de agregados pulidos


12 AGREGADOS PULIDOS			
DENSIDA	VALOR DEDUCIDO		
D	BAJO	MEDIO	ALTO
0.1			
0.2			
0.3			
0.4			
0.5			
0.6			
0.7			
0.8			
0.9			
1			
2			
3			
4		0.5	
5		1.2	
6		1.8	
7		2.3	
8		2.8	
9		3.1	
10		3.5	
20		6.5	
30		8.3	
40		10.1	
50		11.8	
60		13.6	
70		15.4	
80		17.1	
90	18.9		
100		20.7	

Curva para valores deducidos de agregados pulidos

Datos para valores deducidos de huecos


	13 H	UECOS			
DENCIDA	V.	ALOR DEDU	ICIDO		
DENSIDA D	BAJO	MEDIO	ALTO		
0.1	3.5	5.2	19.9		
0.2	5.3	9.4	26.7		
0.3	7.2	13.4	31.7		
0.4	9.1	17.2	35.8		
0.5	10.9	20.5	39.4		
0.6	12.8	23.9	42.5		
0.7	14.6	25.9	45.4		
0.8	16.5	27.8	48		
0.9	18.3	30	50.5		
1	18.8	32	51.4		
2	29.7	46	66.9		
3	36.1	55	76		
4	40.6	62.1	82.4		
5	44.1	67.6	87.4		
6	46.9	72.1	91.5		
7	50	75.5	95		
8	52	79.1	100		
9	53.3	82			
10	55	86.5			
15	62	100			
30	74.3				
40	79.5				
50	83.6				
60	87				
70	89.8				
80	92.2				
90	94.4				
100	96.3				

Curva para valores deducidos de huecos

Datos para valores deducidos de cruce vía férrea

	14 CRUC	E VIA FERR	REA
DENSIDA	V.	ALOR DEDU	ICIDO
DENSIDA D	BAJO	MEDIO	ALTO
0.1			
0.2			
0.3			
0.4			
0.5			
0.6			
0.7			
0.8			
0.9			
1	2	6.5	21.2
2	3.2	12.1	30.6
3	4.4	17.2	37.9
4	5.6	22.2	44.2
5	6.8	27	49.7
6	8	31.7	54.7
7	9.2	35	59.4
8	10.5	36.8	63.8
9	11.7	37.7	66
10	13.1	38.6	68
20	16.5	44.5	75.6
30	18.5	48	78.9
40	19.9	50.4	81.2
50	20.9	52.3	83.1
60			
70			
80			
90			
100			

Curva para valores deducidos de vía férrea

Datos para valores deducidos de ahuellamiento

	15 AHUI	ELLAMIENT	0
DENSIDA	V	ALOR DEDU	ICIDO
DENSIDA D	BAJO	MEDIO	ALTO
0.1	1.1	4.6	6
0.2	2	7.1	12.4
0.3	2.8	9	16.1
0.4	3.6	10.8	18.8
0.5	4.3	12.3	20.8
0.6	5.1	13.8	22.5
0.7	5.8	15.1	23.9
0.8	6.5	16.4	25.2
0.9	7.2	17.6	26.2
1	7.9	18.2	26.7
2	14	25.3	36.2
3	17.1	30.1	42.4
4	19.1	33.4	46.8
5	20.8	36.1	50.2
6	22.3	38.2	53
7	23.6	39.8	55.3
8	24.9	41.6	57.4
9	26	42.9	59.2
10	27.1	44.2	60.8
20	35.9	53	73
30	41.4	57.9	79.3
40	43.4	60.3	81.8
50	45.1	62.1	83.8
60	46.5	63.7	85.4
70	47.7	65.1	86.8
80	48.8	66.3	87.9
90	49.7	67.4	89
100	50.6	68.4	89.9

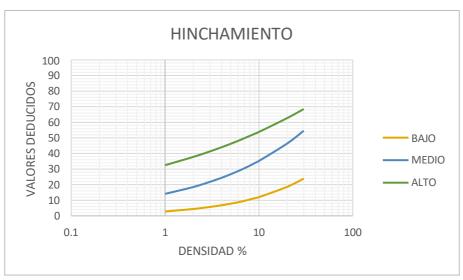
Curva para valores deducidos de ahuellamiento

Datos para valores deducidos de deslizamiento

	16 DESI	IZAMIENT	0
DENCIDA	V.	ALOR DEDU	ICIDO
DENSIDA D	BAJO	MEDIO	ALTO
0.1		2.2	8
0.2		3.1	9.63
0.3		4	10.7
0.4		4.8	12
0.5	1.1	5.7	13.3
0.6	2	6.6	14.6
0.7	2.8	7.5	15.9
0.8	3.5	8.3	17.2
0.9	4.1	9.2	18.6
1	4.6	10.5	19.5
2	7.7	15.4	26.1
3	10.6	19	31.2
4	13	22.1	35.4
5	14.9	24.8	39
6	16.5	27.3	42.3
7	17.8	29.6	45.2
8	18.9	31.7	48
9	19.9	33.7	50.5
10	21.3	35.6	53.1
20	28	49.3	65.2
30	31.9	55.9	72.3
40	34.6	60.5	77.3
50	36.8	64.1	81.2
60	-		
70			
80			
90			
100			

Curva para valores deducidos de deslizamiento

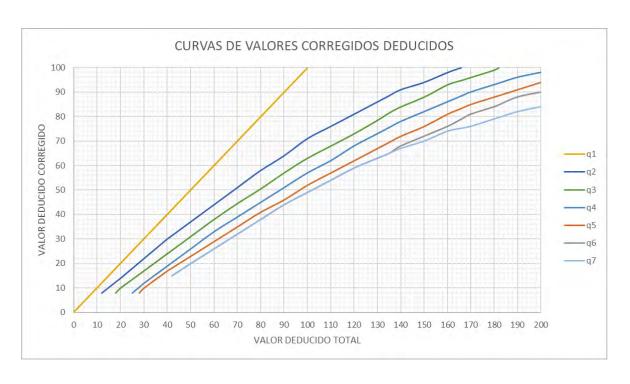
Datos para valores deducidos de grieta parabólica


	17 GRIET	A PARABOL	ICA
DENSIDA	V.	ALOR DEDU	ICIDO
DENSIDA D	BAJO	MEDIO	ALTO
0.1		1	4
0.2	0.8	3.6	6.5
0.3	1.6	5.2	8.6
0.4	2.1	6.3	10.6
0.5	2.5	7.2	12.4
0.6	2.9	7.9	14
0.7	3.2	8.5	15.6
0.8	3.4	9	17.2
0.9	3.7	9.5	18.7
1	4.3	10.6	20
2	10.2	19.3	30.2
3	14.2	25.3	37.5
4	17.1 29.6		43.6
5	19.3	32.9	49.1
6	21.1	35.6	54.1
7	22.6	37.8	58.8
8	24	40	63.1
9	25.1	42	67.2
10	27.2	44	69.9
20	35.4	52.7	78
30	40.2	57.2	81
40	43.6	60.4	83.2
50	46.2	62.9	85.4
60	48.4	64.9	87.1
70	50.2	66.7	88.6
80	51.8	68.2	89.9
90	53.2	69.5	91.1
100	54.4	70.6	92.1

Curva para valores deducidos de grieta de parabólica

Datos para valores deducidos de hinchamiento

	18 HINC	CHAMIENTO	
DENSIDA	V.	ALOR DEDU	CIDO
DENSIDA D	BAJO	MEDIO	ALTO
0.1			
0.2			
0.3			
0.4			
0.5			
0.6			
0.7			
0.8			
0.9			
1	2.8	14.1	32.5
2	4.4	18.5	37.8
3	5.7	21.8	41.3
4	6.8	24.4	44
5	7.8	26.7	46.2
6	8.7	28.7	48.1
7	9.6	30.5	49.8
8	10.5	32.2	51.3
9	11.3	33.8	52.6
10	12	35.2	53.8
20	18.6	46.4	62.7
30	23.9	54.6	68.5
40			
50			
60			
70			
80			
90			
100			


Curva para valores deducidos de hinchamiento

19 DESPR	ENDIMIENT	TO DE AGRI	EGADOS	
DENSIDA	V	ALOR DEDU	ICIDO	
DENSIDA D	BAJO	MEDIO	ALTO	
0.1	0.3	4.4	5.7	
0.2	0.4	5.7	8.8	
0.3	0.8	6.5	10.6	
0.4	1.2	7	11.9	
0.5	1.4	7.4	12.9	
0.6	1.6	7.8	13.7	
0.7	1.7	8.1	14.4	
0.8	1.9	8.3	15	
0.9	2	8.5	15.5	
1	2	8.9	16	
2	2.3	10	21	
3	2.7	11.2	24.9	
4	3	12.3	28.2	
5	3.3	13.4	30.9	
6	3.7	14.5	33.4	
7	4	15.7	35.6	
8	4.3	16.8	37.7	
9	4.6	17.9	39.6	
10	4.6	19	42	
20	8	25.3	54.5	
30	10	29.9	60.6	
40	11.4	33.1	65	
50	12.5	35.6	68.4	
60	13.4	37.6	71.1	
70	14.1	39.3	73.5	
80	14.8	40.8	75.5	
90	15.3	42.1	77.3	
100	15.8	43.3	78.9	

Curva para valores deducidos de desprendimiento de agregados

VDT	CURVAS DE VALORES CORREGIDOS DEDUCIDOS								
VDI	q1	q2	q3	q4	q5	q6	q 7		
0	0								
10	10								
12	12	8							
18	18	12.5	8						
20	20	14	10						
25	25	18	13.5	8					
28	28	20.4	15.6	10.4	8				
30	30	22	17	12	10				
40	40	30	24	19	17				
42	42	31.4	25.4	20.4	18.2	15	15		
50	50	37	31	26	23	20	20		
60	60	44	38	33	29	26	26		
70	70	51	44.5	39	35	32	32		
80	80	58	50.5	45	41	38	38		
90	90	64	57	51	46	44	44		
100	100	71	63	57	52	49	49		
110		76	68	62	57	54	54		
120		81	73	68	62	59	59		
130		86	78.5	73	67	63	63		
135		88.5	81.5	75.5	69.5	65	65		
140		91	84	78	72	68	67		
150		94	88	82	76	72	70		
160		98	93	86	81	76	74		
166		100	94.8	88.4	83.4	79	75.2		
170			96	90	85	81	76		
180			99	93	88	84	79		
182			100	93.6	88.6	84.8	79.6		
190				96	91	88	82		
200				98	94	90	84		

ANEXO 5

CÁLCULO DE LA CONDICIÓN MEDIANTE VANT POR UNIDAD DE MUESTRA

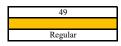
REGISTRO DE VANT

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM1	UM Representativas de 10 Km			
NOMBRE DEE TRAINO.	C. Halle T. E. H. V. D. H. V. D. H. T.	CANDAD DE MCESTRA.	0	UM1	UM20	UM39	UM58
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 60+000.0 - KM 60+035.4	UM77	UM96	UM115	UM134
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210
FECHA:	29/07/2024	ÁREA DE LA MUESTRA :	230 10 m2	UM229	UM248	UM267	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m		•		


Colores	Clasificación							
	Excelente							
	Muy bueno							
	Bueno							
	Regular							
	Malo							
	Muy malo							
	Fallado							
Niveles de severidad y Unid. de medida								
Low (bajo)								
Medium	(medio)							
	eridad y U							

FALLAS	SEVERIDAD		CANTIDAD								TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)	
10	L	4.295	10.719	7.858	11.991	2.815						37.68	16.37%	11.00
10	M	2.566	2.502	2.954	31.697							39.72	17.26%	24.00
10	Н	4.592	5.580	2.250								12.42	5.40%	25.00
11	M	15.156										15.16	6.59%	26.00
19	L	5.736	15.082	0.937								21.76	9.45%	4.00
19	M	5.080										5.08	2.21%	10.00
2	L	5.736										5.74	2.49%	1.00
										Total VD	101.00			

CALCULO DEL PC	l
Número de deducidos > 2 (q)	6
Valor deducido mas alto (HDV)	26.00
Numero maximo de valores deducidos (mi)	7.80

N°		V	ALORES	DEDUCIDO	VDT	q	VDC		
1	26	25	24	11	10	4	100.00	6	49
2	26	25	24	11	10	2	98.00	5	51
3	26	25	24	11	2	2	90.00	4	51
4	26	25	24	2	2	2	81.00	3	51
5	26	25	2	2	2	2	59.00	2	43
6	26	2	2	2	2	2	36.00	1	36
							MAX VD0)	51

INDICE DE CONDICION DE PAVIMENTO (PCI)

TIPO DE FALLAS	SIMBOLOGI
1. Piel de cocodrila (m2)	100
2. Exudación de asfalto (m2)	1/1
3. Fisuros en bloque (m2)	
4.Abultaniento y Hundimentos(n	
5. Corrugaciones (m2)	1000
6. Depresiones (n2)	
7. Fisuras de borde (n)	=
8. Grietos de reflexiones (m)	
9. Desnivel carril/berna (m)	
10.Fisuras longitudinales y transversoles (m) 11. Parcheo (m2)	
12. Agregados pulldos (n2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea(n2)	
15. Ahuellamiento (n2)	VXX
16. Dezplazamiento (m2)	2
17. Grieta parabólica (n)	4000
18. Hinchamiento (m)	
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

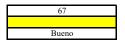
PROYECTO DE TESIS:

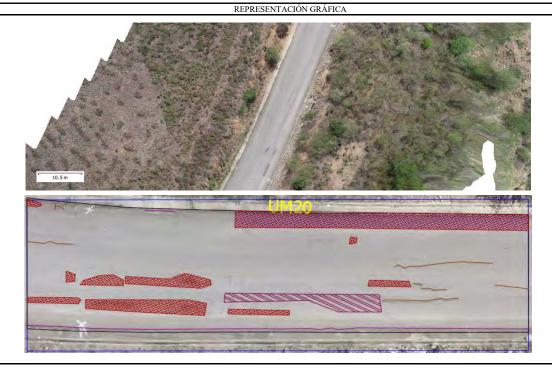
"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM20	UM Representativas de 10 Km				
NOMBRE DEL TRAMO.	CHARLET STEET STEET GIVICIO	CIVIDITO DE MICESTRA	CMZO	UM1	UM20	UM39	UM58	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 60+672.6 - KM 60+708.0	UM77	UM96	UM115	UM134	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210	
FECHA:	29/07/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM229	UM248	UM267		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación
85 - 100		Excelente
70 - 85		Muy bueno
55 - 70		Bueno
40 - 55		Regular
25 - 40		Malo
10 - 25		Muy malo
0 - 10		Fallado


Nive	les de severidad y Unid. de medida
L	Low (bajo)
М	Medium (medio)
Н	High (alto)


FALLAS	SEVERIDAD		CANTIDAD									TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)
2	L	8.735										8.74	3.80%	2.00
10	L	3.383	7.09	2.366								12.84	5.58%	5.00
10	M	0.89	2.483	5.418								8.79	3.82%	9.00
7	М	17.938	17.521	2.138								37.60	16.34%	17.00
19	M	2.431	2.627	3.802	7.436	1.712	23.701					41.71	18.13%	24.00
	•						,							
											Total VD	57.00		

CALCULO DEL PCI	
Número de deducidos > 2 (q)	4
Valor deducido mas alto (HDV)	24.00
Numero maximo de valores deducidos (mi)	7.98

N°		V	ALORES	DEDUCIDO	VDT	q	VDC		
1	24	17	9	5			55.00	4	27
2	24	17	9	2			52.00	3	32
3	24	17	2	2			45.00	2	33
4	24	2	2	2			30.00	1	30
							MAX VDC		33

INDICE DE CONDICION DE PAVIMENTO (PCI) CONDICION DEL PAVIMENTO

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocodrila (m2)	188
2. Exudación de asfalto (m2)	7.77
3. Fisuras en bloque (m2)	
4.Abultaniento y Hundimentos(n	
5. Corrugaciones (m2)	1000
6. Depresiones (n2)	1100
7. Fisuras de borde (n)	
8. Grietas de reflexiones (m)	1
9. Desnivel carril/berna (m)	
10.Fisuras longitudinales y transversales (m)	
11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea.(m2)	
15. Ahuellariento (n2)	(XX)
16: Dezplazamiento (m2)	
17. Grieta parabólica (m)	200
18. Hinchamiento (m)	
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

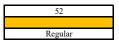
PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

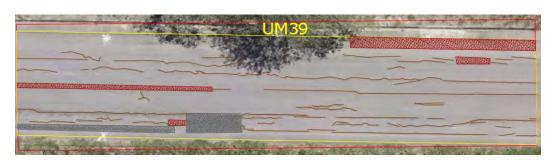
NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM39	UM Representativas de 10 Km				
NOMBRE DEL TRAMO.	CARGETERA SALLA SALVAGIANCIO	CIVIDIAD DE MICESTRA	CMS	UM1	UM20	UM39	UM58	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 61 + 345.2 - KM 61 + 380.6	UM77	UM96	UM115	UM134	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210	
FECHA:	29/07/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM229	UM248	UM267		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación					
85 - 100		Excelente					
70 - 85		Muy bueno					
55 - 70		Bueno					
40 - 55		Regular					
25 - 40		Malo					
10 - 25		Muy malo					
0 - 10							
Niveles de sev	eridad y Uı	nid. de medida					


INIVE	Niveles de severidad y Offici. de filedida										
L	Low (bajo)										
М	Medium (medio)										
Н	High (alto)										

FALLAS	SEVERIDAD		CANTIDAD									TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)
10	L	6.334	12.665	11.308	15.115	9.659	9.822	4.782	2.112	1.992		73.789	32.07%	16.00
10	М	20.608	17.160	17.083	15.794	18.602	10.597					99.844	43.39%	35.00
11	M	5.288	4.483									9.771	4.25%	21.00
19	L	10.186										10.186	4.43%	3.00
19	М	4.252	1.160									5.412	2.35%	10.00
										,				
			•				·			·			Total VD	85.00


CALCULO DEL PCI	
Número de deducidos > 2 (q)	5
Valor deducido mas alto (HDV)	35.00
Numero maximo de valores deducidos (mi)	6.97

N°			VALORES	DEDUCIDOS	VDT	q	VDC		
1	35	21	16	10	3		85.00	5	43
2	35	21	16	10	2		84.00	4	47
3	35	21	16	2	2		76.00	3	48
4	35	21	2	2	2		62.00	2	45
5	35	2	2	2	2		43.00	1	43
							MAX VD0	3	48

INDICE DE CONDICION DE PAVIMENTO (PCI)

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocodrila (m2)	144
2. Exudación de asfalto (m2)	7.77
3. Fisuras en bloque (m2)	
4.Abultamiento y Hundimentos(m	
5. Conrugaciones (M2)	1,777
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8 Grietas de reflexiones (m)	1
9. Desnivel carril/berma (m)	-
10.Fisuras longitudinales y transversoles (m) 11. Parcheo (m2)	
12. Agregados pulldos (n2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea.(n2)	
15. Ahuellariento (n2)	VXX
16: Dezplazamiento (m2)	
17. Grieta parabólica (n)	4000
18. Hinchamiento (m)	
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

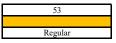
NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM58	UM Representativas de 10 Km			
NOMBRE DEE TREMO.	CHARLE ENTITIES STEVIO TOTAL CO	CIVIDIAD DE MICESTRA	CMSC	UM1	UM20	UM39	UM58
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 62 + 017.8 - KM 62 + 053.2	UM77	UM96	UM115	UM134
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210
FECHA:	29/07/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM229	UM248	UM267	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación
85 - 100		Excelente
70 - 85		Muy bueno
55 - 70		Bueno
40 - 55		Regular
25 - 40		Malo
10 - 25		Muy malo
0 - 10		Fallado

INIVE	Niveles de severidad y Offid. de filedida										
L	Low (bajo)										
М	Medium (medio)										
Н	High (alto)										

FALLAS	SEVERIDAD		CANTIDAD TOTAL									DENSIDAD	VALOR DEDUCIDO (VD)	
7	М	17.815										17.82	7.74%	12
10	L	10.257										10.26	4.46%	4
19	М	35.887										35.89	15.60%	23
1	L	24.959	9.532									34.49	14.99%	37
											Total VD	76.00		


CALCULO DEL PCI							
Número de deducidos > 2 (q)	4						
Valor deducido mas alto (HDV)	37.00						
Numero maximo de valores deducidos (m)	6.79						

N°			VALORES	DEDUCIDOS	VDT	q	VDC		
1	37	23	12	4			76	4	42
2	37	23	12	2			74	3	47
3	37	23	2	2			64	2	46
4	37	2	2	2			43	1	43
							MAX VDC		47

INDICE DE CONDICION DE PAVIMENTO (PCI)

CONDICION DEL PAVIMENTO

REPRESENTACIÓN GRÁFICA

A				1, Piel
			The state of the s	2. Exu
				3. Flsu
				4.Abult
			是一个工作,一个工作,	5. Com
		- A - W		6. Dep
				7. Fisu
2011年,1980年			A CONTRACTOR OF THE PARTY OF TH	8. Gnle
				9. Des
				10.Fisu
10.5 m		一次	THE STATE OF THE S	trai
10.5 M			22 MIL 11 1	11. Par
				12. Ag
ALC: NO.	MES WAR	STATE OF THE PARTY		13. Hu
P. P. Carlotte	建工业工业		是是	14. Cm
	TITLE THE PARTY OF	100	· 京学第二次	15. Ah
		Commercial Contract		16: De
				17. 5
			CONT.	
			36	18. H)
				19. De
				ági
- 4				
THE PROPERTY OF THE PARTY OF	Att Design Street & Comments of the			
		AND THE PERSON	国际基础的	
A STATE OF THE PARTY OF THE PAR	THE RESERVE TO SERVE THE PARTY OF THE PARTY		The same of the sa	

TIPO DE FALLAS	SIMBOLOGIA
1. Piel de cocadrila (m2)	100
2. Exudación de asfalto (m2)	7.7
3. Fisuros en bloque (m2)	
4.Abultaniento y Hundimentos(n	
5. Conrugaciones (M2)	1000
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8 Grietos de reflexiones (m)	
9. Desnivel carril/berna (m)	-
10.Fisuras longitudinales y transversales (m) 11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea(m2)	
15. Ahuellariento (n2)	VXX
16. Dezplazamiento (m2)	
17. Grieta parabólica (n)	444
18. Hinchamiento (m)	
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

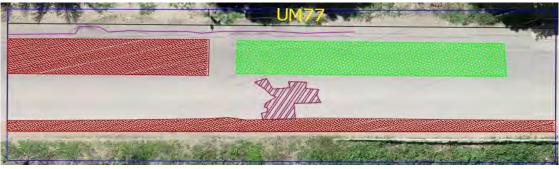
NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM77	UM Representativas de 10 Km				
TOMBINE DEE THE MO	ernand Diarrenda (Branchero	MATSHEN SHAVIOIMEIO		UM1	UM20	UM39	UM58	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 62+690.4 - KM 62+725.8	UM77	UM96	UM115	UM134	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210	
FECHA:	29/07/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM229	UM248	UM267		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación					
85 - 100		Excelente					
70 - 85		Muy bueno					
55 - 70		Bueno					
40 - 55		Regular					
25 - 40		Malo					
10 - 25		Muy malo					
0 - 10		Fallado					
Niveles de severidad y Unid, de medida							

Wiveles de Severidad y Offici. de Medida										
L Low (bajo)										
М	Medium (medio)									
Н	High (alto)									

FALLAS	SEVERIDAD		CANTIDAD TOTAL								DENSIDAD	VALOR DEDUCIDO (VD)		
1	L	41.145										41.145	17.88%	39.00
2	L	6.496										6.496	2.82%	1.00
7	М	22.883										22.883	9.94%	14.00
19	L	22.078										22.078	9.59%	5.00
19	М	29.952										29.952	13.02%	21.00
	•		·											
										Total VD	41.00			


CALCULO DEL PCI							
Número de deducidos > 2 (q)	4						
Valor deducido mas alto (HDV)	21.00						
Numero maximo de valores deducidos (mi)	8.26						

N°		VALORES DEDUCIDOS						q	VDC
1	39	21	14	5			79.00	4	44
2	39	21	14	2			76.00	3	48
3	39	21	2	2			64.00	2	47
4	39	2	2	2			45.00	1	45
							MAX VDC		48

INDICE DE CONDICION DE PAVIMENTO (PCI)

52	
Regular	
regulai	

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocodrila (n2)	188
2. Exudación de asfalto (m2)	V-//
3. Fisuras en bloque (m2)	
4 Abultaniento y Hundimentos(m	
5. Corrugaciones (M2)	1000
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8 Grietas de reflexiones (m)	1
9. Desnivel carril/perma (m)	-
10.Fisuras longitudinales y transversales (n)	3
11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea(n2)	
15. Ahuellariento (n2)	VXX
16. Dezplozomiento (m2)	
17. Grieta parabólica (n)	200
18. Hinchamiento (m)	
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM96	UM Representativas de 10 Km				
NOMBRE DEE TRAMO.	ernati i i i i i i i i i i i i i i i i i i	C. VIB. ID BE MCESTICA	0.1.50	UM1	UM20	UM39	UM58	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 63+363.0 - KM 63+398.4	UM77	UM96	UM115	UM134	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210	
FECHA:	30/07/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM229	UM248	UM267		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación
85 - 100		Excelente
70 - 85		Muy bueno
55 - 70		Bueno
40 - 55		Regular
25 - 40		Malo
10 - 25		Muy malo
0 - 10		Fallado

IVIV	nes de severidad y Offid. de medida
L	Low (bajo)
М	Medium (medio)
Н	High (alto)

FALLAS	SEVERIDAD				CAI	NTIDAD			TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)
2	M	1.571							1.57	0.68%	3.00
7	M	11.652							11.65	5.06%	11.00
19	L	14.806	1.308	4.651					20.77	9.02%	5.00
19	M	24.461	2.102	3.200					29.76	12.93%	21.00
1	L	6.786	5.443						12.23	5.31%	27.00
										Total VD	67.00

CALCULO DEL PCI						
Número de deducidos > 2 (q)	5					
Valor deducido mas alto (HDV)	27.00					
Numero maximo de valores deducidos (mi)	7.70					

N°	VALORES DEDUCIDO		VALORES DEDUCIDOS 27 21 11 5 3 27 21 11 5 2 27 21 11 2 2 27 21 12 2 2 27 21 2 2 2 27 2 2 2 2 27 2 2 2 2		VDT	q	VDC	
1	27	21	11	5	3	67.00	5	33
2	27	21	11	5	2	66.00	4	37
3	27	21	11	2	2	63.00	3	40
4	27	21		2	2	54.00	2	40
5	27	2	2	2	2	35.00	1	35
						MAX VDC	;	40

INDICE DE CONDICION DE PAVIMENTO (PCI) CONDICION DEL PAVIMENTO

60	
Bueno	

REPRESENTACIÓN GRÁFICA	LEYENDA
ALI REGENTACION URATTO	TIPO DE FALLAS SIMBOLI
	1. Piel de cocodrila (m2)
	2. Exudación de asfalto (m2)
	3. Fisuras en bloque (m2)
	4.Abultaniento y Hundimentos(m) -
	5. Corrugaciones (M2)
	6. Depresiones (n2)
	7. Fisuros de borde (n)
	8. Grietos de reflexiones (m)
	9. Desnivel carril/berna (m)
	10.Fisuras longitudinales y
13.4m	V WISYEL 20162 WW
13.4m	11. Parcheo (m2)
	13. Huecos (Baches) (und)
	14. Cruce de via férrea(n2)
	15. Ahuellariento (n2)
Worker was a control of the control	16. Dezplazamiento (m2)
	17. Grieta parabólica (n)
SERE SERENCE CONTROL C	18. Hinchamiento (m)
	19. Desprendimienta de
THE REPORT OF THE PROPERTY OF	19. Desprenamenta de agregados (m)
WHITE STATES OF THE PROPERTY O	

REGISTRO DE VANT

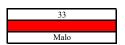
PROYECTO DE TESIS:

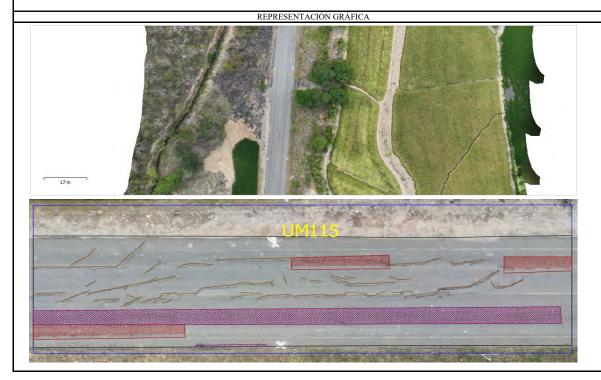
"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM115	UM Representativas de 10 Km				
NOMBRE DEE TRAMO.	CHICLE TERRITORIES STEVEN STEVEN	C. VID. ID DE MCESTICA	0.11110	UM1	UM20	UM39	UM58	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 64+035.6 - KM 64+071.0	UM77	UM96	UM115	UM134	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210	
FECHA:	30/07/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM229	UM248	UM267		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación					
85 - 100		Excelente					
70 - 85	Muy bueno						
55 - 70		Bueno					
40 - 55		Regular					
25 - 40		Malo					
10 - 25		Muy malo					
0 - 10		Fallado					
Niveles de severidad y Unid. de medida							


Low (bajo) Medium (medio) High (alto)


FALLAS	SEVERIDAD		CANTIDAD									TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)
10	L	8.026	3.653	6.680	2.638	4.912						25.909	11.26%	9.00
10	М	10.107	6.549	12.158	6.232	9.444	8.735					53.225	23.13%	28.00
7	М	4.957										4.957	2.15%	8.00
5	М	39.557										39.557	17.19%	47.00
19	М	9.960	6.085	4.895								20.94	9.10%	18.00
											Total VD	110.00		

CALCULO DEL PCI	
Número de deducidos > 2 (q)	5
Valor deducido mas alto (HDV)	47.00
Numero maximo de valores deducidos (mi)	5.87

Ν°			VALORES	DEDUCIDO	VDT	q	VDC		
1	47	28	18	9	8		110.00	5	57
2	47	28	18	9	2		104.00	4	59
3	47	28	18	2	2		97.00	3	67
4	47	28	2	2	2		81.00	2	59
5	47	2	2	2	2		55.00	1	55
							MAX VDC		67

INDICE DE CONDICION DE PAVIMENTO (PCI)

TIPO DE FALLAS	SIMBOLOG
1. Piel de cocodrila (m2)	144
2. Exudación de asfalto (m2)	17.77
3. Fisuros en bloque (m2)	
4 Abultaniento y Hundimentos(r) =
5. Corrugaciones (M2)	1
6. Depresiones (n2)	
7. Fisuros de borde (n)	
8. Grietas de reflexiones (m)	1
9. Desnivel carril/berna (m)	
10.Fisuras longitudinales y transversales (m)	
11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (unal)	
14. Cruce de via férrea(m2)	
15. Ahuellamiento (n2)	VVV
16. Dezplazamiento (m2)	
17. Grieta parabólica (n)	120
18. Hinchamiento (m)	
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

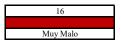
PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM134	UM Representativas de 10 Km			
NOMBRE DEL TRAMO.	CHICLIPIEN SHIVIGITIES	CIVIDING DE MICESTRA	CMIST	UM1	UM20	UM39	UM58
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 64+708.2 - KM 64+743.6	UM77	UM96	UM115	UM134
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210
FECHA:	30/07/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM229	UM248	UM267	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación						
85 - 100		Excelente						
70 - 85	Muy bueno							
55 - 70	Bueno							
40 - 55		Regular						
25 - 40		Malo						
10 - 25		Muy malo						
0 - 10		Fallado						


14100	Wiveles de Severidad y Offici de Medida									
L	Low (bajo)									
М	Medium (medio)									
Н	High (alto)									

FALLAS	SEVERIDAD		CANTIDAD								TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)	
2	Н	3.501	2.003	23.895								29.40	12.78%	26.00
10	L	14.424	1.942	7.356								23.72	10.31%	8.00
10	М	9.231	13.891	4.561								27.68	12.03%	20.00
11	М	4.327	3.515	1.187	3.165							12.19	5.30%	11.00
11	Н	35.724										35.72	15.53%	62.00
19	Н	8.844	7.079	14.627	10.193							40.74	17.71%	51.00
											Total VD	178.00		

CALCULO DEL PCI	
Número de deducidos > 2 (q)	6
Valor deducido mas alto (HDV)	62.00
Numero maximo de valores deducidos (mi)	4.49

N°			VALORES	DEDUCIDOS	VDT	q	VDC		
1	62	51	26	9.8			148.80	4	81
2	62	51	26	2			141.00	3	84
3	62	51	2	2			117.00	2	79
4	62	2	2	2			68.00	1	68
									84

INDICE DE CONDICION DE PAVIMENTO (PCI)

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocodrila (n2)	188
2. Exudación de asfalto (m2)	V-//
3. Fisuros en bloque (m2)	
4 Abultaniento y Hundimentos(n)	
5. Corrugaciones (m2)	1000
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8. Grietas de reflexiones (m)	1
9. Desnivel carril/berna (m)	-
10.Fisuras longitudinales y transversoles (m)	
11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea(n2)	
15. Ahuellamiento (n2)	VVV
16: Dezplazamiento (m2)	
17. Grieta parabólica (n)	200
18. Hinchamiento (m)	\Box
19. Desprendimenta de	
agregados (m)	

REGISTRO DE VANT

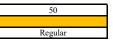
PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	AMO: CARRETERA JAÉN - SAN IGNACIO UNIDAD DE MUESTRA:		UM153	UM	Representa	ativas de 10	0 Km
TOMBIE BEE HELIOT	ernature vitali	C. (ID:ID DE MOEDITEI	0	UM1	UM20	UM39	UM58
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 65+380.8 - KM 65+416.2	UM77	UM96	UM115	UM134
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210
FECHA:	30/07/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM229	UM248	UM267	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación				
85 - 100		Excelente				
70 - 85		Muy bueno				
55 - 70		Bueno				
40 - 55		Regular				
25 - 40		Malo				
10 - 25		Muy malo				
0 - 10		Fallado				


Miveles de severidad y Offid. de medida								
L Low (bajo)								
М	Medium (medio)							
Н	High (alto)							

FALLAS	SEVERIDAD		CANTIDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)		
10	М	6.256	5.258	11.55	10.374						33.44	14.53%	22.00
10	L	3.967	3.073	5.288							12.33	5.36%	5.00
5	L	11.261									11.26	4.89%	8.00
19	L	6.085	7.782	7.708							21.58	9.38%	4.00
19	Н	3.466	1.953	16.955							22.37	9.72%	41.00
	Total VD 80.00												

CALCULO DEL PCI					
Número de deducidos > 2 (q)	5				
Valor deducido mas alto (HDV)	41.00				
Numero maximo de valores deducidos (mi)	6.42				

N°	VALORES DEDUCIDOS						VDT	q	VDC
1	41	22	8	5	4		80.00	5	41
2	41	22	8	5	2		78.00	4	44
3	41	22	8	2	2		75.00	3	47
4	41	22	2	2	2		69.00	2	50
5	41	2	2	2	2		49.00	1	49
	<u> </u>						MAX VDC		50

INDICE DE CONDICION DE PAVIMENTO (PCI)

TIPO DE FALLAS	SIMBOLOGIA
1. Piel de cocodrila (m2)	147
2. Exudación de asfalto (m2)	V-//
3. Fisuros en bloque (m2)	
4 Abultaniento y Hundimentos(n)	_
5. Corrugaciones (m2)	1
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8. Grietas de reflexiones (m)	1
9. Desnivel carril/berma (m)	-
10.Fisures longitudinales y transversales (m)	
11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea(m2)	
15. Ahuellariento (n2)	N/N
16: Dezplazamiento (m2)	2
17. Grieta parabólica (n)	200
18. Hinchamiento (m)	
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM172	UM	Representa	ativas de 10	0 Km
NOMBRE DEE TRANS.	emandian sinviolation	C. VIB. IB BE MCESTALII	0.1172	UM1	UM20	UM39	UM58
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 66+053.4 - KM 66+088.8	UM77	UM96	UM115	UM134
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210
FECHA:	30/07/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM229	UM248	UM267	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación
85 - 100		Excelente
70 - 85		Muy bueno
55 - 70		Bueno
40 - 55		Regular
25 - 40		Malo
10 - 25		Muy malo
0 - 10		Fallado

INIVE	Miveles de Severidad y Offid. de filedida									
L	Low (bajo)									
М	Medium (medio)									
Н	High (alto)									

FALLAS	SEVERIDAD		CANTIDAD TO									TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)
10	L	4.446	5.521	4.409	3.015	2.776	2.332					22.50	9.78%	9.00
10	М	15.619	18.958	11.2568	10.51							56.34	24.49%	29.00
1	М	8.874										8.87	3.86%	35.00
19	L	4.564	5.651	0.199								10.41	4.53%	3.10
19	М	11.805	7.839									19.64	8.54%	18.00
5	М	4.095	5.651									9.75	4.24%	31.00
										Total VD	125.10			

CALCULO DEL PCI								
Número de deducidos > 2 (q)	6							
Valor deducido mas alto (HDV)	35.00							
Numero maximo de valores deducidos (mi)	6.97							

N°			VALORES	DEDUCIDOS	VDT	q	VDC		
1	35	31	29	18	9	3.1	125.10	6	61
2	35	31	29	18	9	2	124.00	5	64
3	35	31	29	18	2	2	117.00	4	66
4	35	31	29	2	2	2	101.00	3	64
5	35	31	2	2	2	2	74.00	2	54
6	35	2	2	2	2	2	45	1	45
				MAX VDC		66			

INDICE DE CONDICION DE PAVIMENTO (PCI)

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocodrila (n2)	144
2. Exudación de asfalto (m2)	7.77
3. Fisuras en bloque (m2)	
4.Abultaniento y Hundimentos(m	
5. Corrugaciones (M2)	1,777
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8 Grietas de reflexiones (m)	1
9. Desnivel carril/derma (m)	-
10.Fisuras longitudinales y transversoles (m) 11. Parcheo (m2)	
12. Agregados puldos (m2)	
	280
13. Huecos (Baches) (und)	
14. Cruce de via férrea.(m2)	
15. Ahuellamiento (n2)	VXX
16 Dezplazamiento (m2)	
17. Grieta parabólica (n)	200
18. Hinchamiento (m)	F
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM191	UM Representativas de 10 Km			
NOMBRE DEE TRAINO.	ernamination and state of the s	C. (ID.ID DE MCESTIEII	0131	UM1	UM20	UM39	UM58
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 66+726.0 - KM 66+761.4	UM77	UM96	UM115	UM134
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210
FECHA:	31/07/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM229	UM248	UM267	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación					
85 - 100		Excelente					
70 - 85		Muy bueno					
55 - 70		Bueno					
40 - 55		Regular					
25 - 40		Malo					
10 - 25		Muy malo					
0 - 10	•						
Niveles de severidad y Unid, de medida							

Wiveles de Severidad y Offici de Medida									
L	Low (bajo)								
М	Medium (medio)								
Н	High (alto)								

FALLAS	SEVERIDAD		CANTIDAD									TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)
2	M	14.949										14.95	6.50%	11.00
10	L	2.584	14.903	5.448	8.854	6.066	4.638	4.954	3.168	18.636		69.25	30.10%	16.00
10	M	2.27	3.891	4.818	3.125							14.10	6.13%	14.00
19	L	1.432	4.45	5.65	0.751							12.28	5.34%	4.00
19	М	8.252	20.819	1.644	0.297							31.01	13.48%	21.20
	•							•					Total VD	66.20

CALCULO DEL PCI	
Número de deducidos > 2 (q)	5
Valor deducido mas alto (HDV)	21.20
Numero maximo de valores deducidos (m)	8.24

N°		,	VALORES	DEDUCIDOS	VDT	q	VDC		
1	21.2	16	14	11	4.0		66	5	33
2	21.2	16	14	11	2		64	4	35
3	21.2	16	14	2	2		55	3	34
4	21.2	16	2	2	2		43	2	32
5	21.2	2	2	2	2		29	1	29
				MAX VDC		35			

INDICE DE CONDICION DE PAVIMENTO (PCI)

65
Bueno

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocodrila (n2)	HH
2. Exudación de asfalto (m2)	7.7/
3. Fisuros en bloque (m2)	
4.Abultaniento y Hundimentos(m) =
5. Corrugaciones (M2)	1000
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8. Grietas de reflexiones (m)	1
9. Desnivel carril/berna (m)	-
10.Fisuras longitudinales y transversoles (m) 11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea.(m2)	
15. Ahuellariento (n2)	VXX
16. Dezplazamiento (m2)	
17. Grieta parabólica (n)	220
18. Hinchamiento (m)	
19. Desprendimiento de agregados (m)	

SIMBOLOGÍA

REGISTRO DE VANT

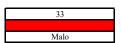
PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM210	UM Representativas de 10 Km			
NOMBRE BEE TRAMO.	o. nata i zata i vi za	er (IB) IB BE ME ESTIMI	0.11210	UM1	UM20	UM39	UM58
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 67+398.6 - KM 67+434.0	UM77	UM96	UM115	UM134
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210
FECHA:	31/07/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM229	UM248	UM267	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m		_		

Rangos (%)	Colores	Clasificación
85 - 100		Excelente
70 - 85		Muy bueno
55 - 70		Bueno
40 - 55		Regular
25 - 40		Malo
10 - 25		Muy malo
0 - 10		Fallado
Nivolos do sou	oridad v III	nid do modido


14100	nes de severidad y Offid. de medida
L	Low (bajo)
М	Medium (medio)
Н	High (alto)

FALLAS	SEVERIDAD		CANTIDAD							TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)		
2	M	31.741										31.74	13.79%	15.00
10	L	6.834	16.428	8.629	6.692	5.117	3.247	0.388				47.34	20.57%	12.00
10	M	4.755	15.608	17.955	6.534	6.522						51.37	22.33%	28.00
10	Н	5.465	3.662	2.530	6.290							17.95	7.80%	30.00
19	L	10.069	4.293	2.219								16.58	7.21%	4.00
19	Н	0.931	10.069	3.961	7.193	1.450						23.60	10.26%	42.00
											Total VD	131.00		

CALCULO DEL PCI								
Número de deducidos > 2 (q)	6							
Valor deducido mas alto (HDV)	42.00							
Numero maximo de valores deducidos (mi)	6.33							

N°			VALORES	DEDUCIDOS	VDT	q	VDC		
1	42	30	28	15	12	4	131.00	6	63
2	42	30	28	15	12	2	129.00	5	66
3	42	30	28	15	2	2	119.00	4	67
4	42	30	28	2	2	2	106.00	3	66
5	42	28	2	2	2	2	78.00	2	56
6	42	2	2	2	2	2	52.00	1	52
							MAX VDC		67

INDICE DE CONDICION DE PAVIMENTO (PCI)

REPRESENTACIÓN GRÁFICA	LEYENDA
	TIPO DE FALLAS
	1. Piel de cocodrila (m2)
	2. Exudación de asfalto (m2)
	3. Fisuras en bloque (m2)
	4 Abultaniento y Hundimentos(n)
	5. Corrugaciones (M2)
	6. Depresiones (n2)
	7. Fisuras de borde (n)
	8. Grietos de reflexiones (n)
	9. Desnivel carril/berna (m)
	10.Fisuras longitudinales y transversoles (m) 11. Parcheo (m2)
	12. Agregados pulldos (m2)
$\mathbf{L}_{\mathbf{M}}$	13. Huecos (Baches) (und)
TO LO PARTO	14. Cruce de vía férrea(n2)
	15. Ahuellamiento (n2)
	16. Dezplazamiento (m2)
	17. Grieta parabólica (n)
	18. Hinchamiento (m)
	19. Desprendimenta de agregados (m)

REGISTRO DE VANT

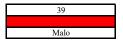
PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM229	UM Representativas de 10 Km			
NOMBRE BEE TRAMO.	o.nde.re.dvi.e.v	C. (ID) ID DE MC ESTIMI	0111229	UM1	UM20	UM39	UM58
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 68+071.2 - KM 68+106.6	UM77	UM96	UM115	UM134
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210
FECHA:	31/07/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM229	UM248	UM267	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación						
85 - 100		Excelente						
70 - 85		Muy bueno						
55 - 70		Bueno						
40 - 55		Regular						
25 - 40		Malo						
10 - 25		Muy malo						
0 - 10		Fallado						
Niveles de severidad y Unid, de medida								


Niveles de severidad y Unid. de medida								
L	Low (bajo)							
М	Medium (medio)							
Н	High (alto)							

FALLAS	SEVERIDAD		CANTIDAD TOTAL								TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)	
10	L	37.026	6.775									43.801	19.04%	12
10	М	39.117	6.261									45.378	19.72%	26
10	Н	32.649										32.649	14.19%	40
3	M	29.761										29.761	12.93%	18
19	L	0.183	7.512									7.695	3.34%	3
19	Н	28.359										28.359	12.32%	21
									Total VD	120				

CALCULO DEL PCI								
Número de deducidos > 2 (q)	6							
Valor deducido mas alto (HDV)	40.00							
Numero maximo de valores deducidos (m)	6.51							

N°			VALORES	DEDUCIDOS	VDT	q	VDC		
1	40	26	21	18	12	3	120	6	59
2	40	26	21	18	12	2	119	5	61
3	40	26	21	8	2	2	99	4	56
4	40	26	21	2	2	2	93	3	59
5	40	26	2	2	2	2	74	2	54
6	40	2	2	2	2	2	50	1	50
				MAX VDC	·	61			

INDICE DE CONDICION DE PAVIMENTO (PCI)

TIPO DE FALLAS	SIMBOLOGI
1. Piel de cocodrila (n2)	- KH
2. Exudación de asfalto (m2)	1/1/
3. Fisuros en bloque (m2)	
4.Abultaniento y Hundimentos(n)	
5. Conrugaciones (M2)	10000
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8. Grietas de reflexiones (m)	1
9. Desnivel carril/berna (m)	-
10.Fisuras longitudinales y transversales (m)	
11. Parcheo (m2)	
12. Agregados pulldos (n2)	
13. Huecos (Baches) (und)	
14. Cruce de vía férrea(n2)	
15. Ahuellamiento (n2)	VXX
16. Dezplazamiento (m2)	
17. Grieta parabólica (n)	200
18. Hinchamiento (m)	E
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM248	UM Representativas de 10 Km				
TOMBIE BEE TREETO	ernamination of the control of the c	C. (ID) ID DE MC ESTIMI	0.1.2.10	UM1	UM20	UM39	UM58	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 68+743.8 - KM 68+779.2	UM77	UM96	UM115	UM134	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210	
FECHA:	31/07/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM229	UM248	UM267		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m		_		

Rangos (%)	Colores	Clasificación					
85 - 100		Excelente					
70 - 85		Muy bueno					
55 - 70		Bueno					
40 - 55		Regular					
25 - 40		Malo					
10 - 25		Muy malo					
0 - 10		Fallado					
Niveles de severidad y unid. de medida							

Niveles de severidad y dilid. de medida								
L Low (bajo)								
М	Medium (medio)							
Н	High (alto)							

FALLAS	SEVERIDAD		CANTIDAD									TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)
10	L	2.579	2.385	2.258	2.982	3.718	8.803	0.972	2.012	2.274		27.98	12.16%	9.00
10	М	5.013	3.799	48.571	6.66	4.236	3.927	4.768	8.072			85.05	36.96%	31.00
7	L	10.246										10.25	4.45%	4.00
19	L	1.181	2.173	2.348								5.70	2.48%	3.00
19	М	3.029	26.191	8.881								38.10	16.56%	23.00
									Total VD	70.00				

CALCULO DEL PCI								
Número de deducidos > 2 (q)	5							
Valor deducido mas alto (HDV)	31.00							
Numero maximo de valores deducidos (mi)	7.34							

N°	VALORES DEDUCIDOS					VDT	q	VDC	
1	31	23	9	4	3		70.00	5	35
2	31	23	9	4	2		69.00	4	38
3	31	23	9	2	2		67.00	3	42
4	31	23	2	2	2		60.00	2	45
5	31	2	2	2	2		39.00	1	39
							MAX VDC		45

INDICE DE CONDICION DE PAVIMENTO (PCI)

CONDICION DEL PAVIMENTO

REPRESENTACIÓN GRÁFICA

55	
Regular	

The state of the s		- 12 TO THE REAL PROPERTY.	
		i de	
Carlotte San			*
AAN STATE	UM248		*****
Sometiments			_
			No college and the

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocodrila (n2)	188
2. Exudación de asfalto (m2)	V-//
3. Fisuras en bloque (m2)	
4.Abultaniento y Hundimentos(n	
5. Corrugaciones (M2)	1000
6. Depresiones (n2)	
7. Fisuros de borde (n)	
8. Grietas de reflexiones (m)	1
9. Desnivel carril/berma (m)	
10.Fisuras longitudinales y transversales (m) 11. Parcheo (m2)	
12. Agregados pulldos (n2)	242
13. Huecos (Baches) (und)	
14. Cruce de via férrea(n2)	
15. Ahuellamiento (n2)	[VV8]
16. Dezplazamiento (m2)	
17. Grieta parabólica (n)	200
18. Hinchamiento (m)	F
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

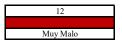
PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM248	UM Representativas de 10 Km				
NOMBRE DEE TRAMO.	ernate reservition of the control of	C. (ID. ID DE MOEDITEI)	0.112.10	UM1	UM20	UM39	UM58	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 69+416.4 - KM 69+451.8	UM77	UM96	UM115	UM134	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM153	UM172	UM191	UM210	
FECHA:	31/07/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM229	UM248	UM267		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación			
85 - 100		Excelente			
70 - 85		Muy bueno			
55 - 70		Bueno			
40 - 55		Regular			
25 - 40		Malo			
10 - 25		Muy malo			
0 - 10		Fallado			


Miveles de Severidad y unid. de medida							
L	Low (bajo)						
М	Medium (medio)						
Н	High (alto)						

FALLAS	SEVERIDAD	CANTIDAD TOTA					TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)			
10	М	9.518								9.52	4.14%	10.00
10	L	14.000	9.294							23.29	10.12%	9.00
10	Н	15.686								15.69	6.82%	27.00
5	Н	52.737								52.74	22.92%	74.00
7	L	3.341								3.34	1.45%	3.00
7	М	7.096	5.992							13.09	5.69%	11.00
7	Н	21.418								21.42	9.31%	22.00
19	Н	56.304	4.991							61.30	26.64%	58.00
19	L	5.378								5.38	2.34%	3.00
											Total VD	217.00

CALCULO DEL PCI	
Número de deducidos > 2 (q)	9
Valor deducido mas alto (HDV)	74.00
Numero maximo de valores deducidos (mi)	3.39

N°		VALORES DEDUCIDOS				VDT	q	VDC	
1	74	58	10.53				143	3	85
2	74	58	2				134	2	88
3	74	2	2				78	1	78
							MAX VDC		88

INDICE DE CONDICION DE PAVIMENTO (PCI)

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocodrila (n2)	188
2. Exudación de asfalto (m2)	7.11
3. Fisuras en bloque (m2)	
4.Abultamiento y Hundimentos(m	
5. Corrugaciones (M2)	1000
6. Depresiones (n2)	
7. Fisuros de borde (n)	
8 Grietas de reflexiones (m)	1
9. Desnivel carril/berna (m)	
10.Fisuras longitudinales y transversales (m)	
11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea(n2)	
15. Ahuellamiento (n2)	VXX
16. Dezplozomiento (m2)	2
17. Grieta parabólica (n)	200
18. Hinchamiento (m)	E
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

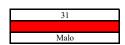
PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM4	UM No Representativas de 10 Km				
NOMBRE DEE TRANS.	CHRICE PERCENTIENT BRIVING TOTAL CO	e. (IB) IB BE MEESTICH	5.1.1.1	UM4	UM15	MU25	MU34	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 60+106.2- KM 60+141.6	UM46	UM62	UM70	UM88	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188	
FECHA:	01/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				-

Rangos (%)	Colores	Clasificación			
85 - 100		Excelente			
70 - 85		Muy bueno			
55 - 70		Bueno			
40 - 55		Regular			
25 - 40		Malo			
10 - 25		Muy malo			
0 - 10		Fallado			
Niveles de severidad y Unid. de medida					


Miveles de severidad y Offid, de medida							
L	Low (bajo)						
М	Medium (medio)						
Н	High (alto)						

FALLAS	SEVERIDAD					CAN	ITIDAD			TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)
10	M	9.376	11.869	6.362	16.214	14.253	7.638			65.712	28.56%	15.00
10	Н	17.766	17.728	18.240	18.141					71.875	31.24%	61.00
7	М	17.966	3.221							21.187	9.21%	13.00
19	L	14.053	2.049							16.102	7.00%	4.00
19	М	4.875	14.892	5.500	4.455	3.691				33.413	14.52%	22.00
											Total VD	115.00

CALCULO DEL PCI	
Número de deducidos > 2 (q)	5
Valor deducido mas alto (HDV)	61.00
Numero maximo de valores deducidos (mi)	4.58

N°	VALORES DEDUCIDOS				VDT	q	VDC		
1	61	22	15	13	4		115.0	5	59
2	61	22	15	13	2		113.0	4	64
3	61	22	15	2	2		102.0	3	65
4	61	22	2	2	2		89.0	2	63
5	61	2	2	2	2		69.0	1	69
							MAX VDC		69

INDICE DE CONDICION DE PAVIMENTO (PCI)

REPRESENTACIÓN GRÁFICA	LEYENDA	
	TIPO DE FALLAS	SIMBOLOGÍA
	1. Piel de cocodrila (m2)	502
	2. Exudación de asfalto (m2)	V-7/
	3. Fisuros en bloque (m2)	
	4.Abultaniento y Hundimentos(n)	
	5. Corrugaciones (M2)	1000
	6: Depresiones (n2)	
	7. Fisuros de borde (n)	
	8. Grietos de reflexiones (m)	1
	9. Desnivel carril/berma (m)	-
	10.Fisuras longitudinales y transversoles (m) 11. Parcheo (m2)	3
	12. Agregados pulldos (m2)	
IMMDAX	13. Huecos (Baches) (und)	
UMINK	14. Cruce de via férrea.(m2)	
	15. Ahuellamiento (n2)	
	16. Dezplazamiento (m2)	2
	17. Grieta parabólica (n)	200
	18. Hinchamiento (m)	-
	19. Desprendimenta de	
	agregados (m)	

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM15	UM No Representativas de 10 Km			
NOMBILE BEE THERMO	e.nde.rend.v B.n. lorurere			UM4	UM15	MU25	MU34
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 60+495.6 - KM 60+531.0	UM46	UM62	UM70	UM88
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188
FECHA:	01/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m		_		

Rangos (%)	Colores	Clasificación
85 - 100		Excelente
70 - 85		Muy bueno
55 - 70		Bueno
40 - 55		Regular
25 - 40		Malo
10 - 25		Muy malo
0 - 10		Fallado
Nivolos do sou	oridad v III	nid do modido

IVIV	nes de severidad y Offid. de medida
L	Low (bajo)
М	Medium (medio)
Н	High (alto)

FALLAS	SEVERIDAD					CAI	NTIDAD			TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)
19	L	4.832	6.547							11.379	4.95%	4
19	Н	22.656	0.566							23.222	10.09%	43
10	L	7.286	5.614	9.427	7.529	6.684	8.835			45.375	19.72%	11
10	М	10.904	10.393	14.570	13.524	2.949				52.34	22.75%	28
2	L	19.552								19.552	8.50%	3
					, and the second							
			•				·				Total VD	89

CALCULO DEL PCI	
Número de deducidos > 2 (q)	5
Valor deducido mas alto (HDV)	43.00
Numero maximo de valores deducidos (mi)	6.23

N°			VALORES	DEDUCIDOS	S	VDT	q	VDC
1	43	28	11	4	3	89	5	45
2	43	28	11	4	2	88	4	50
3	43	28	11	2	2	86	3	54
4	43	28	2	2	2	77	2	56
5	43	2	2	2	2	51	1	51
						MAX VDC		56

INDICE DE CONDICION DE PAVIMENTO (PCI)

44	
Regular	

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocodrila (n2)	188
2. Exudación de asfalto (m2)	V-//
3. Fisuras en bloque (m2)	
4Abultaniento y Hundimentos(n)	
5. Corrugaciones (M2)	1
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8. Grietas de reflexiones (m)	1
9. Desnivel carril/berma (m)	-
10.Fisuras longitudinales y transversales (n)	
11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea(m2)	
15. Ahuellamiento (n2)	W
16: Dezplazamiento (m2)	
17. Grieta parabólica (n)	200
18. Hinchamiento (m)	
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

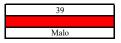
PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO UNIDAD DE MUESTRA:		UM15	UM No	Represer	ntativas de	10 Km
NOMBIAL BEE TREATOR	ernand reliativities of the reliable to	er (IBIIB BE MEESTICH	0	UM4	UM15	MU25	MU34
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 60+849.6 - KM 60+885.0	UM46	UM62	UM70	UM88
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188
FECHA:	01/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación					
85 - 100		Excelente					
70 - 85		Muy bueno					
55 - 70		Bueno					
40 - 55		Regular					
25 - 40		Malo					
10 - 25		Muy malo					
0 - 10		Fallado					
Niveles de severidad y Unid, de medida							


Miveles de severidad y Offici. de filedida								
L Low (bajo)								
М	Medium (medio)							
Н	High (alto)							

FALLAS	SEVERIDAD		CANTIDAD							TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)	
10	L	4.105	6.813	12.714	3.212						26.844	11.67%	9
10	М	12.529	14.714	9.454	5.212						41.909	18.21%	12
19	Н	3.924	51.019								54.943	23.88%	57
-										Total VD	78		

CALCULO DEL PCI					
Número de deducidos > 2 (q)	3				
Valor deducido mas alto (HDV)	57.00				
Numero maximo de valores deducidos (mi)	4.95				

N°		VALORES DEDUCIDOS				VDT	q	VDC	
1	57	12	9				78	3	49
2	57	12	2				71	2	52
3	57	2	2				61	1	61
							MAX VDC		61

INDICE DE CONDICION DE PAVIMENTO (PCI)

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocadrila (m2)	100
2. Exudación de asfalto (m2)	1/1
3. Fisuras en bloque (m2)	
4Abultaniento y Hundimentos(m	
5. Corrugaciones (M2)	1000
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8 Grietas de reflexiones (m)	1
9. Desnivel carril/berna (m)	-
10.Fisuras longitudinales y transversoles (m) 11. Parcheo (m2)	
12. Agregados pulldos (n2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea(n2)	
15. Ahuellariento (n2)	VXX
16. Dezplazamiento (m2)	
17. Grieta parabólica (n)	200
18. Hinchamiento (m)	
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM34	UM No Representativas de 10 Km				
TOMBIE DEE TREETO	ernamination mix sinviolation	C. (IB. IB BE MCESTICIA	CIAD I	UM4	UM15	MU25	MU34	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 61+168.2 - KM 61+203.6	UM46	UM62	UM70	UM88	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188	
FECHA:	01/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m		·		

Rangos (%)	Colores	Clasificación				
85 - 100		Excelente				
70 - 85		Muy bueno				
55 - 70		Bueno				
40 - 55		Regular				
25 - 40		Malo				
10 - 25		Muy malo				
0 - 10		Fallado				
Niveles de severidad y Unid, de medida						

14100	nes de severidad y Offid. de medida
L	Low (bajo)
М	Medium (medio)
Н	High (alto)

FALLAS	SEVERIDAD		CANTIDAD						TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)	
10	L	6.278	2.622	1.470	3.692	15.269	6.47			35.801	15.56%	11
10	Н	12.950	13.502	12.966	10.386					49.804	21.64%	52
11	М	12.628	10.707	1.935						25.27	10.98%	32
11	Н	9.002								9.002	3.91%	34
19	М	1.059	1.675	1.418						4.152	1.80%	10
19	Н	3.181	0.231	0.352						3.764	1.64%	19
2	М	36.055								36.055	15.67%	16
									•		Total VD	174

CALCULO DEL PCI	
Número de deducidos > 2 (q)	7
Valor deducido mas alto (HDV)	52.00
Numero maximo de valores deducidos (mi)	5.41

N°	VALORES DEDUCIDOS						VDT	q	VDC
1	52	34	32	19	7		144	5	73
2	52	34	32	19	2		139	4	77
3	52	34	32	2	2		122	3	74
4	52	34	2	2	2		92	2	65
5	52	2	2	2	2		60	1	60
							MAX VDC		77

INDICE DE CONDICION DE PAVIMENTO (PCI)

CONDICION DEL PAVIMENTO

REPRESENTACIÓN GRÁFICA

Muy Malo

		1.2 3.4 5.6 7.7
6.5 m	NR24	8 9 10 11 11 11 11 11 11
Marie San Survey		

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocodrila (n2)	188
2. Exudación de asfalto (m2)	1//
3. Fisuros en bloque (m2)	
4.Abultaniento y Hundimentos(n)	-
5. Connugaciones (M2)	11111
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8. Grietas de reflexiones (m)	
9. Desnivel carril/berna (m)	-
10.Fisuras longitudinales y transversales (m) 11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea(n2)	
15. Ahuellariento (n2)	VXX
16. Dezplazamento (n2)	22
17. Grieta parabólica (n)	200
18. Hinchamiento (m)	=
19. Desprendimiento de agregados (m)	

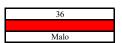
REGISTRO DE VANT

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM46	UM No Representativas de 10 Km			
TOMBIE BEE HELVIO	C. Halle T. E. L. V. B. L. V. Tol. V.		UM4	UM15	MU25	MU34	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 61+593.0 - KM 61+628.4	UM46	UM62	UM70	UM88
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188
FECHA:	01/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				


Rangos (%)	Colores	Clasificación			
85 - 100		Excelente			
70 - 85		Muy bueno			
55 - 70		Bueno			
40 - 55		Regular			
25 - 40		Malo			
10 - 25		Muy malo			
0 - 10 Fallado					
Nivolos do sov	oridad v III	nid do modida			

FALLAS	SEVERIDAD		CANTIDAD							TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)		
3	M	6.410										6.41	2.79%	7
10	L	11.458	10.511	7.462	12.418	8.926	13.256					64.031	27.83%	14
10	М	11.394	7.013	8.309	10.095	8.393	8.630					53.834	23.40%	27
10	Н	5.26	9.099	6.157	14.015	3.524						38.055	16.54%	46
19	L	6.612	27.552	16.037	2.437							52.638	22.88%	9
19	М	2.654	6.038	9.537	8.546	2.209						28.984	12.60%	21
					_	_								
											Total VD	124		

J DEL PCI	CALCULO
los > 2 (q) 6	Número de deducid
alto (HDV) 46.00	Valor deducido mas
5 96	Numero maximo de deducidos (n
e valores 5 96	Numero maximo de

Ν°			VALORES	DEDUCIDOS	3		VDT	q	VDC
1	46	27	21	14	9	7	124	6	60
2	46	27	21	14	9	2	119	5	61
3	46	27	21	14	2	2	112	4	64
4	46	27	21	2	2	2	100	3	63
5	46	27	2	2	2	2	81	2	58
6	46	2	2	2	2	2	56	1	56
l l						MAX VDC	ı	64	

INDICE DE CONDICION DE PAVIMENTO (PCI)

REPRESENTACIÓN GRÁFICA	RDA
403m	TPODEFALLAS SMBOLC I. Piel de cacadrila (n2) 2. Exudación de as faita (n2) 3. Fisuras en bloque (n2) 4. Abultaniento y Hundmentos(n) 5. Corrugaciones (n2) 6. Depresiones (n2) 7. Fisuras de barde (n) 8. Grietas de reflexiones (n) 9. Desnivel carnil/derna (n) 10. Fisuras la proficio (n) 10. Procheo (n2)
UMNR46	12. Agregados pulblos (n2) 13. Huecos (3aches) (und) 14. Cruce de vía férrea(n2) 15. Ahuellamiento (n2) 16. Dezplazamiento (n2) 17. Grieta parabólico (n)
	18. Hinchaniento (n) 19. Desprendimienta de agregodos (n)

SIMBOLOGÍA

REGISTRO DE VANT

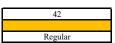
PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM62	UM No Representativas de 10 Km			
TOMBIE DEE TREETO	ernational visit is a visit reference	C. VIB. IB BE MCESTICI	01.102	UM4	UM15	MU25	MU34
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 62+159.4 - KM 62+194.8	UM46	UM62	UM70	UM88
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188
FECHA:	02/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación				
85 - 100		Excelente				
70 - 85		Muy bueno				
55 - 70		Bueno				
40 - 55		Regular				
25 - 40		Malo				
10 - 25		Muy malo				
0 - 10		Fallado				
Niveles de severidad y Unid, de medida						


Wiveles de severidad y Offici de filedida							
L Low (bajo)							
М	Medium (medio)						
Н	High (alto)						

FALLAS	SEVERIDAD		CANTIDAD								TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)	
1	L	16.707	9.766									26.473	11.50%	34.00
2	М	9.556										9.556	4.15%	8.00
2	L	91.979										91.979	39.97%	10.00
19	Н	3.521	2.028	4.905	12.373							22.827	9.92%	42.00
				•		•		•	•				Total VD	94.00

CALCULO DEL PCI						
Número de deducidos > 2 (q)	4					
Valor deducido mas alto (HDV)	42.00					
Numero maximo de valores deducidos (mi)	6.33					

N°		VALORES DEDUCIDOS				VDT	q	VDC	
1	42	34	10	8			94	4	54
2	42	34	10	2			88	3	56
3	42	34	2	2			80	2	58
4	42	2	2	2			48	1	48
							MAX VDC		58

INDICE DE CONDICION DE PAVIMENTO (PCI)

REPRESENTACIÓN GRÁFICA	LEYENDA
	TIPO DE FALLAS
	1. Piel de cocodrila (n2)
	2. Exudación de asfalto (m2)
	3. Fisuras en bloque (m2)
	4.Abultaniento y Hundimentos(n)
	5. Corrugaciones (M2)
	6. Depresiones (n2)
	7. Fisuros de borde (n)
	8. Grietas de reflexiones (m)
	9. Desnivel carril/berna (m)
	10.Fisuras longitudinales y transversales (m) 11. Parcheo (m2)
8.27m	12. Agregados pulldos (m2)
	13. Huecos (Baches) (una)
UMNR62	14. Cruce de via férrea(m2)
	15. Ahuellariento (n2)
	16. Dezplazamiento (m2)
AND THE PROPERTY OF THE PROPER	17. Grieta parabólica (n)
ALIAN TAPANA	18. Hinchamiento (m)
DIRECT AND THE PROPERTY OF THE	19. Desprendimienta de agregados (m)

REGISTRO DE VANT

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	IBRE DEL TRAMO: CARRETERA JAÉN - SAN IGNACIO UNIDAD DE MUESTRA		UM70	UM No	o Represer	ntativas de	10 Km
TOMBIE DEE TREETO	ernamination and state of	C. (IB. IB BE MCESTICIA	51.170	UM4	UM15	MU25	MU34
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 62+442.6 - KM 62+478.0	UM46	UM62	UM70	UM88
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188
FECHA:	02/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m		·		

Rangos (%)	Colores	Clasificación				
85 - 100		Excelente				
70 - 85		Muy bueno				
55 - 70		Bueno				
40 - 55		Regular				
25 - 40		Malo				
10 - 25		Muy malo				
0 - 10		Fallado				
Niveles de severidad y Unid, de medida						

L Low (bajo) M Medium (medio) H High (alto)		
L	Low (bajo)	
М	Medium (medio)	
Н	High (alto)	

FALLAS	SEVERIDAD		CANTIDAD TOTAL											VALOR DEDUCIDO (VDC)
1	L	10.598	8.584									19.182	8.34%	31.00
5	М	9.179	6.377									15.556	6.76%	35.00
19	М	3.282	9.976	1.541								14.799	6.43%	15.00
												Total VD	81.00	

CALCULO DEL PCI										
Número de deducidos > 2 (q)	3									
Valor deducido mas alto (HDV)	35.00									
Numero maximo de valores deducidos (mi)	6.97									

N°			VALORES	S DEDUCIDOS	VDT	q	VDC	
1	35	31	15			81.00	3	51
2	35	31	2			68.00	2	50
3	35	2	2			39.00	1	39
						MAX VDC		51

INDICE DE CONDICION DE PAVIMENTO (PCI)

CONDICION DEL PAVIMENTO

REPRESENTACIÓN GRÁFICA

49	
Regular	
Regulai	

	ちかりの大学で
6.5 m	
LINETO	
The state of the s	

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocodrila (n2)	188
2. Exudación de asfalto (m2)	V-//
3. Fisuras en bloque (m2)	
4Abultaniento y Hundimentos(n)	
5. Corrugaciones (M2)	1
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8. Grietas de reflexiones (m)	1
9. Desnivel carril/berma (m)	-
10.Fisuras longitudinales y transversales (n)	
11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea(m2)	
15. Ahuellamiento (n2)	W
16: Dezplazamiento (m2)	
17. Grieta parabólica (n)	200
18. Hinchamiento (m)	
19. Desprendimiento de agregados (m)	

ESCUELA PROFESIONAL DE INGENIERIA CIVIL

REGISTRO DE VANT

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

70 + 000

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM88	UM No Representativas de 10 Km				
TOMBIE DEE TREETO	STRUCTURES STRUCTURES	C. (IDIID DE MCESTILI)	0.1100	UM4	UM15	MU25	MU34	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 63+079.8- KM 63+115.2	UM46	UM62	UM70	UM88	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188	
FECHA:	02/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación
85 - 100		Excelente
70 - 85		Muy bueno
55 - 70		Bueno
40 - 55		Regular
25 - 40		Malo
10 - 25		Muy malo
0 - 10		Fallado
Niveles de sev	eridad v U	nid, de medida

L Low (bajo) M Medium (medio) H High (alto)		
L	Low (bajo)	
М	Medium (medio)	
Н	High (alto)	

LEYENDA TIPO DE FALLAS

SIMBOLOGÍA


FALLAS	SEVERIDAD		CANTIDAD TOTAL										DENSIDAD	VALOR DEDUCIDO (VD)	
1	L	6.449										6.449	2.80%	20	
2	L	39.289										39.289	17.07%	6	
7	М	29.827										29.827	12.96%	15	
5	М	5.111	15.439									20.55	8.93%	38	
19	М	6.616	0.542	1.973	1.355							10.486	4.56%	13	
	•														
	•														
	-	·	·		·	·	·				·	-	Total VD	92	

CALCULO DEL PCI	
Número de deducidos > 2 (q)	5
Valor deducido mas alto (HDV)	38.00
Numero maximo de valores deducidos (mi)	6.69

N°			VALORES	DEDUCIDOS	VDT	q	VDC		
1	38	20	15	13	6		92	5	46
2	38	20	15	13	2		88	4	50
3	38	20	15	2	2		77	3	48
4	38	20	2	2	2		64	2	46
5	38	2	2	2	2		46	1	46
							MAX VDC		50

INDICE DE CONDICION DE PAVIMENTO (PCI)

50
Regular

REGISTRO DE VANT

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM106	UM No	UM No Representativas de 10 Km			
	e. nata i zativi za i visita i e i	C. (IB.IB BE MCESTICI	0	UM4	UM15	MU25	MU34	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 63+717.0 - KM 63+752.4	UM46	UM62	UM70	UM88	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188	
FECHA:	02/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado
Nivolos do sou	a wi al a al 11 111	aid do madida

14146	eles de severidad y dilid. de illedida
L	Low (bajo)
M	Medium (medio)
Н	High (alto)

FALLAS	SEVERIDAD	CANTIDAD							TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)		
1	L	22.836									22.836	9.92%	33
7	M	9.766	3.83	8.587							22.183	9.64%	12
5	L	29.083									29.083	12.64%	16
19	L	4.458									4.458	1.94%	2
19	M	33.321	29.443								62.764	27.28%	29
2	M	0.171									0.171	0.07%	0
												Total VD	92

CALCULO DEL PCI	
Número de deducidos > 2 (q)	4
Valor deducido mas alto (HDV)	33.00
Numero maximo de valores deducidos (mi)	7.15

N°	VALORES DEDUCIDOS					VDT	q	VDC	
1	33	29	16	12			90	4	51
2	33	29	16	2			80	3	50
3	33	29	2	2			66	2	48
4	33	2	2	2			39	1	39
							MAX VDC		51

INDICE DE CONDICION DE PAVIMENTO (PCI)

49
Regular

TROBERLUS I. Pel de coccoria (n2) 2. Exusso situa (n2) 4. Exusso situa (n2) 4. Abutaniento y Audinentosi (n2) 5. Corrugaciores (n2) 6. Expressive situa (n3) 7. Figuras de torde (n1) 8. Expressive situa (n2) 18. Expressive situa (n3) 18. Prorties (n2) 18. Prorties (n2) 19. Auginanies y transversales (n3) 19. Prorties (n2) 10. Auginanies y transversales (n3) 10. Prorties (n2) 11. Auginanies (n2) 12. Apregados publiss (n2) 13. Auginanies (n2) 14. Cruce de via Férres (n2) 15. Auginanies (n2) 16. Terota providio (n3) 18. Recomento (n3) 19. Prorties (n4) 19. Prorties (n4) 19. Prorties (n5) 19. Prorties (n6) 19. Prorties (n7) 19. Prorties (n7) 19. Prorties (n8) 19.	REPRESENTACIÓN GRÁFICA	LEYENDA	
2. Exudución de usfalto (n2) 3. Fisuras en tioque (n2) 4. Huturiento y Hurdinientos(n) 5. Corrugaciones (n2) 7. Fisuras de torde (n) 8. Ciristas de reflexiones (n) 10. Similar projutivinales y transversides (n) 11. Purrero (n2) 12. Agregados publios (n2) 13. Huroca de via Férrea (n2) 13. Huroca de via Férrea (n2) 14. Cruce de via Férrea (n2) 15. Similariento (n2) 16. Septiazinento (n2) 17. Cirista particilica (n) 18. Hurocaniento (n2) 19. Esprendinento de		TIPO DE FALLAS	SIMBOLOG
3. F survas en bloque (n2) 4. Abbitairento y Hundimentos(n) 5. Corrugaciones (n2) 7. F isurvas de borde (n) 8. Givetas de reflexiones (n1) 9. Desrivel connitiem (n1) 10. F survas profitaireles y transversides (n) 11. Prorece (n2) 12. Agreçados publidos (n2) 13. Huecos (Siches) (und) 14. Cruce de via férrea (n2) 15. Muellaniento (n2) 16. Desrivas profitairento (n2) 17. Girets profitairento (n2) 18. Bezpiazamento (n2) 19. Despirarimento (n1) 19. Despirarimento (n2) 19. Despirarimento (n2) 19. Despirarimento (n3) 19. Despirarimento (n4) 19. Despirarimento (n4) 19. Despirarimento (n5) 19. Despirarimento (n6) 19. Despirarimento		1. Piel de cocodrila (n2)	102
4.Abuttniento y Hurdinentosio 5. Corrupciones (n2) 6. Depresiones (n2) 7. Fisuras de borde (n) 8. Desrivel carril/cerna (n) 9. Desrivel carril/cerna (n) 10.5m 10.5m UMIRIOS 11. Agregados puldos (n2) 12. Agregados puldos (n2) 13. Hucos (Baches) (uno) 14. Cruce de via férrea (n2) 15. Muellamento (n2) 15. Muellamento (n2) 16. Desplezamento (n2) 17. Grieta parabólico (n) 18. Hichamiento (n3) 19. Desprenámento de		2. Exudación de asfalto (m2)	V-//
3. Corrugaciones (n²) 6. Bepresiones (n²) 7. Fisuras de borde (n) 8. Crietas de reflexiones (n) 9. Desirvel carmil/oerna (n) 11. Parcheo (n²) 12. Agregados puldos (n²) 12. Agregados puldos (n²) 13. Huecos (Buches) (und) 14. Cruce de via férrea (n²) 15. Muellaniento (n²) 16. Bezplazonento (n²) 17. Crieta parabólico (n) 18. Hinchaniento (n) 19. Desprendimento de		3. Fisuras en bloque (m2)	
6. Depresiones (n2) 7. Fisurus de borde (n) 8. Grietas de reflexiones (n1) 9. Desnivel cumi/cirena (n) 10.5 m UMINE 106 11. Parcheo (n2) 12. Agregados pullos (n2) 12. Agregados pullos (n2) 13. Huecos (Buches) (und) 14. Cruce de vía férrea(n2) 15. Ahuellaniento (n2) 16. Dezplazamento (n2) 17. Crieta parabólica (n) 18. Hinchaniento (n1) 19. Desprexidirienta de			
7. Fisurus de borde (n) 8. Gretas de reflexiones (n) 9. Desnivel carniforma (n) 10.5 m 10.5 m 11. Parcheo (n2) 12. Agregados pulldos (n2) 13. Huecos (30ches) ((und) 14. Cruce de vio. Férrea(n2) 15. Ahuellaniento (n2) 15. Ahuellaniento (n2) 17. Grieta parabólica (n) 18. Hinchamiento (n1) 19. Desprendimienta de		5. Corrugaciones (M2)	
8. Gretus de reflexiones (n) 9. Desrivel carnil/aerna (n) 10. Fisures lorgituóriales y transversiles (n) 11. Parcheo (n2) 12. Agregados pulldos (n2) 13. Huecos (Baches) (und) 14. Cruce de via Férrea (n2) 15. Ahuellaniento (n2) 16. Dezplazamento (n2) 17. Grieta parabálica (n) 18. Hinchamiento (n1) 19. Desprendimienta de		the late his a second distance	
9. Desrivel camil/aerna (n) 10. Fisures longitudinales y thansversibles (n) 11. Parcheo (n2) 12. Agregados pulldos (n2) 13. Huecos (Baches) (und) 14. Cruce de via Férrea (n2) 15. Ahuellaniento (n2) 16. Dezplazamento (n2) 17. Grieta parabálica (n) 18. Hinchamiento (n1) 19. Desprendinienta de			
IDFisures (orgitualinates y transversales (n) II. Partireo (n2) III. Agregados pullos (n2) III. Huctos (Baches) (und) III. Cruce de via Férrea (n2) III. Anuellaniento (n2) III. Anuellaniento (n2) III. Anuellaniento (n2) III. Hinchaniento (n1) III. Hinchaniento (n1) III. Hinchaniento (n1) III. Hinchaniento (n1) III. Besprendiniento de			
10.5 m 10.5 m 11. Parcheo (n²) 12. Agregados puldos (n²) 13. Huecos (Baches) (und) 14. Cruze de via Férrea (n²) 15. Ahuellaniento (n²) 17. Grieta parabálica (n) 18. Hinchaniento (n²) 19. Desprendimienta de			
11. Parches (n2) 12. Agregatis pullats (n2) 13. Huecos (Baches) (und) 14. Cruce de via Férrea (n2) 15. Ahuellariento (n2) 16. Dezalazamento (n0) 17. Crieta parabólica (n) 18. Hinchaniento (n1) 19. Desprendimenta de		10.Fisuras longitudinales y	
13. Huecos (Buches) (und) 14. Cruce de via. Férrea (n2) 15. Ahuellariento (n2) 16. Dezculazamento (n2) 17. Grieta parabólica (n) 18. Hincramiento (n1) 19. Desprendirienta de			
13. Huecos (Baches) (und) 14. Cruce de via. Férrea.(n2) 15. Ahuellariento (n2) 16. Dezolazamento (n2) 17. Grieta parabólica (n) 18. Hinchariento (n1) 19. Desprendirienta de	10.911	12. Agregados pulldos (m2)	
15. Anvellariento (n2) 16. Dezplezamento (n2) 17. Grieta parubilica (n) 18. Hachaniento (n) 19. Desprendimenta de		13. Huecos (Baches) (und)	
16. Dezplozoniento (n2) 17. Grieta parabólica (n) 18. Hhchaniento (n2) 19. Desprendimenta de	UMINR 106		
17. Grieta parabólica (n) 18. Hinchaniento (n) 19. Desprendimenta de	STREET ST	15. Ahuellamiento (n2)	VXX
18. Hhr/tanierto (n/) 19. Desprendienta de		16: Dezplazamento (m2)	2
18. Hinchmento (n) 19. Tesprendienta de	######################################	17. Grieta parabólica (n)	
19. Desprendifiento de	專輯與解釋解釋的		TĒ
		19. Desprendimiento de	
	Experiment Valory and William Control Control		
The last value was to the last	是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个		

REGISTRO DE VANT

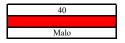
PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM162	UM No Representativas de 10 Km				
NOMBRE DEE TRAINO.	ernand fallaritiment of a fortification	C. VIB. IB BE MCESTICI	0.11102	UM4	UM15	MU25	MU34	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 65+699.4 - KM 65+734.8	UM46	UM62	UM70	UM88	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188	
FECHA:	02/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m		·		

Rangos (%)	Colores	Clasificación				
85 - 100		Excelente				
70 - 85		Muy bueno				
55 - 70		Bueno				
40 - 55		Regular				
25 - 40		Malo				
10 - 25		Muy malo				
0 - 10		Fallado				


Miveles de severidad y Offid. de medida							
L	Low (bajo)						
М	Medium (medio)						
Н	High (alto)						

FALLAS	SEVERIDAD		CANTIDAD				TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)				
2	М	2.831	39.991								42.822	18.61%	18.00
19	L	9.100	3.028	2.72	4.378	2.548	9.330	9.111			40.215	17.48%	7.00
19	Н	36.915									36.915	16.04%	50.00
10	L	8.835									8.835	3.84%	4.00
10	М	14.853									14.853	6.46%	14.00
7	L	12.406									12.406	5.39%	4.00
												Total VD	97.00

CALCULO DEL PCI	
Número de deducidos > 2 (q)	6
Valor deducido mas alto (HDV)	50.00
Numero maximo de valores deducidos (mi)	5.59

Ν°			VALORES	DEDUCIDOS	VDT	q	VDC		
1	50	18	14	7	4	4	97	6	47
2	50	18	14	7	4	2	95	5	49
3	50	18	14	7	2	2	93	4	53
4	50	18	14	2	2	2	88	3	56
5	50	18	2	2	2	2	76	2	55
6	50	2	2	2	2	2	60	1	60
							MAX VDC		60

INDICE DE CONDICION DE PAVIMENTO (PCI)

TIPO DE FALLAS	SIMBOLOGI
1. Piel de cocodrila (n2)	100
2. Exudación de asfalto (m2)	V-//
3. Fisuros en bloque (m2)	
4.Abultaniento y Hundimentos(m	
5. Conrugaciones (M2)	11111
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8 Grietas de reflexiones (m)	
9. Desnivel carril/berna (m)	
10.Fisuras longitudinales y transversales (m)	8
11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea.(m2)	
15. Ahuellamiento (n2)	V
16: Dezplazamiento (m2)	2
17. Grieta parabólica (n)	200
18. Hinchamiento (m)	E
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM167	UM No Representativas de 10 Km				
NOMBRE DEE TRANS.	e.naabibharviibi bin tera	CIVIDING BE MICEGIALLI	CIIII ()	UM4	UM15	MU25	MU34	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 65+876.4 - KM 65+911.8	UM46	UM62	UM70	UM88	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188	
FECHA:	03/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m		·		

Rangos (%)	Colores	Clasificación				
85 - 100		Excelente				
70 - 85		Muy bueno				
55 - 70		Bueno				
40 - 55		Regular				
25 - 40		Malo				
10 - 25		Muy malo				
0 - 10		Fallado				
Niveles de severidad y Unid, de medido						

Miveles de severidad y omar de medida						
L	Low (bajo)					
М	Medium (medio)					
Η	High (alto)					

FALLAS	SEVERIDAD		CANTIDAD									TOTAL	DENSIDAD	VALOR DEDUCIDO (VDC)
2	L	22.654	38.548									61.202	26.60%	7
19	L	26.392										26.392	11.47%	5
19	М	22.202										22.202	9.65%	19
1	L	21.842										21.842	9.49%	32
									Total VD	63				

CALCULO DEL PCI								
Número de deducidos > 2 (q)	4							
Valor deducido mas alto (HDV)	32.00							
Numero maximo de valores deducidos (mi)	7.24							

N°			VALORES	DEDUCIDOS	VDT	q	VDC	
1	32	19	7	5		63	4	35
2	32	19	7	2		60	3	38
3	32	19	2	2		55	2	41
4	32	2	2	2		38	1	38
	_	_		MAX VDC		41		

INDICE DE CONDICION DE PAVIMENTO (PCI)

59	
-	
Bueno	

REPRESENTACIÓN GRÁFICA	
8.27m	

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocodrila (m2)	HH
2. Exudación de asfalto (m2)	V-//
3. Fisuras en bloque (m2)	
4. Abultariento y Hundimentos(r) <u> </u>
5. Corrugaciones (M2)	1000
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8. Grietas de reflexiones (m)	1
9. Desnivel carril/berma (m)	
10.Fisuras longitudinales y transversales (m)	
11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (unal)	
14. Cruce de via férrea(m2)	
15. Ahuellariento (n2)	WW.
16. Dezplazamiento (m2)	
17. Grieta parabólica (n)	222
18. Hinchamiento (m)	F
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

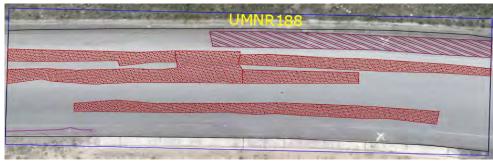
NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM188	UM No Representativas de 10 Km			
TOMBIE BEE HEETO	er material transfer of the formation	C. VIB. IB BE MCESTICH	0	UM4	UM15	MU25	MU34
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 66+619.8 - KM 66+655.2	UM46	UM62	UM70	UM88
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188
FECHA:	03/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación						
85 - 100		Excelente						
70 - 85		Muy bueno						
55 - 70		Bueno						
40 - 55		Regular						
25 - 40		Malo						
10 - 25		Muy malo						
0 - 10		Fallado						

Miveles de severidad y Oma: de medida									
L	Low (bajo)								
М	Medium (medio)								
Η	High (alto)								

FALLAS	SEVERIDAD	CANTIDAD TOTAL										TOTAL	DENSIDAD	VALOR DEDUCIDO	
FALLAS	SEVERIDAD					CA	NIIDAD					IOIAL	DENSIDAD	(VDC)	
19	M	8.248	24.788	10.864								43.9	19.08%	24	
19	Н	22.357	15.207									37.564	16.33%	48	
2	М	25.311										25.311	11.00%	12	
7	L	6.359										6.359	2.76%	3	
									Total VD	87					


CALCULO DEL PCI								
Número de deducidos > 2 (q)	4							
Valor deducido mas alto (HDV)	48.00							
Numero maximo de valores deducidos (mi)	5.78							

N°	VALORES DEDUCIDOS						VDT	q	VDC
1	48	24	12	3			87	4	49
2	48	24	12	2			86	3	54
3	48	24	2	2			76	2	55
4	48	2	2	2			54	1	54
							MAX VDC		55

INDICE DE CONDICION DE PAVIMENTO (PCI) CONDICION DEL PAVIMENTO

45
Regular

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocadrila (n2)	147
2. Exudación de asfalto (m2)	7.7
3. Fisuras en bloque (m2)	
4.Abultaniento y Hundimentos(m	
5. Corrugaciones (M2)	1000
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8 Grietas de reflexiones (m)	
9. Desnivel carril/berna (m)	-
10.Fisuras longitudinales y transversoles (m) 11. Parcheo (m2)	
12. Agregados pulldos (n2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea.(m2)	
15. Ahuellamiento (n2)	V///
16. Dezplazamiento (m2)	
17. Grieta parabólica (n)	200
18. Hinchamiento (m)	
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

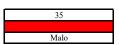
PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM204	UM No Representativas de 10 Km				
NOMBRE DEE TRAMO.	e.num.ran.ran.ran.ran.ran.ran.ran.ran.ran.ran	C. (IB. IB BE MCESTICE)	011201	UM4	UM15	MU25	MU34	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 67+186.2 - KM 67+221.6	UM46	UM62	UM70	UM88	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188	
FECHA:	03/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m		·		

Rangos (%)	Colores	Clasificación					
85 - 100		Excelente					
70 - 85		Muy bueno					
55 - 70		Bueno					
40 - 55		Regular					
25 - 40		Malo					
10 - 25		Muy malo					
0 - 10		Fallado					
Niveles de severidad y Unid, de medida							


IVIV	nes de severidad y Offid. de medida
L	Low (bajo)
М	Medium (medio)
Н	High (alto)

FALLAS	SEVERIDAD		CANTIDAD									TOTAL	DENSIDAD	VALOR DEDUCIDO (VD)
19	М	15.418	6.487									21.905	9.52%	19
19	Н	38.572	7.338	21.294								67.204	29.21%	61
10	M	2.726										2.726	1.18%	3
										Total VD	83			

CALCULO DEL PCI							
Número de deducidos > 2 (q)	3						
Valor deducido mas alto (HDV)	61.00						
Numero maximo de valores deducidos (mi)	4.58						

N°	VALORES DEDUCIDOS						VDT	q	VDC
1	61	19	3				83	3	52
2	61	19	2				82	2	60
3	61	2	2				65	1	65
							MAX VDC		65

INDICE DE CONDICION DE PAVIMENTO (PCI)

TIPO DE FALLAS	SIMBOLOGI
1. Piel de cocodrila (m2)	144
2. Exudación de asfalto (m2)	7.//
3. Fisuras en bloque (m2)	
4.Abultaniento y Hundimentos(m	
5. Conrugaciones (M2)	1000
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8. Grietas de reflexiones (m)	1
9. Desnivel carril/berna (m)	
10.Fisuras longitudinales y transversales (m)	
11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea(n2)	
15. Ahuellamiento (n2)	VXX
16: Dezplazamiento (m2)	2
17. Grieta parabólica (n)	4000
18. Hinchamiento (m)	H
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

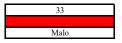
PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

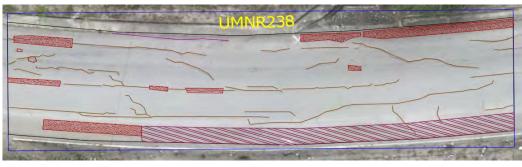
NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM238	UM No Representativas de 10 Km				
NOMBRE DEE TRANS.	ernamination military brainfere	C. (IB.IB BE MCESTICI	0111230	UM4	UM15	MU25	MU34	
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 68+389.8 - KM 68+425.2	UM46	UM62	UM70	UM88	
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188	
FECHA:	03/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación
85 - 100		Excelente
70 - 85		Muy bueno
55 - 70		Bueno
40 - 55		Regular
25 - 40		Malo
10 - 25		Muy malo
0 - 10		Fallado


14100	Miveles de Severidad y Offid: de filedida									
L	Low (bajo)									
М	Medium (medio)									
Н	High (alto)									

FALLAS	SEVERIDAD		CANTIDAD TOTAL								DENSIDAD	VALOR DEDUCIDO (VD)
10	L	44.549								44.549	19.36%	11
10	М	31.938								31.938	13.88%	20
10	Н	50.333								50.333	21.87%	52
19	L	0.979								0.979	0.43%	1
19	М	7.141								7.141	3.10%	12
19	Н	12.552								12.552	5.46%	32
7	L	8.151								8.151	3.54%	4
2	L	33.427								33.427	14.53%	5
											Total VD	137


CALCULO DEL PCI	
Número de deducidos > 2 (q)	7
Valor deducido mas alto (HDV)	52.00
Numero maximo de valores deducidos (m)	5.41

N°			VALORES	DEDUCIDOS	VDT	q	VDC		
1	52	32	20	12	5		121	5	62
2	52	32	20	12	2		118	4	67
3	52	32	20	2	2		108	3	67
4	52	32	2	2	2		90	2	64
5	52	2	2	2	2		60	1	60
									67

INDICE DE CONDICION DE PAVIMENTO (PCI)

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocodrila (n2)	188
2. Exudación de asfalto (m2)	V-//
3. Fisuros en bloque (m2)	
4.Abultaniento y Hundimentos(n)	
5. Corrugaciones (m2)	1000
6. Depresiones (n2)	
7. Fisuros de borde (n)	
8. Grietos de reflexiones (m)	1
9. Desnivel carril/berna (m)	-
10.Fisuras longitudinales y transversales (m) 11. Parcheo (m2)	
12. Agregados pulidos (n2)	
13. Huecos (Baches) (und)	Eartha
14. Cruce de via férrea(m2)	Ť
15. Ahuellariento (n2)	NVVI
16. Dezplazamiento (n2)	2)
17. Grieta parabólica (n)	4000
18. Hinchamiento (m)	
19. Desprendimiento de agregados (m)	

REGISTRO DE VANT

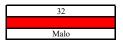
PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM281	UM No	Represer	tativas de	10 Km
	ernamination and state of	C. (IB. IB BE MCESTICIA	0.01201	UM4	UM15	MU25	MU34
EVALUADORES:	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA:	KM 69+912.0 - KM 69+947.4	UM46	UM62	UM70	UM88
	Est. Isaías Guerrero Martinez	ANCHO DE CALZADA (m):	6.5 m	UM106	UM162	UM167	UM188
FECHA:	03/08/2024	ÁREA DE LA MUESTRA :	230.10 m2	UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	Colores	Clasificación							
85 - 100		Excelente							
70 - 85		Muy bueno							
55 - 70		Bueno							
40 - 55		Regular							
25 - 40		Malo							
10 - 25		Muy malo							
0 - 10 Fallado									
Niveles de sev	eridad v Uı	nid. de medida							


	Miveles de severidad y Offici de Medida									
L	Low (bajo)									
М	Medium (medio)									
Н	High (alto)									

FALLAS	SEVERIDAD		CANTIDAD TOTAL										VALOR DEDUCIDO (VD)
2	L	2.163	1.418								3.58	1.56%	1.00
2	Н	33.651									33.65	14.62%	28.00
10	L	7.7107	3.617	4.479	3.091	6.345	3.233	6.373			34.85	15.15%	10.00
10	М	5.851	7.562	4.970	2.865	1.605	4.64	2.132			29.63	12.87%	20.00
10	Н	6.434	2.023	3.884	2.6168	2.437	3.881				21.28	9.25%	33.00
19	М	2.489	1.661	3.683	11.473						19.31	8.39%	7.00
19	Н	16.541									16.54	7.19%	36.00
								-		-		Total VD	135

CALCULO DEL PCI							
Número de deducidos > 2 (q)	6						
Valor deducido mas alto (HDV)	36.00						
Numero maximo de valores deducidos (mi)	6.88						

N°			VALORES	DEDUCIDOS	VDT	q	VDC		
1	36	33	28	20	10	7	134	6	64
2	36	33	28	20	10	2	129	5	66
3	36	33	28	20	2	2	121	4	68
4	36	33	28	2	2	2	103	3	64
5	36	33	2	2	2	2	77	2	56
6	36	2	2	2	2	2	46	1	46
				MAX VDC		68			

INDICE DE CONDICION DE PAVIMENTO (PCI)

TIPO DE FALLAS	SIMBOLOGÍA
1. Piel de cocadrila (m2)	188
2. Exudación de asfalto (m2)	7.11
3. Fisuras en bloque (m2)	
4.Abultaniento y Hundimentos(n) <u> </u>
5. Conrugaciones (M2)	
6. Depresiones (n2)	
7. Fisuras de borde (n)	
8. Grietas de reflexiones (m)	1
9. Desnivel carril/berna (m)	-
10.Fisuras longitudinales y transversoles (m) 11. Parcheo (m2)	
12. Agregados pulldos (m2)	
13. Huecos (Baches) (und)	
14. Cruce de via férrea(n2)	
15. Ahuellariento (n2)	VXX
16. Dezplazamiento (m2)	
17. Grieta parabólica (n)	200
18. Hinchamiento (m)	
19. Desprendimiento de agregados (m)	

ANEXO 6 CÁLCULO DE LA CONDICIÓN MEDIANTE PCI POR UNIDAD DE MUESTRA

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 PROYECTO DE TESIS: MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO) :	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM1	UN	UM Representativas de 10 Km			
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 60+000.0 - KM 60+035.4	UM1	MU20	MU39	UM58	
EVALUADORES	•	Est. Isaías Guerrero Martinez		UM77	UM96	UM115	UM134	
FECHA	:	03/07/2024	ANCHO DE CALZADA : 6.5 m	UM153	UM172	UM191	UM210	
ÁREA DE LA MUESTR	A :	230.10 m2	ANCHO DE CALZADA : 6.5 m		UM248	UM267		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
_	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	colores	clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

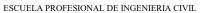
		TIPOS DE FALLAS EXISTENTES											
		N° = 2			N° = 10			N° = 11			N° = 19		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н	
	5.90			7.30	5.10	2.30		16.00		1.00	5.00		
				18.60	3.00	4.60				5.70			
				12.40	31.70	5.50				15.00			
TOTAL POR FALLA	5.90			38.30	39.80	12.40		16.00		21.70	5.00		
		N° =			N°=			N° =			N°=		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н	
TOTAL POR FALLA													
		N° =		N° =		N° =			N° =				
	L	M	Н	L	M	Н	L	M	Н	L	M	Н	
TOTAL POR FALLA													

VALOR DEDUCIDO					
	1				
	11				
	24				
	24				
	26				
	5				
	10				
VDT =	101				

CALCULO DEL PCI						
Número de deducidos > 2 (q)	6					
Valor deducido mas alto (HDV)	26					
Numero maximo de valores deducidos (m)	7.80					

FALLA	SEVERIDAD	AREA m2	DENSIDAD
2	L	5.90	2.56%
10	L	38.30	16.64%
10	M	39.80	17.30%
10	Н	12.40	5.39%
11	M	16.00	6.95%
19	L	21.70	9.43%
19	M	5.00	2.17%

Niveles de severidad y unid. de medida						
L	Low (bajo)					
М	Medium (medio)					
Н	High (alto)					


N°	VALORES DEDUCIDOS						VDT	q	CDV
1	26	24	24	11	10	5	100	6	49
2	26	24	24	11	10	2	97	5	50
3	26	24	24	11	2	2	89	4	51
4	26	24	24	2	2	2	80	3	50
5	26	24	2	2	2	2	58	2	43
6	26	2	2	2	2	2	36	1	36
						MAX CDV		51	

INDICE DE CONDICION DE PAVIMENTO (PCI)								
CONDICION DEL PAVIMENTO								

49 Regular

FACULTAD DE INGENIERÍA

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000
MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAM	0 :	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM20	UM Representativas de 10 Km			10 Km
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 60+672.6 - KM 60+708.0	UM1	MU20	MU39	UM58
	•	Est. Isaías Guerrero Martinez		UM77	UM96	UM115	UM134
FECHA	:	03/07/2024	ANCHO DE CALZADA : 6.5 m	UM153	UM172	UM191	UM210
ÁREA DE LA MUESTI	RA:	230.10 m2	ANCHO DE CALZADA : 0.5 III	UM229	UM248	UM267	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	colores	clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

		TIPOS DE FALLAS EXISTENTES										
		N° = 2			$N^{\circ} = 7$ $N^{\circ} = 10$			N° = 19				
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
	9.25				18.00		6.25	2.35			6.90	
					15.20		7.90	5.70			10.45	
					5.00			3.00			26.00	
TOTAL POR FALLA	9.25				38.20		14.15	11.05			43.35	
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	H
TOTAL POR FALLA												
		N° =			N° =		N° =			N° =		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
											1	
TOTAL POR FALLA												

VALOR DEDUCIDO					
	2				
	18				
	6				
	11				
	25				
VDT =	62				

CALCULO DEL PCI					
Número de deducidos > 2 (q)	4				
Valor deducido mas alto (HDV)	25				
Numero maximo de valores deducidos (m)	7.89				

FALLA	SEVERIDAD	AREA m2	DENSIDAD
2	L	9.25	4.02%
7	M	38.20	16.60%
10	L	14.15	6.15%
10	M	11.05	4.80%
19	M	43.35	18.84%

Niveles de severidad y unid. de medida						
L	Low (bajo)					
М	Medium (medio)					
Н	High (alto)					

N°		VALOI	RES DEDUC	IDOS	VDT	q	CDV	
1	25	18	11	6		60	4	33
2	25	18	11	2		56	3	36
3	25	18	2	2		47	2	35
4	25	2	2	2		31	1	31
	•				MAX CDV		36	

INDICE DE CONDICION DE PAVIMENTO (PCI)

CONDICION DEL PAVIMENTO

64	
Bueno	

HOJA DE REGISTRO DE INSPECCIÓN

NOMBRE DEL TRAM	ю:	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM39	UM Representativas de 10 Km			10 Km
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 61+345.2 - KM 61+380.6	UM1	MU20	MU39	UM58
	•	Est. Isaías Guerrero Martinez	FROGRESIVA; KIVI 01+343.2 - KIVI 01+380.0	UM77	UM96	UM115	UM134
FECHA	:	03/07/2024	ANCHO DE CALZADA : 6.5 m	UM153	UM172	UM191	UM210
ÁREA DE LA MUEST	RA:	230.10 m2	ANCHO DE CALZADA : 0.5 III	UM229	UM248	UM267	,

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	colores	clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

		TIPOS DE FALLAS EXISTENTES											
	N° = 10				N° = 11			N° = 19			N° =		
	L	M	Н	L	M	Н	L	M	H	L	M	Н	
	9.30	33.30			4.80		10.70	4.45					
	35.20	31.80			5.75			1.70					
	30.80	36.30											
TOTAL POR FALLA	75.30	101.40			10.55		10.70	6.15					
		N° =			N° =			N°=			N°=		
	L	M	Н	L	M	Н	L	M	H	L	M	Н	
TOTAL POR FALLA													
		N° =			N° =			N°=			N°=		
	L	M	Н	L	M	Н	L	M	H	L	M	Н	
TOTAL POR FALLA													

VALOR DEDUCIDO						
	16					
	36					
	22					
	4					
	11					
VDT =	89					
·						

CALCULO DEL PCI	
Número de deducidos > 2 (q)	5
Valor deducido mas alto (HDV)	36
Numero maximo de valores deducidos (m)	6.88

FALLA	SEVERIDAD	AREA m2	DENSIDAD
10	L	75.30	32.72%
10	M	101.40	44.07%
11	M	10.55	4.58%
19	L	10.70	4.65%
19	M	6.15	2.67%

Niveles de severidad y unid. de medida							
L	Low (bajo)						
Μ	Medium (medio)						
Н	High (alto)						

	N°	VALORES DEDUCIDOS					VDT	q	CDV
	1	36	22	16	11	4	89	5	45
I	2	36	22	16	11	2	87	4	49
	3	36	22	16	2	2	78	3	50
	4	36	22	2	2	2	64	2	47
	5	36	2	2	2	2	44	1	44
					MAX CDV		50		

INDICE DE CONDICION DE PAVIMENTO (PCI)	50		
CONDICION DEL PAVIMENTO	Regular		

HOJA DE REGISTRO DE INSPECCIÓN

NOMBRE DEL TRAMO :		CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM58	UM Representativas de 10 Km					
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 62+ 017.8 - KM 62+053.2		MU20	MU39	UM58		
EVALUADORES	•	Est. Isaías Guerrero Martinez	UM77	UM96	UM115	UM134			
FECHA	:	03/07/2024	ANCHO DE CALZADA : 6.5 m	UM153	UM172	UM191	UM210		
ÁREA DE LA MUEST	RA:	230.10 m2	ANCHO DE CALLADA : 0.3 m	UM229	UM248	UM267	1		

3.10	TIPOS DE FALLAS	CODICO	TIME	N.O.	TIPOS DE FALLAS	CODICO	TIME
N°		CODIGO	UND.	Nº	***	CODIGO	UND.
	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	colores	clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

		TIPOS DE FALLAS EXISTENTES										
		N° = 1			N° = 7	$N^{\circ} = 7$ $N^{\circ} = 10$				N° = 19		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
	9.65				18.20		11.00				36.15	
	25.15											
TOTAL POR FALLA	34.80				18.20		11.00				36.15	
	N° =			N° =	N° = N° =			N° =				
	L	M	H	L	M	H	L	M	H	L	M	H
TOTAL POR FALLA												
		N° =			N° =		N° =			N° =		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												

VALOR E	DEDUCIDO
	38
	13
	4
	23
VDT =	78

CALCULO DEL PCI							
Número de deducidos > 2 (q)	4						
Valor deducido mas alto (HDV)	38						
Numero maximo de valores deducidos (m)	6.69						

FALLA	SEVERIDAD	AREA m2	DENSIDAD
1	L	34.80	15.12%
7	M	18.20	7.91%
10	L	11.00	4.78%
19	M	36.15	15.71%

Niveles de severidad y unid. de medida									
L	Low (bajo)								
М	Medium (medio)								
Н	High (alto)								

N°		VALOI	RES DEDUC	IDOS	VDT	q	CDV	
1	38	23	13	4		78	4	44
2	38	23	13	2		76	3	48
3	38	23	2	2		65	2	47
4	38	2	2	2		44	1	44
				MAX CDV		48		

INDICE DE CONDICION DE PAVIMENTO (PCI)	52
CONDICION DEL PAVIMENTO	Regular

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

NOMBRE DEL TRAMO :		CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM77	UM Representativas de 10 Km				
EVALUADORES :		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 62+690.4 - KM 62+725.8	UM1	MU20	MU39	UM58	
EVALUADORES	:	Est. Isaías Guerrero Martinez	FROGRESIVA: KIVI 02+090.4 - KIVI 02+/23.8	UM77	UM96	UM115	UM134	
FECHA	:	03/07/2024	ANCHO DE CALZADA : 6.5 m	UM153	UM172	UM191	UM210	
ÁREA DE LA MUESTRA:		230.10 m2	ANCHO DE CALZADA : 0.3 m	UM229	UM248	UM267		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	colores	clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

		TIPOS DE FALLAS EXISTENTES											
		N° = 1			N° = 2		N° = 7				N° = 19		
	L	M	Н	L	M	H	L	M	H	L	M	Н	
	41.00			6.30				22.80		22.00	29.80		
TOTAL POR FALLA	41.00			6.30				22.80		22.00	29.80		
		N° =			N° = N° =				N° =				
	L	M	Н	L	M	H	L	M	H	L	M	Н	
TOTAL POR FALLA													
		N° =			N° =	N° = N° =			N°=				
	L	M	Н	L	M	Н	L	M	H	L	M	Н	
TOTAL POR FALLA													

VALOR DEDUCIDO							
	39						
	1						
	14						
	5						
	21						
VDT =	80						

CALCULO DEL PCI					
Número de deducidos > 2 (q)	4				
Valor deducido mas alto (HDV)	39				
Numero maximo de valores deducidos (m)	6.60				

FALLA	SEVERIDAD	AREA m2	DENSIDAD
1	L	41.00	17.82%
2	L	6.30	2.74%
7	M	22.80	9.91%
19	L	22.00	9.56%
19	M	29.80	12.95%
•			

Nive	les de severidad y unid. de medida
L	Low (bajo)
М	Medium (medio)
Н	High (alto)

N°		VALOI	RES DEDUC	IDOS	VDT	q	CDV	
1	39	21	14	5		79	4	44
2	39	21	14	2		76	3	48
3	39	21	2	2		64	2	46
4	39	2	2	2		45	1	45
						MAYCDV		40

INDICE DE CONDICION DE PAVIMENTO (PCI)	52
CONDICION DEL PAVIMENTO	Regular

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

NOMBRE DEL TRAM	0 :	CARRETERA JAÉN - SAN IGNACIO	GNACIO UNIDAD DE MUESTRA: UM96 UM Representativas de 10				10 Km
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 63+363.0 - KM 63+398.4	UM1	MU20	MU39	UM58
EVALUADORES	•	Est. Isaías Guerrero Martinez	FROGRESIVA: KWI 03+303.0 - KWI 03+398.4	UM77	UM96	UM115	UM134
FECHA : ÁREA DE LA MUESTRA :		04/07/2024	ANCHO DE CALZADA : 6.5 m	UM153	UM172	UM191	UM210
		230.10 m2	ANCHO DE CALZADA : 0.5 III	UM229	UM248	UM267	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	colores	clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

	TIPOS DE FALLAS EXISTENTES											
	N° = 1				N° = 2		N° = 7			N° = 19		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
	5.4				1.50			12.00		6.00	5.30	
	6.7									14.80	24.40	
TOTAL POR FALLA	12.10				1.50			12.00		20.80	29.70	
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												
		N° =		N° =		N° =			N° =			
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												

VALOR DEDUCIDO					
	27				
	3				
	11				
	5				
	10				
VDT =	56				

CALCULO DEL PCI					
Número de deducidos > 2 (q)	5				
Valor deducido mas alto (HDV)	27				
Numero maximo de valores deducidos (m)	7.70				

FALLA	SEVERIDAD	AREA m2	DENSIDAD
1	L	12.10	5.26%
2	М	1.50	0.65%
7	М	12.00	5.22%
19	L	20.80	9.04%
19	М	29.70	12.91%

Nive	les de severidad y unid. de medida
L	Low (bajo)
М	Medium (medio)
Н	High (alto)

N'	0		VALOI	RES DEDUC	IDOS	VDT	q	CDV	
1		27	11	10	5	3	56	5	26
2		27	11	10	5	2	55	4	29
3		27	11	10	2	2	52	3	32
4		27	11	2	2	2	44	2	33
5		27	2	2	2	2	35	1	35
		•			MAYCDV		35		

INDICE DE CONDICION DE PAVIMENTO (PCI)	65
CONDICION DEL PAVIMENTO	Bueno

HOJA DE REGISTRO DE INSPECCIÓN

NOMBRE DEL TRAM	Ю :	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM115	UM Representativas de 10 Km				
EVALUADORES	_	Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 64+035.6 - KM 64+071.0	UM1	MU20	MU39	UM58	
	•	Est. Isaías Guerrero Martinez	FROGRESIVA; KIVI 04+033.0 - KIVI 04+071.0	UM77	UM96	UM115	UM134	
FECHA :		04/07/2024	ANCHO DE CALZADA : 6.5 m	UM153	UM172	UM191	UM210	
ÁREA DE LA MUEST	RA:	230.10 m2	ANCHO DE CALLADA : 0.3 m	UM229	UM248	UM267		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	colores	clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

		TIPOS DE FALLAS EXISTENTES										
	N° = 5				N° = 7		N° = 10			N° = 19		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
		40.00			5.00		7.50	24.10			4.80	
							10.20	12.00			10.00	
							8.00	16.50			6.00	
TOTAL POR FALLA		40.00			5.00		25.70	52.60			20.80	
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												
		N° =		N° =		N° =			N° =			
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
												·
TOTAL POR FALLA												

VALOR DEDUCIDO						
	46					
	8					
	9					
	28					
	19					
VDT =	110					

CALCULO DEL PCI						
Número de deducidos > 2 (q)	5					
Valor deducido mas alto (HDV)	46					
Numero maximo de valores deducidos (m)	5.96					

FALLA	SEVERIDAD	AREA m2	DENSIDAD
5	M	40.00	17.38%
7	M	5.00	2.17%
10	L	25.70	11.17%
10	M	52.60	22.86%
19	M	20.80	9.04%

Niveles de severidad y unid. de medida								
L	Low (bajo)							
М	Medium (medio)							
Н	High (alto)							

N°		VALO	RES DEDUC	IDOS	VDT	q	CDV	
1	46	28	19	8	3	104	5	54
2	46	28	19	8	2	103	4	58
3	46	28	19	2	2	97	3	62
4	46	28	2	2	2	80	2	58
5	46	2	2	2	2	54	1	54
				MAX CDV		62		

INDICE DE CONDICION DE PAVIMENTO (PCI)	38
CONDICION DEL PAVIMENTO	Malo

FACULTAD DE INGENIERÍA

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000
MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO :		CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM134	UM Representativas de 10 Km				
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 64+708.2 - KM 64+743.6	UM1	MU20	MU39	UM58	
	•	Est. Isaías Guerrero Martinez	FROGRESIVA: KIVI 04+/08.2 - KIVI 04+/43.0	UM77	UM96	UM115	UM134	
FECHA	: 04/07/2024		ANCHO DE CALZADA . 65 ···	UM153	UM172	UM191	UM210	
ÁREA DE LA MUESTI	RA:	230.10 m2	ANCHO DE CALZADA : 6.5 m		UM248	UM267		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	colores	clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

		TIPOS DE FALLAS EXISTENTES										
		N° = 2			N° = 10		N° = 11			N° = 19		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
			23.80	13.8	13.80			4.20	35.70			14.60
			5.50	5.00	9.50			4.00				15.80
				10.00	5.00			4.30				10.00
TOTAL POR FALLA			29.30	28.80	28.30			12.50	35.70			40.40
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	H
TOTAL POR FALLA												
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												

VALOR DEDUCIDO							
	27						
	10						
	38						
	23						
	60						
	48						
VDT =	206						

CALCULO DEL PCI	
Número de deducidos > 2 (q)	6
Valor deducido mas alto (HDV)	60
Numero maximo de valores deducidos (m)	4.67

FALLA	SEVERIDAD	AREA m2	DENSIDAD
2	Н	29.30	12.73%
10	L	28.80	12.52%
10	M	28.30	12.30%
11	M	12.50	5.43%
11	Н	35.70	15.51%
19	Н	40.40	17.56%

Nive	les de severidad y unid. de medida
L	Low (bajo)
М	Medium (medio)
Н	High (alto)

	N°		VALOI	RES DEDUC	IDOS	VDT	q	CDV	
	1	60	48	38	18.09		164.09	4	88
	2	60	48	38	2		148	3	87
I	3	60	48	2	2		112	2	77
ſ	4	60	2	2	2		66	1	66
ſ									
ſ									
ſ									
							MAX CDV		88

INDICE DE CONDICION DE PAVIMENTO (PCI)

CONDICION DEL PAVIMENTO

12 Muy malo

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

NOMBRE DEL TRAMO :		CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM153	UM Representativas de 10 Km				
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 65+380.8 - KM 65+416.2	UM1	MU20	MU39	UM58	
	•	Est. Isaías Guerrero Martinez	FROGRESIVA: KWI 05+380.8 - KWI 05+410.2	UM77	UM96	UM115	UM134	
FECHA	: 04/07/2024		ANCHO DE CALZADA 165 m	UM153	UM172	UM191	UM210	
ÁREA DE LA MUEST	RA:	230.10 m2	ANCHO DE CALZADA : 6.5 m		UM248	UM267		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Deplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

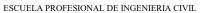
Rangos (%)	colores	clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

		TIPOS DE FALLAS EXISTENTES										
		N° = 5			$N^{\circ} = 10$ $N^{\circ} = 19$				N° =			
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
	11.30			5.20	11.50		7.70		16.90			
				7.00	11.00		6.00		2.00			
					10.00		7.80		3.00			
TOTAL POR FALLA	11.30			12.20	32.50		21.50		21.90			
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	H	L	M	Н
TOTAL POR FALLA												
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												

VALOR L	DEDUCIDO
	9
	5
	22
	5
	41
VDT =	82

CALCULO DEL PCI						
Número de deducidos > 2 (q)	5					
Valor deducido mas alto (HDV)	41					
Numero maximo de valores deducidos (m)	6.42					

FALLA	SEVERIDAD	AREA m2	DENSIDAD
5	L	11.30	4.91%
10	L	12.20	5.30%
10	M	32.50	14.12%
19	L	21.50	9.34%
19	Н	21.90	9.52%


Niveles de severidad y unid. de medida								
L	Low (bajo)							
М	Medium (medio)							
Н	High (alto)							

N°		VALO	RES DEDUC	IDOS	VDT	q	CDV	
1	41	22	9	5	5	82	5	42
2	41	22	9	5	2	79	4	45
3	41	22	9	2	2	76	3	48
4	41	22	2	2	2	69	2	51
5	41	2	2	2	2	49	1	49
				MAX CDV	7	51		

INDICE DE CONDICION DE PAVIMENTO (PCI)	
CONDICION DEL PAVIMENTO	Γ

49	
Regular	

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI HOJA DE REGISTRO DE INSPECCIÓN

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO :		CARRETERA JAÉN - SAN IGNACIO UNIDAD DE MUESTRA : UM172		UM Representativas de 10 Km					
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 66+053.4 - KM 66+088.8	UM1	MU20	MU39	UM58		
EVALUADORES	•	Est. Isaías Guerrero Martinez	F ROGRESIVA; KIVI 00+035.4 - KIVI 00+088.8	UM77	UM96	UM115	UM134		
FECHA	:	04/07/2024	ANCHO DE CALZADA : 6.5 m	UM153	UM172	UM191	UM210		
ÁREA DE LA MUESTRA:		230.10 m2	ANCHO DE CALZADA : 0.5 III	UM229	UM248	UM267			

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	colores	clasificación
85 10		Exelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

		TIPOS DE FALLAS EXISTENTES										
		N° = 1			$N^{\circ} = 5$ $N^{\circ} = 10$				N° = 19			
	L	M	Н	L	M	Н	L	M	Н	L	M	H
		8.80			5.60		5.30	22.00		4.50	8.00	
					4.00		7.50	19.00		1.00	12.00	
							9.90	15.60		5.60		
TOTAL POR FALLA		8.80			9.60		22.70	56.60		11.10	20.00	
		N° =			N° =			N° =			N° =	
	L	M	Н	L	M	Н	L	M	H	L	M	Н
TOTAL POR FALLA												
	N° =		N° =		N° =		N° =					
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												

VALOR DEDUCIDO						
	35					
	30					
	8					
	28					
	4					
	18					
VDT =	123					

CALCULO DEL PCI						
Número de deducidos > 2 (q)	6					
Valor deducido mas alto (HDV)	35					
Numero maximo de valores deducidos (m)	6.97					

FALLA	SEVERIDAD	AREA m2	DENSIDAD
1	M	8.80	3.82%
5	M	9.60	4.17%
10	L	22.70	9.87%
10	M	56.60	24.60%
19	L	11.10	4.82%
19	M	20.00	8.69%

Niveles de severidad y unid. de medida								
L	Low (bajo)							
М	Medium (medio)							
Н	High (alto)							

N°			VALO	RES DEDUC	IDOS	VDT	q	CDV	
1	35	30	28	18	8	4	123	6	60
2	35	30	28	18	8	2	121	5	62
3	35	30	28	18	2	2	115	4	65
4	35	30	28	2	2	2	99	3	62
5	35	30	2	2	2	2	73	2	53
6	35	2	2	2	2	2	45	1	45
									C.F.

35 INDICE DE CONDICION DE PAVIMENTO (PCI) Malo CONDICION DEL PAVIMENTO

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

NOMBRE DEL TRAMO : CARRETERA JAÉN - SAN IGNACIO		CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM191	UM Representativas de 10 Km				
EVALUADORES :		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 66+726.0 - KM 66+761.4	UM1	MU20	MU39	UM58	
EVALUADORES	•	Est. Isaías Guerrero Martinez	FROGRESIVA: KIVI 00+/20.0 - KIVI 00+/01.4	UM77	UM96	UM115	UM134	
FECHA	:	05/07/2024	ANCHO DE CALZADA : 6.5 m	UM153	UM172	UM191	UM210	
ÁREA DE LA MUESTRA:		230.10 m2	ANCHO DE CALZADA : 0.5 III	UM229	UM248	UM267		

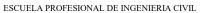
N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Figuras longitudinales y transversales	FLT	m				

Rangos (%)	colores	clasificación
85 10		Exelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

		TIPOS DE FALLAS EXISTENTES										
		N° = 2			N° = 10		N° = 19			N° =		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
		14.25		33.40	6.20		6.20	9.80				
				16.30	8.40		7.30	21				
				22.30								
TOTAL POR FALLA		14.25		72.00	14.60		13.50	30.80				
		N° =			N° =		N° =		N° =			
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
											1	
											1	
TOTAL POR FALLA												

VALOR DEDUCIDO						
	10					
	16					
	14					
	4					
	22					
VDT =	66					

CALCULO DEL PCI	
Número de deducidos > 2 (q)	5
Valor deducido mas alto (HDV)	22
Numero maximo de valores deducidos (m)	8.16


FALLA	SEVERIDAD	AREA m2	DENSIDAD
2	M	14.25	6.19%
10	L	72.00	31.29%
10	M	14.60	6.35%
19	L	13.50	5.87%
19	M	30.80	13.39%

Nive	Niveles de severidad y unid. de medida					
L	Low (bajo)					
М	Medium (medio)					
Н	High (alto)					

N°		VALOR	ES DEDUC	CIDOS	VDT	q	CDV	
1	22	16	14	10	4	66	5	32
2	22	16	14	10	2	64	4	36
3	22	16	14	2	2	56	3	35
4	22	16	2	2	2	44	2	32
5	22	2	2	2	2	30	1	30
						MAYCDU	7	26

INDICE DE CONDICION DE PAVIMENTO (PCI)	64
CONDICION DEL PAVIMENTO	Bueno

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI HOJA DE REGISTRO DE INSPECCIÓN

NOMBRE DEL TRAN	10 :	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM210	UN	UM Representativas de 10 Km		
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 67+398.6 - KM 67+434.0	UM1	MU20	MU39	UM58
EVALUADORES	•	Est. Isaías Guerrero Martinez	F ROGRESIVA: KIVI 0/+398.0 - KIVI 0/+434.0	UM77	UM96	UM96 UM115 UN	UM134
,		05/07/2024	ANCHO DE CALZADA : 6.5 m	UM153	UM172	UM191	UM210
		230.10 m2	ANCHO DE CALZADA : 0.3 III	UM229	UM248	UM267	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	colores	clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

	TIPOS DE FALLAS EXISTENTES											
	N° = 2				N° = 10			N° = 19				
	L	M	Н	L	M	Н	L	M	Н	L	M	H
		31.85		8.70	13.35	9.05	10.00		11.25			
				15.75	18.25	3.70	2.35		5.40			
				23.40	20.55	5.25	4.55		7.25			
TOTAL POR FALLA		31.85		47.85	52.15	18.00	16.90		23.90			
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	H
TOTAL POR FALLA												
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												

VALOR DEDUCIDO					
	16				
	14				
	28				
	30				
	5				
	43				
VDT =	136				

CALCULO DEL PCI			
Número de deducidos > 2 (q)	6		
Valor deducido mas alto (HDV)	43		
Numero maximo de valores deducidos (m)	6.23		

FALLA	SEVERIDAD	AREA m2	DENSIDAD
2	M	31.85	13.84%
10	L	47.85	20.80%
10	M	52.15	22.66%
10	Н	18.00	7.82%
19	L	16.90	7.34%
19	Н	23.90	10.39%

Nive	les de severidad y unid. de medida
L	Low (bajo)
М	Medium (medio)
Н	High (alto)

l	N°			VALO	RES DEDUC	IDOS	VDT	q	CDV	
ı	1	43	30	28	16	14	5	136	6	66
ſ	2	43	30	28	16	14	2	133	5	68
	3	43	30	28	16	2	2	121	4	68
ſ	4	43	30	28	2	2	2	107	3	66
	5	43	30	2	2	2	2	81	2	57
ĺ	6	43	2	2	2	2	2	53	1	53
	•									
						MAX CDV		68		

INDICE DE CONDICION DE PAVIMENTO (PCI)	
CONDICION DEL PAVIMENTO	

32	
Malo	

FACULTAD DE INGENIERÍA

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000
MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRA	AMO :	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM229	UN	∕l Represer	ntativas de	10 Km
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 68+071.2 - KM 68+106.6	UM1	MU20	MU39	UM58
EVALUADORES	•	Est. Isaías Guerrero Martinez	FROGRESIVA: KIVI 08+0/1.2 - KIVI 08+100.0	UM77	UM96	UM115	UM134
FECHA	:	05/07/2024	ANCHO DE CALZADA : 6.5 m	UM153	UM172	UM191	UM210
ÁREA DE LA MUE	STRA:	230.10 m2	ANCHO DE CALZADA : 0.5 III	UM229	UM248	UM267	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.		
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2		
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2		
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.		
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2		
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2		
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2		
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2		
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2		
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2		
10	Fisuras longitudinales y transversales	FLT	m						

Rangos (%)	colores	clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

		TIPOS DE FALLAS EXISTENTES										
	N° = 3			$N^{\circ} = 10$ $N^{\circ} = 19$			N° =					
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
		29.70		6.70	6.20	32.70	7.50	28.40				
				37.00	39.00							
TOTAL POR FALLA		29.70		43.70	45.20	32.70	7.50	28.40				
	N° =		N° =		N° =		N° =					
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												
		N° =		N° =		N° =			N° =			
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												

VALOR DEDUCIDO						
	19					
	11					
	25					
	41					
	3					
	21					
VDT =	120					

CALCULO DEL PCI							
Número de deducidos > 2 (q)	6						
Valor deducido mas alto (HDV)	41						
Numero maximo de valores deducidos (m)	6.42						

FALLA	SEVERIDAD	AREA m2	DENSIDAD
3	M	29.70	12.91%
10	L	43.70	18.99%
10	M	45.20	19.64%
10	Н	32.70	14.21%
19	L	7.50	3.26%
19	M	28.40	12.34%

Niveles de severidad y unid. de medida									
L	Low (bajo)								
М	Medium (medio)								
Н	High (alto)								

N°			VALOI	RES DEDUC	IDOS	VDT	q	CDV	
1	1 41 25 21 19		19	11	3	120	6	59	
2	41	25	21	19	11	2	119	5	61
3	41	25	21	19	2	2	110	4	62
4	41	25	21	2	2	2	93	3	59
5	41	25	2	2	2	2	74	2	54
6	41	2	2	2	2	2	51	1	51
							MAX CDV		62

INDICE DE CONDICION DE PAVIMENTO (PCI)

CONDICION DEL PAVIMENTO

38 Malo

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERIA CIVIL

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI HOJA DE REGISTRO DE INSPECCIÓN

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO :		CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM248	UM Representativas de 10 Km				
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 68+743.8 - KM 68+779.2	UM1	MU20	MU39	UM58	
	•	Est. Isaías Guerrero Martinez	FROGRESIVA: KIVI 00+/45.8 - KIVI 08+//9.2	UM77	UM96	UM115	UM134	
FECHA	:	05/07/2024	ANCHO DE CALZADA : 6.5 m	UM153	UM172	UM191	UM210	
ÁREA DE LA MUESTI	RA:	230.10 m2	ANCHO DE CALZADA : 0.3 m	UM229	UM248	UM267	,	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	colores	clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

		TIPOS DE FALLAS EXISTENTES											
		N° = 7			N° = 10			N° = 19			N° =		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н	
	10.30			5.30	16.70		3.40	26.20					
				15.50	15.90		2.40	11.90					
				7.20	52.30								
TOTAL POR FALLA	10.30			28.00	84.90		5.80	38.10					
		N° =			N° =			N°=			N°=		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н	
TOTAL POR FALLA													
		N° =			N° =		N° =			N° =			
	L	M	Н	L	M	Н	L	M	Н	L	M	Н	
TOTAL POR FALLA													

VALOR DEDUCIDO							
	4						
	9						
	33						
	3						
	23						
VDT =	72						

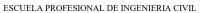
CALCULO DEL PCI	
Número de deducidos > 2 (q)	5
Valor deducido mas alto (HDV)	33
Numero maximo de valores deducidos (m)	7.15

FALLA	SEVERIDAD	AREA m2	DENSIDAD
7	L	10.30	4.48%
10	L	28.00	12.17%
10	M	84.90	36.90%
19	L	5.80	2.52%
19	M	38.10	16.56%

Niveles de severidad y unid. de medida							
L	Low (bajo)						
М	Medium (medio)						
Н	High (alto)						

	N°		VALOI	RES DEDUC	IDOS	VDT	q	CDV	
	1	33	23	9	4	3	72	5	36
	2	33	23	9	4	2	71	4	40
I	3	33	23	9	2	2	69	3	44
ſ	4	33	23	2	2	2	62	2	46
	5	33	2	2	2	2	41	2	41
I									
ſ							·		
					MAX CDV		46		

CONDICION DEL PAVIMENTO (PCI)


54

CONDICION DEL PAVIMENTO

Regular

FACULTAD DE INGENIERÍA

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000
MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO :		CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM267	UM Representativas de 10 Km				
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 69+416.4 - KM 69+451.8	UM1	MU20	MU39	UM58	
	•	Est. Isaías Guerrero Martinez	FROGRESIVA: KWI 09+410.4 - KWI 09+451.8	UM77	UM96	UM115	UM134	
FECHA	:	05/07/2024	ANCHO DE CALZADA 165 m	UM153	UM172	UM191	UM210	
ÁREA DE LA MUEST	RA:	: 230.10 m2 ANCHO DE CALZADA : 6.5 m		UM229	UM248	UM267		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos (%)	colores	clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado

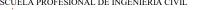
		TIPOS DE FALLAS EXISTENTES											
		N° = 5			N° = 7			N° = 10			N° = 19		
	L	M	Н	L	M	Н	L	M	H	L	M	Н	
			53.15	3.70	6.40	21.60	10.00	10.20	15.80	5.75		5.4	
					7.60		14.70					56.65	
TOTAL POR FALLA			53.15	3.70	14.00	21.60	24.70	10.20	15.80	5.75		62.05	
		N° =			N° =			N°=			N°=		
	L	M	Н	L	M	Н	L	M	H	L	M	H	
TOTAL POR FALLA													
		N° =			N° =		N° =			N° =			
	L	M	Н	L	M	Н	L	M	H	L	M	H	
TOTAL POR FALLA													

VALUR L	DEDUCIDO
	76
	3
	12
	22
	9
	11
	28
	3
	60
VDT =	224

CALCULO DEL PCI	
Número de deducidos > 2 (q)	9
Valor deducido mas alto (HDV)	76
Numero maximo de valores deducidos (m)	3.20

FALLA	SEVERIDAD	AREA m2	DENSIDAD
5	Н	53.15	23.10%
7	L	3.70	1.61%
7	M	14.00	6.08%
7	Н	21.60	9.39%
10	L	24.70	10.73%
10	M	10.20	4.43%
10	Н	15.80	6.87%
19	L	5.75	2.50%
19	Н	62.05	26.97%

Nive	les de severidad y unid. de medida
L	Low (bajo)
М	Medium (medio)
Н	High (alto)


l	N°		VALOI	RES DEDUC	IDOS		VDT	q	CDV
I	1	76	60	10.92			147	3	86
	2	76	60	2			138	2	90
	3	76	2	2			80	1	80
ſ									
ſ									
ſ									
ſ									
ſ									
•					MAX CDV	I	90		

INDICE DE CONDICION DE PAVIMENTO (PCI)

CONDICION DEL PAVIMENTO

10 Muy malo

UNIVERSIDAD NACIONAL DE JAÉN FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERIA CIVIL EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

PROYECTO DE TESIS:	"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000
	MEDIANTE VEHÍCUI O AÉREO NO TRIPLII ADO JAÉN 2024 "

NOMBRE DEL TRAN	мо :	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM4	UM	No Repres	entativas d	e 10 Km
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 60+106.2- KM 60+141.6	UM4	UM15	MU25	MU34
	•	Est. Isaías Guerrero Martinez	FROGRESIVA: KWI 00+100.2- KWI 00+141.0	UM46	UM62	UM70	UM88
FECHA	:	06/07/2024	ANCHO DE CALZADA : 6.5 m	UM106	UM162	UM167	UM188
ÁREA DE LA MUES	TRA:	230.1 m2	ANCHO DE CALZADA : 0.3 m	UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos(%)	colores	clasificación		
85 10		Excelente		
70 85		Muy bueno		
55 70	Bueno			
40 55		Regular		
25 40		Malo		
10 25		Muy malo		
0 10		Fallado		
Niveles	de severidad y uni	d. de medida		
L	Lov	v (bajo)		
M	Mediu	ım (medio)		
Н	Hig	h (alto)		

		TIPOS DE FALLAS EXISTENTES										
		N° = 7			N° = 10			N° = 19		N° =		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
		3.30			21.90	36.40	2.00	8.20				
		18.00			22.70	17.70	14.00	10.40				
					21.20	17.80		15.00				
TOTAL POR FALLA		21.30			65.80	71.90	16.00	33.60				
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												
		N° =		N° =		N° =			N° =			
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												

VALOR DEDUCIDO					
	14				
	30				
	61				
	4				
	22				
VDT =	131				

CALCULO DEL PCI					
Número de deducidos > 2 (q)	5				
Valor deducido mas alto (HDV)	61				
Numero maximo de valores deducidos (m)	4.58				

FALLA	SEVERIDAD	AREA m2	DENSIDAD
7	M	21.30	9.26%
10	M	65.80	28.60%
10	Н	71.90	31.25%
19	L	16.00	6.95%
19	M	33.60	14.60%

N°		VALOI	RES DEDUC	IDOS	VDT	q	CDV	
1	61	30	22	14	4	131	5	68
2	61	30	22	14	2	129	4	72
3	61	30	22	2	2	117	3	71
4	61	30	2	2	2	97	2	69
5	61	2	2	2	2	69	1	69
	<u> </u>							72

INDICE DE CONDICION DE PAVIMENTO (PCI)	28
CONDICION DEL PAVIMENTO	Malo

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

NOMBRE DEL TRAMO	NOMBRE DEL TRAMO : CARRETERA JAÉN - SAN IGNACIO UNIDAD DE MUESTRA : UM		UNIDAD DE MUESTRA: UM15	UM	UM No Representativas de 10 Km			
EVALUADORES :		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 60+495.6 - KM 60+531.0	UM4	UM15	MU25	MU34	
EVALUADORES :	•	Est. Isaías Guerrero Martinez	FROGRESIVA: KM 00+493.0 - KM 00+331.0	UM46	UM62	UM70	UM88	
FECHA : ÁREA DE LA MUESTRA :		06/07/2024	ANCHO DE CALZADA : 6.5 m	UM106	UM162	UM167	UM188	
		230.10 m2	ANCHO DE CALZADA : 0.5 III	UM204	UM238	UM281		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos(%)	colores	clasificación			
85 10		Excelente			
70 85		Muy bueno			
55 70		Bueno			
40 55		Regular			
25 40		Malo			
10 25		Muy malo			
0 10		Fallado			
Niveles	de severidad y unid. de medida				
L	Low (bajo)				
M	Medium (medio)				
Н	Hig	h (alto)			

		TIPOS DE FALLAS EXISTENTES											
		N° = 2			N° = 10			N° = 19			N° =		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н	
	20.25			15.80	16.80		5.35		22.70				
				17.60	25.20		6.65						
				13.20	11.20								
TOTAL POR FALLA	20.25			46.60	53.20		12.00		22.70				
		N° =			N° =			N°=			N°=		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н	
TOTAL POR FALLA													
		N° =		N° =		N° =			N° =				
	L	M	Н	L	M	Н	L	M	Н	L	M	Н	
TOTAL POR FALLA													

VALOR I	DEDUCIDO
	3
	13
	29
	5
	42
VDT =	92

CALCULO DEL PCI				
Número de deducidos > 2 (q)	5			
Valor deducido mas alto (HDV)	42			
Numero maximo de valores deducidos (m)	6.33			

FALLA	SEVERIDAD	AREA m2	DENSIDAD
2	L	20.25	8.80%
10	L	46.60	20.25%
10	M	53.20	23.12%
19	L	12.00	5.22%
19	Н	22.70	9.87%

N°		VALO	RES DEDUC	IDOS		VDT	q	CDV
1	42	29	13	5	3	92	5	47
2	42	29	13	5	2	91	4	52
3	42	29	13	2	2	88	3	56
4	42	29	2	2	2	77	2	56
5	42	2	2	2	2	50	1	50
								56

INDICE DE CONDICION DE PAVIMENTO (PCI)	44
CONDICION DEL PAVIMENTO	Regular

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 PROYECTO DE TESIS: MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO : CA		CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA:	UM No Representativas de 10 Km			
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 60+849.6 - KM 60+885.0	UM4	UM15	MU25	MU34
EVALUADORES	•	Est. Isaías Guerrero Martinez	FROGRESIVA; KWI 00+649.0 - KWI 00+865.0	UM46	UM62	UM70	UM88
FECHA	:	06/07/2024	ANCHO DE CALZADA : 6.5 m	UM106	UM162	UM167	UM188
ÁREA DE LA MUES	TRA:	230.10 m2	ANCHO DE CALZADA : 0.3 III	UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos(%)	colores	clasificación			
85 10		Excelente			
70 85		Muy bueno			
55 70		Bueno			
40 55		Regular			
25 40		Malo			
10 25		Muy malo			
0 10		Fallado			
Niveles	de severidad y uni	d. de medida			
L	Low (bajo)				
M	Medium (medio)				
Н	Hig	h (alto)			

					TIDO	CDEEALL	O DEMOTIDATE	10				
		TIPOS DE FALLAS EXISTENTES										
	N° = 10			N° = 19			N°=			N° =		
	L	M	Н	L	M	Н	L	M	Н	L	M	H
	16.20	14.80				51.00						
	7.00	15.00				4.35						
	4.50	13.00										
TOTAL POR FALLA	27.70	42.80				55.35						
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												
		N° =			N° =			N° =		N° =		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												

VALOR L	DEDUCIDO
	9
	26
	59
VDT =	94

CALCULO DEL PCI						
Número de deducidos > 2 (q)	3					
Valor deducido mas alto (HDV)	59					
Numero maximo de valores deducidos (m)	4.77					

FALLA	SEVERIDAD	AREA m2	DENSIDAD
10	L	27.70	12.04%
10	M	42.80	18.60%
19	Н	55.35	24.05%

N°	VALORES DEDUCIDOS					VDT	q	CDV
1	59	26	9			94	3	60
2	59	26	2			87	2	62
3	59	2	2			63	1	63
	<u> </u>					MAYCDV		63

INDICE DE CONDICION DE PAVIMENTO (PCI) CONDICION DEL PAVIMENTO

37 Malo

HOJA DE REGISTRO DE INSPECCIÓN

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 PROYECTO DE TESIS: MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO : CARRETERA JAÉN - SAN IGNACIO		UNIDAD DE MUESTRA:	UM No Representativas de 10 Km				
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 61+168.2 - KM 61+203.6	UM4	UM15	MU25	MU34
EVALUADORES	•	Est. Isaías Guerrero Martinez	FROGRESIVA: KIVI 01+108.2 - KIVI 01+203.0	UM46	UM62	UM70	UM88
FECHA	:	06/07/2024	ANCHO DE CALZADA : 6.5 m	UM106	UM162	UM167	UM188
ÁREA DE LA MUEST	ΓRA:	230.10 m2	ANCHO DE CALZADA : 0.5 III	UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos(%)	colores clasificacio					
85 10		Excelente				
70 85		Muy bueno				
55 70		Bueno				
40 55	Regular					
25 40		Malo				
10 25		Muy malo				
0 10	Fallado					
Niveles	Niveles de severidad y unid. de medida					
L	Low (bajo)					
M	Medium (medio)					
Н	High (alto)					

	TIPOS DE FALLAS EXISTENTES											
	N° = 2			N° = 10		N° = 11			N° = 19			
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
		36.00		11.70		23.40		2.00	9.00		2.70	0.50
				15.30		13.50		10.70			1.50	3.20
				8.90		13.00		12.70			1	
TOTAL POR FALLA		36.00		35.90		49.90		25.40	9.00		4.20	3.70
	N° =		N° =		N° =			N° =				
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												
	N° =		N° =		N° =		N° =					
	L	M	Н	L	M	Н	L	M	Н	L	M	H
TOTAL POR FALLA												

VALOR DEDUCIDO					
	5				
	11				
	52				
	33				
	34				
	10				
	19				
VDT =	164				
VDT =	164				

CALCULO DEL PCI					
Número de deducidos > 2 (q)	7				
Valor deducido mas alto (HDV)	52				
Numero maximo de valores deducidos (m)	5.41				

FALLA	SEVERIDAD	AREA m2	DENSIDAD
2	M	36.00	15.65%
10	L	35.90	15.60%
10	Н	49.90	21.69%
11	M	25.40	11.04%
11	Н	9.00	3.91%
19	M	4.20	1.83%
19	Н	3.70	1.61%

N°	VALORES DEDUCIDOS					VDT	q	CDV
1	52	34	33	19	4.51	143	5	73
2	52	34	33	19	2	140	4	78
3	52	34	33	2	2	123	3	74
4	52	34	2	2	2	92	2	66
5	52	2	2	2	2	60	1	60
						MANY CDV		70

INDICE DE CONDICION DE PAVIMENTO (PCI)

CONDICION DEL PAVIMENTO

22 Muy malo

UNIVERSIDAD NACIONAL DE JAÉN FACULTAD DE INGENIERÍA

HOJA DE REGISTRO DE INSPECCIÓN

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 PROYECTO DE TESIS: MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRA	MO :	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM46	UM	No Repres	entativas d	e 10 Km
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 61+593.0 - KM 61+628.4		UM15	MU25	MU34
EVALUADORES	•	Est. Isaías Guerrero Martinez	PROGRESIVA: KM 61+393.0 - KM 61+628.4	UM46	UM62	UM70	UM88
FECHA	:	06/07/2024	ANCHO DE CALZADA : 6.5 m	UM106	UM162	UM167	UM188
ÁREA DE LA MUESTRA:		230.10 m2	ANCHO DE CALZADA : 0.5 III	UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos(%)	colores	clasificación				
85 10		Excelente				
70 85	Muy buen					
55 70		Bueno				
40 55		Regular				
25 40		Malo				
10 25		Muy malo				
0 10		Fallado				
Niveles	de severidad y uni	d. de medida				
L	Lov	v (bajo)				
M	Mediu	ım (medio)				
Н	Hig	h (alto)				

		TIPOS DE FALLAS EXISTENTES										
		N° = 3			N° = 10			N° = 19			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
		6.50		22.30	17.00	17.50	9.00	10.70				
				19.90	18.30	11.50	16.00	15.60				
				22.00	18.40	9.00	28.00	2.70				
TOTAL POR FALLA		6.50		64.20	53.70	38.00	53.00	29.00				
		N° =			N° =			N°=		N° =		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												
		N° =			N° =			N°=			N° =	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												

VALOR DEDUCIDO								
8								
15								
32								
46								
9								
21								
131								

CALCULO DEL PCI	
Número de deducidos > 2 (q)	6
Valor deducido mas alto (HDV)	46
Numero maximo de valores deducidos (m)	5.96

FALLA	SEVERIDAD	AREA m2	DENSIDAD
3	M	6.50	2.82%
10	L	64.20	27.90%
10	M	53.70	23.34%
10	Н	38.00	16.51%
19	L	53.00	23.03%
19	M	29.00	12.60%

N°			VALO	RES DEDUC	IDOS		VDT	q	CDV
1	46	32	21	15	9	8	131	6	63
2	46	32	21	15	9	2	125	5	64
3	46	32	21	15	2	2	118	4	67
4	46	32	21	2	2	2	105	3	66
5	46	32	2	2	2	2	86	2	62
6	46	2	2	2	2	2	56	1	56
							MAX CDV		67

INDICE DE CONDICION DE PAVIMENTO (PCI)

CONDICION DEL PAVIMENTO

33 Malo

UNIVERSIDAD NACIONAL DE JAÉN FACULTAD DE INGENIERÍA

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI HOJA DE REGISTRO DE INSPECCIÓN

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO) :	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM62	UM	No Repres	entativas d	e 10 Km
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 62+159.4 - KM 62+194.8	UM4	UM15	MU25	MU34
EVALUADORES	•	Est. Isaías Guerrero Martinez	FROGRESIVA; KIVI 02+139.4 - KIVI 02+194.8	UM46	UM62	UM70	UM88
FECHA	:	07/07/2024	ANCHO DE CALZADA : 6.5 m	UM106	UM162	UM167	UM188
ÁREA DE LA MUESTR	A :	230.10 m2 ANCHO DE CALZADA : 6.5 m		UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos(%)	colores	clasificación
85 10		Excelente
70 85		Muy bueno
55 70		Bueno
40 55		Regular
25 40		Malo
10 25		Muy malo
0 10		Fallado
Niveles	de severidad y uni	d. de medida
L	Lov	v (bajo)
M	Mediu	ım (medio)
Н	Hig	h (alto)

		TIPOS DE FALLAS EXISTENTES										
		N° = 1			N° = 2			N° = 19			N°=	
	L	M	Н	L	M	Н	L	M	H	L	M	Н
	9.80			92.00	9.60				5.50			
	16.70								5.00			
									12.40			
TOTAL POR FALLA	26.50			92.00	9.60				22.90			
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												
		N° =			N° =			N° = N° =				
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												

VALOR L	DEDUCIDO
	35
	10
	7
	42
VDT =	94

CALCULO DEL PCI					
Número de deducidos > 2 (q)	4				
Valor deducido mas alto (HDV)	42				
Numero maximo de valores deducidos (m)	6.33				

FALLA	SEVERIDAD	AREA m2	DENSIDAD
1	L	26.50	11.52%
2	L	92.00	39.98%
2	M	9.60	4.17%
19	Н	22.90	9.95%

N°		VALO	RES DEDUC	IDOS	VDT	q	CDV	
1	42	35	10	7		94	4	54
2	42	35	10	2		89	3	56
3	42	35	2	2		81	2	59
4	42	2	2	2		48	1	48
					MAX CDV	•	59	

INDICE DE CONDICION DE PAVIMENTO (PCI)	
CONDICION DEL DAVIMENTO	

41
Regular

UNIVERSIDAD NACIONAL DE JAÉN
FACULTAD DE INGENIERÍA
ESCUELA PROFESIONAL DE INGENIERIA CIVIL
EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

PROVECTO DE TECIO	"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000
PROYECTO DE TESIS:	MEDIANTE VEHÍCULO AÉREO NO TRIPULADO. JAÉN 2024 "

NOMBRE DEL TRAMO : CARRETERA JAÉN - SAN IGNAC		CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM70	UM No Representativas de 10 Km				
EVALUADODES .		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 62+442.6 - KM 62+478.0	UM4	UM15	MU25	MU34	
EVALUADORES :	•	Est. Isaías Guerrero Martinez	PROGRESIVA: KNI 02+442.0 - KNI 02+478.0	UM46	UM62	UM70	UM88	
FECHA : 07/07/2024 ÁREA DE LA MUESTRA : 230 10 m2		07/07/2024	ANCHO DE CALZADA : 6.5 m		UM162	UM167	UM188	
		230 10 m2	ANCHO DE CALZADA : 0.3 m	UM204	LIM238	UM281		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos(%)	colores	clasificación					
85 10		Excelente					
70 85	Muy buer						
55 70	Bueno						
40 55	Regular						
25 40	Malo						
10 25	Muy malo						
0 10		Fallado					
Niveles	s de severidad y unid. de medida						
L	Low (bajo)						
M	Medium (medio)						
Н	Hig	h (alto)					

		TIPOS DE FALLAS EXISTENTES											
	N° = 1				N° = 5			N° = 19			N° =		
	L	M	Н	L	M	Н	L	M	H	L	M	Н	
	9.15				6.80			5.25					
	11.00				9.45			10.55					
TOTAL POR FALLA	20.15				16.25			15.80					
	N° =			N° =			N°=			N°=			
	L	M	H	L	M	H	L	M	H	L	M	H	
TOTAL POR FALLA													
	N° =		N° =		N° =		N° =						
	L	M	Н	L	M	Н	L	M	H	L	M	Н	
TOTAL POR FALLA													

VALUK L	DEDUCIDO
	32
	36
	16
VDT =	84

CALCULO DEL PCI					
Número de deducidos > 2 (q)	3				
Valor deducido mas alto (HDV)	36				
Numero maximo de valores deducidos (m)	6.88				

FALLA	SEVERIDAD	AREA m2	DENSIDAD
1	L	20.15	8.76%
5	M	16.25	7.06%
19	M	15.80	6.87%

N°	VALORES DEDUCIDOS				VDT	q	CDV	
1	36	32	16			84	3	53
2	36	32	2			70	2	51
3	36	2	2			40	1	40
					MAX CDV		53	

INDICE DE CONDICION DE PAVIMENTO (PCI)	47
CONDICION DEL PAVIMENTO	Regular

UNIVERSIDAD NACIONAL DE JAÉN FACULTAD DE INGENIERÍA

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 PROYECTO DE TESIS: MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO :		CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM88	UM No Representativas de 10 Km				
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 63+079.8- KM 63+115.2	UM4	UM15	MU25	MU34	
EVALUADORES	•	Est. Isaías Guerrero Martinez	PROGRESIVA: KM 03+0/9.8- KM 03+113.2	UM46	UM62	UM70	UM88	
FECHA :		07/07/2024	ANCHO DE CALZADA : 6.5 m	UM106	UM162	UM167	UM188	
ÁREA DE LA MUESTR	A :	230.10 m2	ANCHO DE CALZADA : 0.5 III	UM204	UM238	UM281		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
-	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Figuras longitudinales y transversales	FLT	m				

Rangos(%)	colores	clasificación			
85 10		Excelente			
70 85		Muy bueno			
55 70		Bueno			
40 55		Regular			
25 40		Malo			
10 25		Muy malo			
0 10		Fallado			
Niveles	de severidad y uni	d. de medida			
L	Low (bajo)				
M	Medium (medio)				
Н	Hig	h (alto)			

		TIPOS DE FALLAS EXISTENTES										
		N° = 1			N° = 2			N° = 5		N° = 7		
	L	M	Н	L	M	Н	L	M	H	L	M	Н
	6.85			39.65				5.70			30.30	
								16.15				
TOTAL POR FALLA	6.85			39.65				21.85			30.30	
		N° = 19		N° =		N° =			N° =			
	L	M	Н	L	M	Н	L	M	H	L	M	H
		3.10										
		9.05										
TOTAL POR FALLA		12.15										
		N° =		N° =		N° =		N° =				
	L	M	Н	L	M	Н	L	M	H	L	M	H
TOTAL POR FALLA												

VALUR L	DEDUCIDO
	21
	6
	39
	16
	14
VDT =	96

CALCULO DEL PCI					
Número de deducidos > 2 (q)	5				
Valor deducido mas alto (HDV)	39				
Numero maximo de valores deducidos (m)	6.60				

FALLA	SEVERIDAD	AREA m2	DENSIDAD
1	L	6.85	2.98%
2	L	39.65	17.23%
5	M	21.85	9.50%
7	M	30.30	13.17%
19	M	12.15	5.28%

N°		VALOI	RES DEDUC	IDOS	VDT	q	CDV	
1	39	21	16	14	6	96	5	50
2	39	21	16	14	2	92	4	52
3	39	21	16	2	2	80	3	50
4	39	21	2	2	2	66	2	48
5	39	2	2	2	2	47	1	47
				MAX CDV		52		

INDICE DE CONDICION DE PAVIMENTO (PCI)	48
CONDICION DEL PAVIMENTO	Regular

UNIVERSIDAD NACIONAL DE JAÉN FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERIA CIVIL

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 PROYECTO DE TESIS: MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAM	0 :	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM106	UM No Representativas de 10 Kr		e 10 Km	
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 63+717.0 - KM 63+752.4	UM4	UM15	MU25	MU34
	•	Est. Isaías Guerrero Martinez	FROGRESIVA: KWI 05+/17.0 - KWI 05+/52.4	UM46	UM62	UM70	UM88
FECHA	:	07/07/2024	ANCHO DE CALZADA : 6.5 m	UM106	UM162	UM167	UM188
ÁREA DE LA MUESTI	RA:	230.10 m2	ANCHO DE CALZADA : 0.5 III	UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos(%)	colores	clasificación		
85 10		Excelente		
70 85		Muy bueno		
55 70		Bueno		
40 55		Regular		
25 40		Malo		
10 25		Muy malo		
0 10		Fallado		
Niveles	de severidad y uni	d. de medida		
L	Low (bajo)			
M	Medium (medio)			
Н	Hig	h (alto)		

		TIPOS DE FALLAS EXISTENTES										
		N° = 1			N° = 2			N° = 5		N° = 7		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
	23.20				0.20		29.75				12.70	
											9.90	
TOTAL POR FALLA	23.20				0.20		29.75				22.60	
		N° = 19			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
	4.75	29.85										
		33.60										
TOTAL POR FALLA	4.75	63.45										
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												

VALOR	DEDUCIDO
	34
	0
	16
	14
	2
	30
VDT =	96

CALCULO DEL PCI							
Número de deducidos > 2 (q)	4						
Valor deducido mas alto (HDV)	34						
Numero maximo de valores deducidos (m)	7.06						

FALLA	SEVERIDAD	AREA m2	DENSIDAD
1	L	23.20	10.08%
2	M	0.20	0.09%
5	L	29.8	12.93%
7	M	22.60	9.82%
19	L	4.75	2.06%
19	M	63.45	27.57%

N°		VALO	RES DEDUC	IDOS	VDT	q	CDV	
1	34	30	16	14		94	4	54
2	34	30	16	2		82	3	52
3	34	30	2	2		68	2	50
4	34	2	2	2		40	1	40
	<u> </u>					MANY CDV		

INDICE DE CONDICION DE PAVIMENTO (PCI)	46
CONDICION DEL PAVIMENTO	Regular

UNIVERSIDAD NACIONAL DE JAÉN

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERIA CIVIL

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000
MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAMO	· :	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM162	UM162 UM No Representativas		entativas d	de 10 Km	
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 65+699.4 - KM 65+734.8	UM4	UM15	MU25	MU34	
	•	Est. Isaías Guerrero Martinez	FROGRESIVA: KWI 05+099.4 - KWI 05+754.8	UM46	UM62	UM70	UM88	
FECHA	:	07/07/2024	ANCHO DE CALZADA : 6.5 m	UM106	UM162	UM167	UM188	
ÁREA DE LA MUESTRA:		230.10 m2	ANCHO DE CALZADA : 0.5 III	UM204	UM238	UM281		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
3	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos(%)	colores	clasificación		
85 10		Excelente		
70 85		Muy bueno		
55 70		Bueno		
40 55		Regular		
25 40		Malo		
10 25		Muy malo		
0 10		Fallado		
Niveles	de severidad y uni	d. de medida		
L	Lov	v (bajo)		
M	Mediu	ım (medio)		
Н	Hig	h (alto)		

		TIPOS DE FALLAS EXISTENTES											
		N° = 2			N° = 7			N° = 10			N° = 19		
	L	M	Н	L	M	Н	L	M	H	L	M	Н	
		40.00		12.40			8.40	14.90		18.50		37.00	
		2.80								9.80			
										12.00			
TOTAL POR FALLA		42.80		12.40			8.40	14.90		40.30		37.00	
		N° =			N° =			N°=			N°=		
	L	M	Н	L	M	Н	L	M	H	L	M	Н	
TOTAL POR FALLA													
		N° =	•		N° =			N°=	•		N°=		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н	
TOTAL POR FALLA													

VALUK DEDUCIDU						
	17					
	4					
	3					
	14					
	7					
	50					
VDT =	95					

CALCULO DEL PCI						
Número de deducidos > 2 (q)	6					
Valor deducido mas alto (HDV)	50					
Numero maximo de valores deducidos (m)	5.59					

FALLA	SEVERIDAD	AREA m2	DENSIDAD
2	M	42.8	18.60%
7	L	12.4	5.39%
10	L	8.4	3.65%
10	M	14.9	6.48%
19	L	40.3	17.51%
19	Н	37	16.08%
		İ	

N°	VALORES DEDUCIDOS						VDT	q	CDV
1	50	17	14	7	4	3	95	6	46
2	50	17	14	7	4	2	94	5	48
3	50	17	14	7	2	2	92	4	52
4	50	17	14	2	2	2	87	3	55
5	50	17	2	2	2	2	75	2	55
6	50	2	2	2	2	2	60	1	60
							MAX CDV		60

INDICE DE CONDICION DE PAVIMENTO (PCI)

CONDICION DEL PAVIMENTO

40 Malo

UNIVERSIDAD NACIONAL DE JAÉN

FACULTAD DE INGENIERÍA

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI HOJA DE REGISTRO DE INSPECCIÓN

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAM	OMBRE DEL TRAMO : CARRETERA JAÉN - SAN IGNACIO		UNIDAD DE MUESTRA: UM167	UM No Representativas de 10 Km				
EVALUADORES :		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 65+876.4 - KM 65+911.8	UM4	UM15	MU25	MU34	
EVALUADORES	•	Est. Isaías Guerrero Martinez	FROGRESIVA; KIVI 05+8/0.4 - KIVI 05+911.8	UM46	UM62	UM70	UM88	
FECHA	:	08/07/2024	ANCHO DE CALZADA : 6.5 m	UM106	UM162	UM167	UM188	
ÁREA DE LA MUESTRA:		230.10 m2	ANCHO DE CALLADA : 0.3 m	UM204	UM238	UM281	ĺ	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2		Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				-

Rangos(%)	colores	clasificación				
85 10		Excelente				
70 85		Muy bueno				
55 70		Bueno				
40 55		Regular				
25 40		Malo				
10 25		Muy malo				
0 10		Fallado				
Niveles	de severidad y uni	d. de medida				
L	Lov	v (bajo)				
M	Medium (medio)					
Н	Hig	h (alto)				

		TIPOS DE FALLAS EXISTENTES										
		N° = 1			N° = 2		N° = 19			N° =		
	L	M	Н	L	M	Н	L	M	H	L	M	Н
	22.45			38.95			26.85	23.15				
				23.35								
TOTAL POR FALLA	22.45			62.30			26.85	23.15				
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	H	L	M	Н
TOTAL POR FALLA												
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	H	L	M	Н
TOTAL POR FALLA												

VALOR DEDUCIDO							
	34						
	8						
	6						
	20						
VDT =	68						

CALCULO DEL PCI						
Número de deducidos > 2 (q)	4					
Valor deducido mas alto (HDV)	34					
Numero maximo de valores deducidos (m)	7.06					

FALLA	SEVERIDAD	AREA m2	DENSIDAD
1	L	22.45	9.76%
2	L	62.30	27.08%
19	L	26.85	11.67%
19	M	23.15	10.06%

N°		VALO	RES DEDUC	IDOS	VDT	q	CDV	
1	34	20	8	6		68	4	38
2	34	20	8	2		64	3	40
3	34	20	2	2		58	2	43
4	34	2	2	2		40	1	40
						MAX CDV		43

INDICE DE CONDICION DE PAVIMENTO (PCI)

57

CONDICION DEL PAVIMENTO

Bueno

UNIVERSIDAD NACIONAL DE JAÉN FACULTAD DE INGENIERÍA

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 PROYECTO DE TESIS: MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAN	мо :	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM188	UM	No Repres	entativas d	e 10 Km
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 66+619.8 - KM 66+655.2	UM4	UM15	MU25	MU34
EVALUADORES	•	Est. Isaías Guerrero Martinez	PROGRESIVA: KM 00+019.8 - KM 00+033.2	UM46	UM62	UM70	UM88
FECHA	:	08/07/2024	ANCHO DE CALZADA : 6.5 m	UM106	UM162	UM167	UM188
ÁREA DE LA MUESTRA:		230.10 m2	ANCHO DE CALLADA : 0.3 m	UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos(%)	colores	clasificación		
85 10		Excelente		
70 85		Muy bueno		
55 70		Bueno		
40 55		Regular		
25 40		Malo		
10 25		Muy malo		
0 10		Fallado		
Niveles	de severidad y uni	d. de medida		
L	Low (bajo)			
M	Mediu	ım (medio)		
Н	Hig	h (alto)		

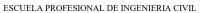
		TIPOS DE FALLAS EXISTENTES											
		N° = 2		N° = 7				N° = 19			N° =		
	L	M	Н	L	M	Н	L	M	H	L	M	Н	
		25.30		6.40				19.20	15.30				
								24.90	22.40				
TOTAL POR FALLA		25.30		6.40				44.10	37.70				
		N° =			N° =			N°=			N°=		
	L	M	Н	L	M	Н	L	M	H	L	M	Н	
TOTAL POR FALLA													
		N° =			N° =			N°=			N°=		
	L	M	Н	L	M	Н	L	M	H	L	M	Н	
TOTAL POR FALLA													

VALOR DEDUCIDO					
	14				
	4				
	24				
	50				
VDT =	92				

CALCULO DEL PCI	
Número de deducidos > 2 (q)	4
Valor deducido mas alto (HDV)	50
Numero maximo de valores deducidos (m)	5.59

FALLA	SEVERIDAD	AREA m2	DENSIDAD
2	M	25.30	11.00%
7	L	6.40	2.78%
19	M	44.10	19.17%
19	Н	37.70	16.38%

N°	VALORES DEDUCIDOS					VDT	q	CDV
1	50	24	14	4		92	4	52
2	50	24	14	2		90	3	57
3	50	24	2	2		78	2	56
4	50	2	2	2		56	1	56
						MAX CDV		57


INDICE DE CONDICION DE PAVIMENTO (PCI)	
CONDICION DEL PAVIMENTO	

43	
Regular	

UNIVERSIDAD NACIONAL DE JAÉN

FACULTAD DE INGENIERÍA

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI

HOJA DE REGISTRO DE INSPECCIÓN

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000
MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAN	мо :	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM204	UM	6 UM162 UM167		e 10 Km
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 67+186.2 - KM 67+221.6	UM4	UM15	MU25	MU34
	•	Est. Isaías Guerrero Martinez	FROGRESIVA: Kivi 0/+180.2 - Kivi 0/+221.0	UM46	UM62	UM70	UM88
FECHA	:	08/07/2024	ANCHO DE CALZADA : 6.5 m	UM106	UM162	UM167	UM188
ÁREA DE LA MUEST	TRA:	230.10 m2 ANCHO DE CALZADA : 6.5 m		UM204	UM238	UM281	

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos(%)	colores	clasificación			
85 10		Excelente			
70 85	Muy buen				
55 70		Bueno			
40 55		Regular			
25 40		Malo			
10 25		Muy malo			
0 10		Fallado			
Niveles	de severidad y uni	d. de medida			
L	Lov	v (bajo)			
M	Mediu	ım (medio)			
Н	Hig	h (alto)			

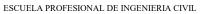
		TIPOS DE FALLAS EXISTENTES										
		N° = 10			N° = 19		N° =			N° =		
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
		3.50			7.15	29.40						
					16.25	39.25						
TOTAL POR FALLA		3.50			23.40	68.65						
	N° =			N° =			N° = N° =					
	L	M	Н	L	M	Н	L	M	H	L	M	H
TOTAL POR FALLA												
		N° =			N° =			N°=			N° =	
	L	M	Н	L	M	Н	L	M	H	L	M	Н
TOTAL POR FALLA												

VALOR DEDUCIDO								
	4							
	20							
	61							
VDT =	85							

CALCULO DEL PCI						
Número de deducidos > 2 (q)	3					
Valor deducido mas alto (HDV)	61					
Numero maximo de valores deducidos (m)	4.58					

FALLA	SEVERIDAD	AREA m2	DENSIDAD
10	M	3.50	1.52%
19	M	23.40	10.17%
19	Н	68.65	29.83%

N°		VALO	RES DEDUC	IDOS		VDT	q	CDV
1	61	20	4			85	3	54
2	61	20	2			83	2	60
3	61	2	2			65	1	65
								65


CONDICION DEL PAVIMENTO (PCI)

35

CONDICION DEL PAVIMENTO Malo

UNIVERSIDAD NACIONAL DE JAÉN FACULTAD DE INGENIERÍA

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI HOJA DE REGISTRO DE INSPECCIÓN

PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAM	o :	CARRETERA JAÉN - SAN IGNACIO	UNIDAD DE MUESTRA: UM238	UM	JM46 UM62 UM70 U M106 UM162 UM167 U		
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 68+389.8 - KM 68+425.2	UM4	UM15	MU25	MU34
EVALUADORES	•	Est. Isaías Guerrero Martinez	FROGRESIVA: KIVI 08+389.8 - KIVI 08+423.2	UM46	UM62	UM70	UM88
FECHA	:	08/07/2024	ANCHO DE CALZADA : 6.5 m	UM106	UM162	UM167	UM188
ÁREA DE LA MUEST	RA:	230.10 m2	ANCHO DE CALZADA : 0.3 m	UM204	UM238	UM281	

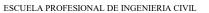
N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m 14 Cruce de vía férrea.		CVF	m2	
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos(%)	colores	clasificación			
85 10		Excelente			
70 85		Muy bueno			
55 70		Bueno			
40 55		Regular			
25 40		Malo			
10 25		Muy malo			
0 10		Fallado			
Niveles	de severidad y uni	d. de medida			
L	Lov	v (bajo)			
M	Mediu	ım (medio)			
Н	Hig	h (alto)			

	TIPOS DE FALLAS EXISTENTES											
		N° = 2			N° = 7			N° = 10	10.40 25.90			
	L	M	Н	L	M	Н	L	M	H	L	M	Н
	34.25			8.85			37.00	20.00	15.00	1.00	7.70	12.90
							8.90	12.50	10.40			
									25.90			
TOTAL POR FALLA	34.25			8.85			45.90	32.50	51.30	1.00	7.70	12.90
		N° =			N° =			N°=			N°=	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												
		N° =			N° =			N° = N° =				
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA												

VALOR DEDUCIDO						
	6					
	4					
	12					
	22					
	54					
	2					
	12					
	33					
VDT =	145					
VDT =	22 54 2 12 33					

CALCULO DEL PCI					
Número de deducidos > 2 (q)	7				
Valor deducido mas alto (HDV)	54				
Numero maximo de valores deducidos (m)	5.22				


FALLA	SEVERIDAD	AREA m2	DENSIDAD
2	L	34.25	14.88%
7	L	8.85	3.85%
10	L	45.90	19.95%
10	M	32.50	14.12%
10	Н	51.30	22.29%
19	L	1.00	0.43%
19	M	7.70	3.35%
19	Н	12.90	5.61%

N°		VALO	RES DEDUC	IDOS	VDT	q	CDV			
1	54	33	22	12	3.84	125	5	64		
2	54	33	22	12	2	123	4	70		
3	54	33	22	2	2	113	3	69		
4	54	33	2	2	2	93	2	66		
5	54	2	2	2	2	62	1	62		
						MAX CDV		70		

INDICE DE CONDICION DE PAVIMENTO (PCI) CONDICION DEL PAVIMENTO Malo

UNIVERSIDAD NACIONAL DE JAÉN FACULTAD DE INGENIERÍA

EVALUACIÓN SUPERFICIAL DEL PAVIMENTO FLEXIBLE - PCI HOJA DE REGISTRO DE INSPECCIÓN

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 PROYECTO DE TESIS: MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

NOMBRE DEL TRAM	OMBRE DEL TRAMO : CARRETERA JAÉN - SAN IGNACIO UNIDAD DE MUESTRA : U				l No Representativas de 10 Km			
EVALUADORES		Est. Karen Jhoana Chuquibala Guerrero	PROGRESIVA: KM 69+912.0 - KM 69+947.4	UM4	UM15	MU25	MU34	
EVALUADORES	•	Est. Isaías Guerrero Martinez		UM46	UM62	UM70	UM88	
FECHA	:	08/07/2024	ANCHO DE CALZADA : 6.5 m	UM106	UM162	UM167	UM188	
ÁREA DE LA MUESTRA:		230.10 m2	ANCHO DE CALZADA : 0.5 III	UM204	UM238	UM281		

N°	TIPOS DE FALLAS	CODIGO	UND.	N°	TIPOS DE FALLAS	CODIGO	UND.
1	Piel de cocodrilo	PC	m2	11	Parcheo	PA	m2
2	Exudación de asfalto	EX	m2	12	Agregados pulidos	AP	m2
	Fisuras en bloque	BLO	m2	13	Huecos (Baches)	HUE	Und.
4	Abultamientos y Hundimientos	AH	m	14	Cruce de vía férrea.	CVF	m2
5	Corrugaciones	COR	m2	15	Ahuellamiento	AH	m2
6	Depresiones	DP	m2	16	Desplazamiento	DZ	m2
7	Fisuras de borde	FB	m	17	Grieta parabólica	GP	m2
8	Grietas de reflexiones de juntas	GRJ	m	18	Hinchamiento	HN	m2
9	Desnivel carril/berma	DCB	m	19	Desprendimiento de agregados	DG	m2
10	Fisuras longitudinales y transversales	FLT	m				

Rangos(%)	colores	clasificación						
85 10		Excelente						
70 85		Muy bueno						
55 70		Bueno						
40 55		Regular						
25 40		Malo						
10 25		Muy malo						
0 10		Fallado						
Niveles	Niveles de severidad y unid. de medida							
L	Low (bajo)							
M	Medium (medio)							
Н	Hig	h (alto)						

		TIPOS DE FALLAS EXISTENTES										
		N° = 2			N° = 10			N° = 19			N° =	
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
	3.70		33.70	16.10	8.60	6.40		5.60	16.50			
				7.50	7.90	6.60		11.50				
				11.50	13.50	8.50		3.50				
TOTAL POR FALLA	3.70		33.70	35.10	30.00	21.50		20.60	16.50			
		N° =			N° =			N°=			N°=	
	L	M	H	L	M	Н	L	M	Н	L	M	H
TOTAL POR FALLA												
		N° =		N° =		N° =		N° =				
	L	M	Н	L	M	Н	L	M	Н	L	M	Н
TOTAL POR FALLA	Î											

VALOR DEDUCIDO						
	1					
	30					
	10					
	21					
	33					
	17					
	36					
VDT =	148					

CALCULO DEL PCI					
Número de deducidos > 2 (q)	6				
Valor deducido mas alto (HDV)	36				
Numero maximo de valores deducidos (m)	6.88				

FALLA	SEVERIDAD	AREA m2	DENSIDAD
2	L	3.70	1.61%
2	Н	33.70	14.65%
10	L	35.10	15.25%
10	M	30.00	13.04%
10	Н	21.50	9.34%
19	M	20.60	8.95%
19	Н	16.50	7.17%
		 	1

N°	VALORES DEDUCIDOS						VDT	q	CDV
1	36	33	30	21	17	10	147	6	71
2	36	33	30	21	17	2	139	5	72
3	36	33	30	21	2	2	124	4	70
4	36	33	30	2	2	2	105	3	66
5	36	33	2	2	2	2	77	2	56
6	36	2	2	2	2	2	46	1	46
									72

INDICE DE CONDICION DE PAVIMENTO (F	CI)
CONDICION DEL PAVIMEN	то

Malo

ANEXO 7 REGISTRO DE TIEMPO Y PRECISIÓN

UNIVERSIDAD NACIONAL DE JAÉN

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

REGISTRO DE TIEMPO

PROYECTO DE TESIS:

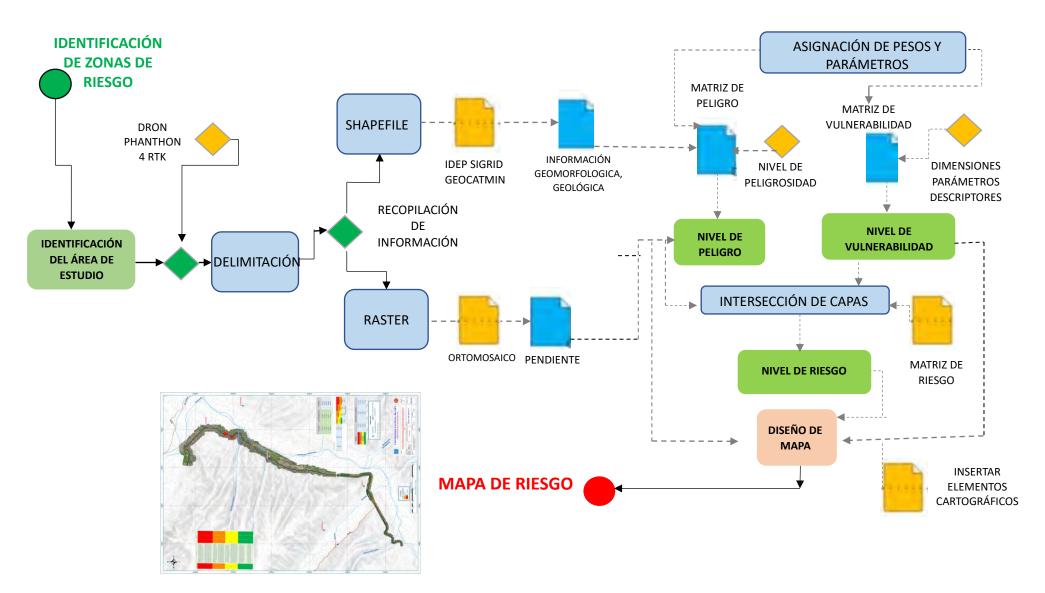
"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

TAREA	SEMANAS	DOMINGO	LUNES	MARTES	MIERCOLES	JUEVES	VIERNES	SÁBADO	TOTAL DE HORAS
			PCI -TI	RADICIONAL	L				
Ubicación de puntos haciendo uso de una estación total insitu	Semana 1							7.00	7.00
Medicion y seccionamiento de las unidades de muestreo insitu	Semana 2				7.00				7.00
Medición y toma de datos de las fallas insitu	semana 3	7.00				7.00	7.00	7.00	28.00
Procesamiento de datos en formato exel	semana 4	7.00				7.00	7.00	7.00	28.00
							TOTAL	DE HORAS	70.00
		VEHIC	ULO AEREO	NO TRIPUL	ADO (VANT)				
Planificación del vuelo	Semana 5	2.00							2.00
Ejecución del vuelo y captura de imágenes georreferencias	Semana 6		6.00						6.00
Procesamiento de datos en Agishoft Metashape	Semana 7						10.00	9.00	19.00
Medicion de fallas en civil 3D	Semana 8		5.00						5.00
Procesamiento de fallas en formato exel	Schiana 0			7.00	9.00				16.00
							TOTAL D	E HORAS	48.00

UNIVERSIDAD NACIONAL DE JAÉN

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

REGISTRO DE VERIFICACIÓN DE PRECISIÓN


PROYECTO DE TESIS:

"IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN INGNACIO KM 60 + 000 AL KM 70 + 000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024 "

Resultado PCI	Resultado PCI	Resultado de
Tradicional	VANT	diferencia
49	49	0
28	31	-3
44	44	0
64	67	-3
37	39	-2
22	23	-1
50	52	-2
33	36	-3
52	53	-1
41	42	-1
47	49	-2
52	52	0
48	50	-2
65	60	5
46	49	-3
38	33	5
12	16	-4
49	50	-1
40	40	0
57	59	-2
35	34	1
43	45	-2
64	65	-1
35	35	0
32	33	-1
38	39	-1
30	33	-3
54	55	-1
10	12	-2
28	32	-4

ANEXO 8 PROCESO DE ANÁLISIS JERÁRQUICO EN LA IDENTIFICACIÓN DE NIVELES DE RIESGO

Figura 1: Diagrama de flujo de las actividades

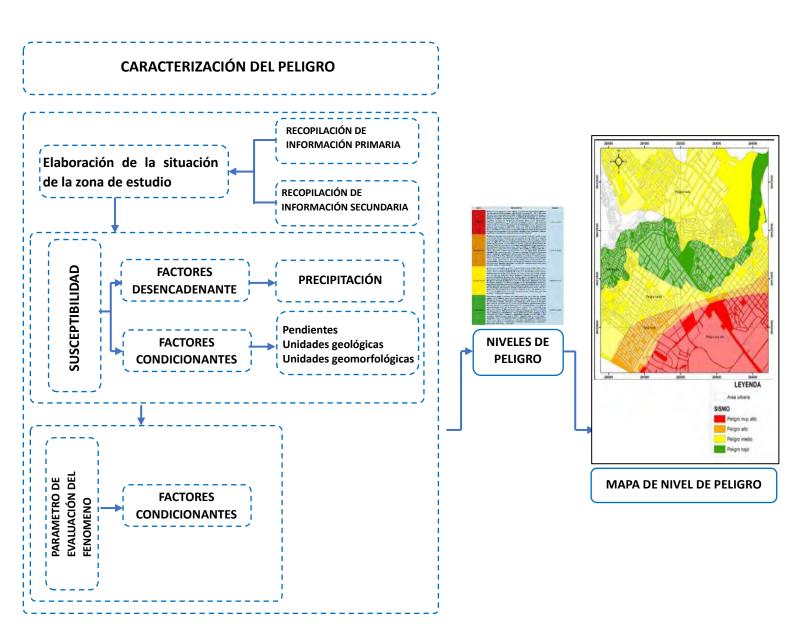

Nota. Adaptado de CENEPRED, 2014

Figura 2. Escala numérica de Saaty

	ESCALA DI	ESAATY
ESCALA NUMERICA	ESCALA VERBAL	EXPLICACIÓN
9	Absolutamente o muchisimo mas importante que	Al comparar un elemento con otro el primero se consider absolutamente o muchisimo más importante que el segundo.
7	Mucho más importante o preferido que	Al comparar un elemento con otro el primero se consider absolutamente o muchisimo más importante o preferido que e segundo.
5	Mas importante o preferido que	Al comparar un elemento con otro el primero se considera má importante o preferido que el segundo.
3	Ligeramente más importante o preferido que	Al comparar un elemento con otro, el primero es ligerament más importante o preferido que el segundo.
Ì	Igual o diferente a	Al comparar un elemento con otro, hay indiferencia entre ello
1/3	Ligeramente menos importante o preferido que	Al comparar un elemento con otro, el primero se consider ligeramente menos importante o preferido que el segundo.
1/5	Menos importante o preferido que	Al comparar un elemento con otro, el primero se consider menos importante o preferido que el segundo.
1/7	Mucho menos importante o preferido que	Al comparar un elemento con otro, el primero se consider mucho menos importante o preferido que el segundo.
1/9	Absolutamente o muchisimo	Al comparar un elemento con otro el primero se consider absolutamente o muchisimo más importante que el segundo.
2, 4, 6, 8	Valores intermedios entre dos juicios adyacentes, que las intensidades anteriores.	e se emplean cuando es necesario un término medio entre dos c

Nota. (CENEPRED, 2014)

Figura 3. Determinación de niveles de peligro

Nota. Metodología tomada de CENEPRED, 2014

DETERMINACIÓN DEL PELIGRO

1.0. PARÁMETROS Y DESCRIPTORES

PARÁMETRO DE EVALUACIÓN	FAC	FACTOR DESENCADENANTE		
PE	FC1	FC2 FC3		FD
SATURACION DEL SUELO	PENDIENTES DEL TERRENO	UNIDADES GEOLÓGICAS	UNIDADES GEOMORFOLOGICAS	PRECIPITACIÓN
[95% - 100%]: Saturado	Pendientes >40°	Qp-fa: Depósitos Fluvioaluviales	RMC-rsv: Relieve montañoso estructural- erosional en rocas sedimentarias y volcánicas	Extremadamente lluvioso P >36 mm
[80% - 95%>:Altamente saturado	Pendientes [20°-40°>	Nm-be: Formación Bellavista	SCA-rs: Superficie colinada aluvial en rocas sedimentarias	Muy lluvioso 19.1 mm < P <= 36 mm
[50% - 80%>:Muy Húmedo	Pendientes [10°-20°>	Qp-ta: Formación Tamborapa	T: Terrazas aluviales	Lluvioso 13.5 mm < P< = 19.1 mm
[25% - 50%>: Húmedo	Pendientes [5°- 10°>	Ji-o: Formación Oyotún	Ab: Abanicos de piedemonte	Moderadamente lluvioso 7.1 mm < RR <= 13.5 mm
[0% - 25%>: Seco	Pendientes < 5°	Ps-mi: Gpo. Mitu	Lli: Llanura o Planicie inundable	Lluvia usual > 7.1 mm

2.0. PONDERACIÓN - PARÁMETRO DE EVALUACIÓN Y FACTOR DESENCADENANTE

PARÁMETRO DE EVALUACIÓN PE SATURACION DEL SUELO	VECTOR PRIORIZACIÓN (Ponderación)	FACTOR DESENCADENANTE FD PRECIPITACIÓN	VECTOR PRIORIZACIÓN (Ponderación)
[95% - 100%]: Saturado	0.481	Extremadamente lluvio	0.489
[80% - 95%>:Altamente saturado	0.269	Muy lluvioso 19.1 mm < <= 36 mm	P 0.256
[50% - 80%>:Muy Húmedo	0.139	Lluvioso 13.5 mm < P< 19.1 mm	0.141
[25% - 50%>: Húmedo	0.071	Moderadamente lluvioso 7.1 mm < RR < 13.5 mm	0.076
[0% - 25%>: Seco	0.040	Lluvia usual > 7.1 mm	0.038

3.0. PONDERACIÓN - PARÁMETRO DE EVALUACIÓN Y FACTOR DESENCADENANTE

FC1			VECTOR PRIORIZACIÓN	FC3	VECTOR PRIORIZACIÓN	
PENDIENTES DEL TERRENO	(Ponderación)	UNIDADES GEOLÓGICAS	(Ponderación)	UNIDADES GEOMORFOLOGICAS	(Ponderación)	
Pendientes >40°	0.444	Qp-fa: Depósitos Fluvioaluviales	0.468	RMC-rsv: Relieve montañoso estructural- erosional en rocas sedimentarias y volcánicas	0.503	
Pendientes [20°-40°>	0.262	Nm-be: Formación Bellavista	0.268	SCA-rs: Superficie colinada aluvial en rocas sedimentarias	0.260	
Pendientes [10°-20°>	0.153	Qp-ta: Formación Tamborapa	0.144	T: Terrazas aluviales	0.134	
Pendientes [5°-10°>	0.089	Ji-o: Formación Oyotún	0.076	Ab: Abanicos de piedemonte	0.068	
Pendientes < 5°	0.053	Ps-mi: Gpo. Mitu	0.044	Lli: Llanura o Planicie inundable	0.035	

PONDERACIÓN DE PARAMETROS DE , FACTORES CONDICIONANTES

n	3	4	5
IA	0.525	0.882	1.115

4.0. MATRIZ DE COMPARACIÓN DE PARES, FACTORES CONDICIONANTES

THIS DE COMMINGUISTE DE L'ANGES (THE COMMENTE DE COMMINGUES COMINGUES COMMINGUES COMMINGUES COMMINGUES COMMINGUES COMMINGUES COMMINGUES COMMINGUES COMMING							
FAC. CONDICIONANTES	PENDIENTES DEL TERRENO	UNIDADES GEOLÓGICAS	UNIDADES GEOMORFOLOGICAS				
PENDIENTES DEL TERRENO	1.00	2.00	5.00				
UNIDADES GEOLÓGICAS	0.50	1.00	2.00				
UNIDADES GEOMORFOLOGICAS	0.20	0.50	1.00				
Suma	1.70	3.50	8.00				
1/suma	0.59	0.29	0.13				

5.0. MATRIZ DE NORMALIZACIÓN DE PARES, FACTORES CONDICIONANTES

FAC. CONDICIONANTES	PENDIENTES DEL TERRENO	UNIDADES GEOLÓGICAS	UNIDADES GEOMORFOLOGICAS	VECTOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
PENDIENTES DEL TERRENO	0.59	0.57	0.63	0.595	59.5%
UNIDADES GEOLÓGICAS	0.29	0.29	0.25	0.277	27.7%
UNIDADES GEOMORFOLOGICAS	0.12	0.14	0.13	0.129	12.9%
				1.00	100%

6.0. VECTOR SUMA PONDERADA Y "\lambda m\'ax", FACTORES CONDICIONANTES

Vector suma ponderada (VSP)	λ	λmáx
1.79	3.01	
0.83	3.00	3.01
0.39	3.00	

7.0. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) - , FACTORES CONDICIONANTES

INDICE DE CONSISTENCIA	IC	0.003	OK
RELACIÓN DE CONSISTENCIA<0.10	R	0.005	UK

8.0. PESOS DE VALORES FC, FD, SD Y PE

PESO VALOR SUSCEPTIBILIDAD	PVAL_SD =	0.700	70%
PESO VALOR FACTOR CONDICIONANTE	PVAL_FC =	0.600	60%
PESO VALOR FACTOR DESENCADENANTE	PVAL_FD =	0.400	40%
PESO VALOR PARÁMETRO DE EVALUACIÓN	PVAL_PE =	0.300	30%

FACTOR CONDICIONANTE N°01: PENDIENTES DEL TERRENO

n	3	4	5
IA	0.525	0.882	1.115

1.0. MATRIZ DE COMPARACIÓN DE PARES PENDIENTES DEL TERRENO

PENDIENTES DEL TERRENO	Pendientes >40°	Pendientes [20°-40°>	Pendientes [10°-20°>	Pendientes [5°-10°>	Pendientes < 5°
Pendientes >40°	1.00	2.00	3.00	5.00	7.00
Pendientes [20°-40°>	0.50	1.00	2.00	3.00	5.00
Pendientes [10°- 20°>	0.33	0.50	1.00	2.00	3.00
Pendientes [5°-10°>	0.20	0.33	0.50	1.00	2.00
Pendientes < 5°	0.14	0.20	0.33	0.50	1.00
Suma	2.18	4.03	6.83	11.50	18.00
1/suma	0.46	0.25	0.15	0.09	0.06

2.0. MATRIZ DE NORMALIZACIÓN DE PARES PENDIENTES DEL TERRENO

PENDIENTES DEL TERRENO	Pendientes >40°	Pendientes [20°-40°>	Pendientes [10°-20°>	Pendientes [5°-10°>	Pendientes < 5°	VALOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
Pendientes >40°	0.46	0.50	0.44	0.43	0.39	0.444	44.4%
Pendientes [20°-40°>	0.23	0.25	0.29	0.26	0.28	0.262	26.2%
Pendientes [10°-20°>	0.15	0.12	0.15	0.17	0.17	0.153	15.3%
Pendientes [5°-10°>	0.09	0.08	0.07	0.09	0.11	0.089	8.9%
Pendientes < 5°	0.07	0.05	0.05	0.04	0.06	0.053	5.3%
						1.00	100%

3.0. VECTOR SUMA PONDERADA Y "\lambda m\'ax" PENDIENTES DEL TERRENO

Vector suma			
ponderada			
(VSP)			
2.24			
1.32			
0.77			
0.45			
0.26			

λ	λmáx
5.05	
5.04	
5.02	5.03
5.01	
5.02	

4.0. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) - PENDIENTES DEL TERRENO

INDICE DE CONSISTENCIA	IC	0.007	OV
RELACIÓN DE CONSISTENCIA<0.10	R	0.006	OK

FACTOR CONDICIONANTE N°02: UNIDADES GEOLÓGICAS

n	3	4	5
IA	0.525	0.882	1.115

1.0. MATRIZ DE COMPARACIÓN DE PARES UNIDADES GEOLÓGICAS

UNIDADES GEOLÓGICAS	Qp-fa: Depósitos Fluvioaluvial es	Nm-be: Formación Bellavista	Qp-ta: Formación Tamborapa	Ji-o: Formación Oyotún	Ps-mi: Gpo. Mitu
Qp-fa: Depósitos Fluvioaluviales	1.00	2.00	4.00	6.00	8.00
Nm-be: Formación Bellavista	0.50	1.00	2.00	4.00	6.00
Qp-ta: Formación Tamborapa	0.25	0.50	1.00	2.00	4.00
Ji-o: Formación Oyotún	0.17	0.25	0.50	1.00	2.00
Ps-mi: Gpo. Mitu	0.13	0.17	0.25	0.50	1.00
Suma	2.04	3.92	7.75	13.50	21.00
1/suma	0.49	0.26	0.13	0.07	0.05

2.0. MATRIZ DE NORMALIZACIÓN DE PARES UNIDADES GEOLÓGICAS

UNIDADES GEOLÓGICAS	Qp-fa: Depósitos Fluvioaluvial es	Nm-be: Formación Bellavista	Qp-ta: Formación Tamborapa	Ji-o: Formación Oyotún	Ps-mi: Gpo. Mitu	VECTOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
Qp-fa: Depósitos Fluvioaluviales	0.49	0.51	0.52	0.44	0.38	0.468	46.8%
Nm-be: Formación Bellavista	0.24	0.26	0.26	0.30	0.29	0.268	26.8%
Qp-ta: Formación Tamborapa	0.12	0.13	0.13	0.15	0.19	0.144	14.4%
Ji-o: Formación Oyotún	0.08	0.06	0.06	0.07	0.10	0.076	7.6%
Ps-mi: Gpo. Mitu	0.06	0.04	0.03	0.04	0.05	0.044	4.4%
						1.00	100%

3.0. VECTOR SUMA PONDERADA Y "\lambda m\u00e1x" UNIDADES GEOL\u00f3GICAS

Vector suma ponderada (VSP)				
	2.39			
	1.36			
	0.72			
	0.38			
	0.22			

λ	λmáx
5.10	
5.06	
5.04	5.05
5.02	
5.01	

4.0. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) - UNIDADES GEOLÓGICAS

INDICE DE CONSISTENCIA	IC	0.012	OV
RELACIÓN DE CONSISTENCIA<0.10	R	0.010	UK

FACTOR CONDICIONANTE N°03: UNIDADES GEOMORFOLOGICAS

n	3	4	5
IA	0.525	0.882	1.115

1.0. MATRIZ DE COMPARACIÓN DE PARES UNIDADES GEOMORFOLOGICAS

UNIDADES GEOMORFOLOGICAS	RMC-rsv: Relieve montañoso estructural-erosional en rocas sedimentarias y volcánicas	SCA-rs: Superficie colinada aluvial en rocas sedimentarias	T: Terrazas aluviales	Ab: Abanicos de piedemonte	Lli: Llanura o Planicie inundable
RMC-rsv: Relieve montañoso estructural- erosional en rocas sedimentarias y volcánicas	1.00	3.00	5.00	7.00	9.00
SCA-rs: Superficie colinada aluvial en rocas sedimentarias	0.33	1.00	3.00	5.00	7.00
T: Terrazas aluviales	0.20	0.33	1.00	3.00	5.00
Ab: Abanicos de piedemonte	0.14	0.20	0.33	1.00	3.00
Lli: Llanura o Planicie inundable	0.11	0.14	0.20	0.33	1.00
Suma	1.79	4.68	9.53	16.33	25.00
1/suma	0.56	0.21	0.10	0.06	0.04

2.0. MATRIZ DE NORMALIZACIÓN DE PARES UNIDADES GEOMORFOLOGICAS

UNIDADES GEOMORFOLOGICAS	RMC-rsv: Relieve montañoso estructural-erosional en rocas sedimentarias y volcánicas	SCA-rs: Superficie colinada aluvial en rocas sedimentarias	T: Terrazas aluviales	Ab: Abanicos de piedemonte	Lli: Llanura o Planicie inundable	VECTOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
RMC-rsv: Relieve montañoso estructural- erosional en rocas sedimentarias y volcánicas	0.56	0.64	0.52	0.43	0.36	0.503	50.3%
SCA-rs: Superficie colinada aluvial en rocas sedimentarias	0.19	0.21	0.31	0.31	0.28	0.260	26.0%
T: Terrazas aluviales	0.11	0.07	0.10	0.18	0.20	0.134	13.4%
Ab: Abanicos de piedemonte	0.08	0.04	0.03	0.06	0.12	0.068	6.8%
Lli: Llanura o Planicie inundable	0.06	0.03	0.02	0.02	0.04	0.035	3.5%
						1.00	100%

3.0. VECTOR SUMA PONDERADA Y "\lambda m\u00e1x" UNIDADES GEOMORFOLOGICAS

Vector suma ponderada (VSP)					
2.74					
1.41					
0.70					
0.34					
0.18					

λ	λmáx
5.46	
5.43	
5.20	5.24
5.03	
5.09	

4.0. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) - UNIDADES GEOMORFOLOGICAS

INDICE DE CONSISTENCIA	IC	0.061	OK
RELACIÓN DE CONSISTENCIA<0.10	R	0.054	OK

FACTOR DESENCADENANTE: PRECIPITACIÓN

n	3	4	5
IA	0.525	0.882	1.115

1.0. MATRIZ DE COMPARACIÓN DE PARES PRECIPITACIÓN

PRECIPITACIÓN		Muy lluvioso 19.1 mm < P <= 36 mm	Lluvioso 13.5 mm < P< = 19.1 mm	Moderadame nte lluvioso 7.1 mm < RR <= 13.5 mm	Lluvia usual > 7.1 mm
Extremadamente lluvioso P > 36 mm	1.00	3.00	4.00	6.00	9.00
Muy lluvioso 19.1 mm < P <= 36 mm	0.33	1.00	3.00	4.00	6.00
Lluvioso 13.5 mm < P< = 19.1 mm	0.25	0.33	1.00	3.00	4.00
Moderadamente lluvioso 7.1 mm < RR <= 13.5 mm	0.17	0.25	0.33	1.00	3.00
Lluvia usual > 7.1 mm	0.11	0.17	0.25	0.33	1.00
Suma	1.86	4.75	8.58	14.33	23.00
1/suma	0.54	0.21	0.12	0.07	0.04

2.0. MATRIZ DE NORMALIZACIÓN DE PARES PRECIPITACIÓN

PRECIPITACIÓN	Extremadam ente lluvioso P >36 mm	Muy lluvioso 19.1 mm < P <= 36 mm	Lluvioso 13.5 mm < P< = 19.1 mm	Moderadame nte lluvioso 7.1 mm < RR <= 13.5 mm	Lluvia usual > 7.1 mm	VECTOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
Extremadamente lluvioso P >36 mm	0.54	0.63	0.47	0.42	0.39	0.489	48.9%
Muy lluvioso 19.1 mm < P <= 36 mm	0.18	0.21	0.35	0.28	0.26	0.256	25.6%
Lluvioso 13.5 mm < P< = 19.1 mm	0.13	0.07	0.12	0.21	0.17	0.141	14.1%
Moderadamente lluvioso 7.1 mm < RR <= 13.5 mm	0.09	0.05	0.04	0.07	0.13	0.076	7.6%
Lluvia usual > 7.1 mm	0.06	0.04	0.03	0.02	0.04	0.038	3.8%
						1.00	100%

3.0. VECTOR SUMA PONDERADA Y "\lambda m\u00e1x" PRECIPITACI\u00d0N

Vector suma ponderada (VSP)				
2.62				
1.38				
0.73				
0.38				
0.20				

λ	λmáx
5.36	
5.38	
5.18	5.21
5.02	
5.13	

4.0. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) - PRECIPITACIÓN

INDICE DE CONSISTENCIA	IC	0.054	OV
RELACIÓN DE CONSISTENCIA<0.10	R	0.048	UK

PARÁMETRO DE EVALUACIÓN: SATURACION DEL SUELO

n	3	4	5
IA	0.525	0.882	1.115

1.0. MATRIZ DE COMPARACIÓN DE PARES PRECIPITACIÓN

SATURACION DEL SUELO	[95% - 100%]: Saturado	[80% - 95%>:Altam ente saturado	[50% - 80%>:Muy Húmedo	[25% - 50%>: Húmedo	[0% - 25%>: Seco
[95% - 100%]: Saturado	1.00	2.00	4.00	7.00	9.00
[80% - 95%>:Altamente saturado	0.50	1.00	2.00	4.00	7.00
[50% - 80%>:Muy Húmedo	0.25	0.50	1.00	2.00	4.00
[25% - 50%>: Húmedo	0.14	0.25	0.50	1.00	2.00
[0% - 25%>: Seco	0.11	0.14	0.25	0.50	1.00
Suma	2.00	3.89	7.75	14.50	23.00
1/suma	0.50	0.26	0.13	0.07	0.04

2.0. MATRIZ DE NORMALIZACIÓN DE PARES PRECIPITACIÓN

SATURACION DEL SUELO	[95% - 100%]: Saturado	[80% - 95%>:Altam ente saturado	[50% - 80%>:Muy Húmedo	[25% - 50%>: Húmedo	[0% - 25%>: Seco	VECTOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
[95% - 100%]: Saturado	0.50	0.51	0.52	0.48	0.39	0.481	48.1%
[80% - 95%>:Altamente saturado	0.25	0.26	0.26	0.28	0.30	0.269	26.9%
[50% - 80%>:Muy Húmedo	0.12	0.13	0.13	0.14	0.17	0.139	13.9%
[25% - 50%>: Húmedo	0.07	0.06	0.06	0.07	0.09	0.071	7.1%
[0% - 25%>: Seco	0.06	0.04	0.03	0.03	0.04	0.040	4.0%
		·				1.00	100%

3.0. VECTOR SUMA PONDERADA Y "\lambda m\u00e1x" PRECIPITACI\u00f3N

Vector suma ponderada (VSP)				
2.44				
1.35				
0.70				
0.36				
0.20				

λ	λmáx
5.07	
5.04	
5.03	5.03
5.02	
5.01	

4.0. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) - PRECIPITACIÓN

INDICE DE CONSISTENCIA	IC	0.008	OV
RELACIÓN DE CONSISTENCIA<0.10	R	0.007	OK

CÁLCULO DE PELIGRO

1.0. CÁLCULO DEL VALOR DE FACTOR CONDICIONANTE

	PENDIEN TERF	ITES DEL RENO	UNIDADES GEOLÓGICAS			NIDADES ORFOLOGICAS		TOR ONANTE
	VAL_FC1	PVAL_FC1	VAL_FC2	PVAL_FC2	VAL_FC3	PVAL_FC3	VAL_FC	PVAL_FC
D1	0.444		0.468		0.503		0.458	
D2	0.262		0.268		0.260		0.263	
D3	0.153	0.595	0.144	0.277	0.134	0.129	0.148	0.600
D4	0.089		0.076		0.068		0.083	
D5	0.053		0.044		0.035		0.048	

2.0. CÁLCULO DEL VALOR DE SUSCEPTIBILIDAD

FACTOR CON	DICIONANTE	FACTOR DESENCADENANTE PRECIPITACIÓN		SUSCE	PTIBILIDAD
		PRECIPITACION			
VAL_FC	PVAL_FC	VAL_FD	PVAL_FD	VAL_SD	PVAL_SD
0.458		0.489		0.470	
0.263		0.256		0.260	
0.148	0.600	0.141	0.400	0.145	0.700
0.083		0.076		0.080	
0.048		0.038		0.044	

3.0. NIVELES DE SUSCEPTIBILIDAD

NIVEL	RANGOS DE SUSCEPTIBILIDAD			
MUY ALTO	0.260	< S ≤	0.470	
ALTO	0.145	< S ≤	0.260	
MEDIO	0.080	< S ≤	0.145	
BAJO	0.044	< S ≤	0.080	

4.0. CÁLCULO DEL PELIGRO (MATRIZ)

CALCULO DEL PELIGRO (MATRIZ)					
		PARÁMETRO DE EVALUACIÓN			
SUSCEPTI	BILIDAD	PELIGRO SATURACION DEL SUELO		ELIGRO	
VAL_SD	PVAL_SD	VAL_PE	PVAL_PE	VAL_SD	PVAL_SD
0.470	0.700	0.481		0.473	47.35%
0.260		0.269		0.263	26.29%
0.145		0.139	0.300	0.143	14.32%
0.080		0.071		0.077	7.75%
0.044		0.040		0.043	4.30%
				1.000	100.00%

5.0. NIVELES DE PELIGRO

NIVEL DE PELIGRO	RANGOS DE PELIGRO			
MUY ALTO	0.263	≤ P <	0.473	
ALTO	0.143	≤ P <	0.263	
MEDIO	0.077	≤ P <	0.143	
BAJO	0.043	≤ P <	0.077	

ESCENARIO GENERAL DE IMPORTANCIA

1.0. RESÚMEN PARA ESCENARIO

PARÁMETRO EVALUACIÓ			FAC	TORES CONDICI	ONANTES			FACTOR DESENCADENANTE			
SATURACION DE	L SUELO	PENDIENTE TERREN		UNIDADES GEO	OLÓGICAS	UNIDADES GEOMORFOLOG		FD		VAL. SUSCEP.	PELIGRO
DESC_PE	VAL_PE	DESC_FC1	VAL_FC1	DESC_FC2	VAL_FC2	DESC_FC3	VAL_FC3	DESC_FD	VAL_FD		
[95% - 100%]: Saturado	0.481	Pendientes >40°	0.444	Qp-fa: Depósitos Fluvioaluviales	0.468	RMC-rsv: Relieve montañoso estructural- erosional en rocas sedimentarias y volcánicas	0.503	Extremadamente lluvioso P >36 mm	0.489	0.470	0.473
[80% - 95%>:Altamente saturado	0.269	Pendientes [20°-40°>	0.262	Nm-be: Formación Bellavista	0.268	SCA-rs: Superficie colinada aluvial en rocas sedimentarias	0.260	Muy lluvioso 19.1 mm < P <= 36 mm	0.256	0.260	0.263
[50% - 80%>:Muy Húmedo	0.139	Pendientes [10°- 20°>	0.153	Qp-ta: Formación Tamborapa	0.144	T: Terrazas aluviales	0.134	Lluvioso 13.5 mm < P< = 19.1 mm	0.141	0.145	0.143
[25% - 50%>: Húmedo	0.071	Pendientes [5°- 10°>	0.089	Ji-o: Formación Oyotún	0.076	Ab: Abanicos de piedemonte	0.068	Moderadamente lluvioso 7.1 mm < RR <= 13.5 mm	0.076	0.080	0.077
[0% - 25%>: Seco	0.040	Pendientes < 5°	0.053	Ps-mi: Gpo. Mitu	0.044	Lli: Llanura o Planicie inundable	0.035	Lluvia usual > 7.1 mm	0.038	0.044	0.043

2.0. ESCENARIO MÁS CRITICO

PARÁMETRO DE EVALUACIÓN			FACTORES CONDICIONANTES		FACTOR DESENCADENAN			DENANTE			
SATURACION DEL SUE	ELO	PENDIENTI TERREI		UNIDADES GE	OLÓGICAS	UNIDADES GEOMORFOLOGICAS					
[50% - 80%>:Muy Húm	ıedo	Pendientes	;>40°	Qp-ta: Form Tambor		RMC-rsv: Relieve m estructural-erosiona sedimentarias y vo	ıl en rocas	Lluvioso 13.5 mm < P< = 19.1 mm		VAL. SUSCEP.	PELIGRO
PVAL_PE VAL	L_PE	PVAL_FC1	VAL_FC1	PVAL_FC2	VAL_FC2	PVAL_FC3	VAL_FC3	DESC_FD	VAL_FD		
0.300 0.1	139	0.595	0.444	0.277	0.144	0.129	0.134	0.400	0.489	0.388	0.313

ESTRATIFICACIÓN DE PELIGRO

Nivel de Peligro	Descripción		Rango	
Peligro Muy Alto	Predomina: Saturación del suelo "Altamente Saturado", con pendientes [30°-50°> y pendientes mayores que 50°, unidad geomorfológica RMC-ri: Relieve colinado en rocas intrusivas y RMC-rv: Relieve colinado en rocas volcánicas, unidad geologica NM-be: Formación bellavista, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P< = 19.1 mm"	0.263	≤ P <	0.473
Peligro Alto	Predomina: Saturación del suelo "Muy húmedo", con pendientes [15°-30°>, unidad geomorfológica SCA-rs: Altiplanicie aluvial en rocas sedimentarias, unidad geológica Qp-fa: Depósitos fluvioaluviales, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P< = 19.1 mm"	0.143	≤ P <	0.263
Peligro Medio	Predomina: Saturación del suelo "Húmedo" , con pendientes [5°-15°>, unidad geomorfológica T:Terrazas aluviales, unidad geológica Qp-ta: Formación Tamborapa, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P< = 19.1 mm"	0.077	≤ P <	0.143
Peligro Bajo	Predomina: Saturación del suelo "[0% - 25%>: Seco"] y [25% - 50%>: Húmedo]" , con pendientes menores que 5°, unidad geomorfológica Lli: Llanura y Ab: Abanico de piedemonte, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio " <i>Lluvioso 13.5 mm < P< = 19.1 mm</i> "	0.043	≤ P <	0.077

PONDERACIÓN SAATY - FACTORES DE VULNERABILIDAD

1. PONDERACIÓN: FACTORES

n	3	4	5
IA	0.525	0.882	1.115

1.1. MATRIZ DE COMPARACIÓN DE PARES FACTORES

FACTORES	EXPOSICIÓN	FRAGILIDAD	RESILIENCIA
EXPOSICIÓN	1.00	2.00	4.00
FRAGILIDAD	0.50	1.00	2.00
RESILIENCIA	0.25	0.50	1.00
Suma	1.75	3.50	7.00
1/suma	0.57	0.29	0.14

1.2. MATRIZ DE NORMALIZACIÓN DE PARES FACTORES

FAC. CONDICIONANTES	EXPOSICIÓN	FRAGILIDAD	RESILIENCIA	VECTOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
EXPOSICIÓN	0.57	0.57	0.57	0.571	57.1%
FRAGILIDAD	0.29	0.29	0.29	0.286	28.6%
RESILIENCIA	0.14	0.14	0.14	0.143	14.3%
				1.00	100%

1.3. <u>VECTOR SUMA POND</u>ERADA Y "λmáx" F<u>ACTORES</u>

Vector suma ponderada (VSP)	λ	λmáx
1.71	3.00	
0.86	3.00	3.00
0.43	3.00	

1.4. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) - FACTORES

INDICE DE CONSISTENCIA	IC	0.000	ОК
RELACIÓN DE CONSISTENCIA<0.10	R	0.000	UK

2. PONDERACIÓN SAATY - VULNERABILIDAD ECONÓMICA

2.1. PARÁMETROS Y DESCRIPTORES

EXPOSICIÓN ECONÓMICA		FRAGILIDAD ECONÓMI	CA	RESILIENCIA ECONÓMICA
EX_EC	FR_EC1	FR_EC2	FR_EC3	RE_EC
RELIEVE DEL TERRENO	CONDICIÓN DE LA VIA	DEPENDENCIA DE LA INFRAESTRUCTURA VÍAL	DRENAJE PLUVIAL	MONITOREO Y PREDICCIÓN TEMPRANA
Muy escarpado	Bueno	Muy alta	No cuenta con drenaje	Ninguno
Moderadamente escarpado	Regular	Alta	Cuenta con cuneta insuficiente	Observación manual
Inclinado	Malo	Notable	Cuenta con cuneta de tierra	Sensores básicos
Suavemente inclinado	Muy malo	Leve	Cuenta con cuneta de concreto en mal estado	Sensores automáticos
Llano o casi llano	Fallado	Ваја	Cuenta con cuneta de concreto.	Inteligencia artificial

2.2. PONDERACIÓN - EXPOSICIÓN Y RESILIENCIA ECONÓMICA

2.]	PONDERACION - EXI	POSICION Y RESIL	IENCIA ECONOMICA			
	EXPOSICIÓN ECONÓMICA			RESILIENCIA ECONÓMICA		
	EX_EC	VECTOR PRIORIZACIÓN		RE_EC	VECTOR PRIORIZACIÓN	
	RELIEVE DEL TERRENO	(Ponderación)		MONITOREO Y PREDICCIÓN TEMPRANA	(Ponderación)	
	Muy escarpado	0.481		Ninguno	0.270	
	Moderadamente escarpado	0.269		Observación manual	0.145	
	Inclinado	0.139		Sensores básicos	0.077	
	Suavemente inclinado	0.071		Sensores automáticos	0.046	
_	Llano o casi llano	0.040		Inteligencia artificial	1.000	

2.3. PONDERACIÓN - FRAGILIDAD ECONÓMICA

FR_EC1	FR_EC2		VECTOR	FR_EC3	VECTOR
CONDICIÓN DE LA VIA	PRIORIZACIÓN (Ponderación)	DEPENDENCIA DE LA INFRAESTRUCTURA VÍAL	PRIORIZACIÓN (Ponderación)	ESTADO DE CONSERVACIÓN	PRIORIZACIÓN (Ponderación)
Bueno	0.503	Muy alta	0.468	No cuenta con drenaje	0.451
Regular	0.260	Alta	0.268	Cuenta con cuneta insuficiente	0.259
Malo	0.134	Notable	0.144	Cuenta con cuneta de tierra	0.151
Muy malo	0.068	Leve	0.076	Cuenta con cuneta de concreto en mal estado	0.088
Fallado	0.035	Ваја	0.044	Cuenta con cuneta de concreto.	0.050

TESIS: IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN IGNACIO KM 60+000 AL 70+000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024

PONDERACIÓN: FRAGILIDAD ECONÓMICA

n	3	4	5
IA	0.525	0.882	1.115

2.4. MATRIZ DE COMPARACIÓN DE PARES

FAC. CONDICIONANTES	CONDICIÓN DE LA VIA	DEPENDENCIA DE LA INFRAESTRUCTURA VÍAL	DRENAJE PLUVIAL
CONDICIÓN DE LA VIA	1.00	2.00	5.00
DEPENDENCIA DE LA INFRAESTRUCTURA VÍAL	0.50	1.00	2.00
DRENAJE PLUVIAL	0.20	0.50	1.00
Suma	1.70	3.50	8.00
1/suma	0.59	0.29	0.13

2.5. MATRIZ DE NORMALIZACIÓN DE PARES

FAC. CONDICIONANTES	CONDICIÓN DE LA VIA	DEPENDENCIA DE LA INFRAESTRUCTURA VÍAL	DRENAJE PLUVIAL	VECTOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
CONDICIÓN DE LA VIA	0.59	0.57	0.63	0.595	59.5%
DEPENDENCIA DE LA INFRAESTRUCTURA VÍAL	0.29	0.29	0.25	0.277	27.7%
DRENAJE PLUVIAL	0.12	0.14	0.13	0.129	12.9%
				1.00	100%

2.6. VECTOR SUMA PONDERADA Y "λmáx"

Vector suma ponderada (VSP)	λ	λmáx
1.79	3.01	
0.83	3.00	3.01
0.39	3.00	

2.7. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) -

 indice (ic) I nemicion de consistences (it)			
INDICE DE CONSISTENCIA	IC	0.003	OK
RELACIÓN DE CONSISTENCIA<0.10	R	0.005	UK

EXPOSICIÓN ECONÓMICA: RELIEVE DEL TERRENO

n	3	4	5
IA	0.525	0.882	1.115

2.8. MATRIZ DE COMPARACIÓN DE PARES RELIEVE DEL TERRENO

RELIEVE DEL TERRENO	Muy escarpado	Moderadame nte escarpado	Inclinado	Suavemente inclinado	Llano o casi llano
Muy escarpado	1.00	2.00	4.00	7.00	9.00
Moderadamente escarpado	0.50	1.00	2.00 4.00		7.00
Inclinado	0.25	0.50	1.00	2.00	4.00
Suavemente inclinado	0.14	0.25	0.50	1.00	2.00
Llano o casi llano	0.11	0.14	0.25	0.50	1.00
Suma	2.00	3.89	7.75	14.50	23.00
1/suma	0.50	0.26	0.13	0.07	0.04

2.9. MATRIZ DE NORMALIZACIÓN DE PARES RELIEVE DEL TERRENO

RELIEVE DEL TERRENO	Muy escarpado	Moderadame nte escarpado	Inclinado	Suavemente inclinado	Llano o casi llano	VECTOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
Muy escarpado	0.50	0.51	0.52	0.48	0.39	0.481	48.1%
Moderadamente escarpado	0.25	0.26	0.26	0.28	0.30	0.269	26.9%
Inclinado	0.12	0.13	0.13	0.14	0.17	0.139	13.9%
Suavemente inclinado	0.07	0.06	0.06	0.07	0.09	0.071	7.1%
Llano o casi llano	0.06	0.04	0.03	0.03	0.04	0.040	4.0%
						1.00	100%

2.10. VECTOR SUMA PONDERADA Y "λmáx" RELIEVE DEL TERRENO

Vector suma ponderada (VSP)	λ	λmáx
2.44	5.07	
1.35	5.04	
0.70	5.03	5.03
0.36	5.02	
0.20	5.01	

2.11. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) - RELIEVE DEL TERRENO

INDICE DE CONSISTENCIA	IC	0.008	OV
RELACIÓN DE CONSISTENCIA<0.10	R	0.007	UK

FRAGILIDAD ECONÓMICA 01: CONDICIÓN DE LA VIA

n	3	4	5
IA	0.525	0.882	1.115

2.12. MATRIZ DE COMPARACIÓN DE PARES CONDICIÓN DE LA VIA

CONDICIÓN DE LA VIA	Bueno	Regular	Malo	Muy malo	Fallado
Bueno	1.00	3.00	5.00	7.00	9.00
Regular	0.33	1.00	3.00	5.00	7.00
Malo	0.20	0.33	1.00	3.00	5.00
Muy malo	0.14	0.20	0.33	1.00	3.00
Fallado	0.11	0.14	0.20	0.33	1.00
Suma	1.79	4.68	9.53	16.33	25.00
1/suma	0.56	0.21	0.10	0.06	0.04

2.13. MATRIZ DE NORMALIZACIÓN DE PARES CONDICIÓN DE LA VIA

CONDICIÓN DE LA VIA	Bueno	Regular	Malo	Muy malo	Fallado	VECTOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
Bueno	0.56	0.64	0.52	0.43	0.36	0.503	50.3%
Regular	0.19	0.21	0.31	0.31	0.28	0.260	26.0%
Malo	0.11	0.07	0.10	0.18	0.20	0.134	13.4%
Muy malo	0.08	0.04	0.03	0.06	0.12	0.068	6.8%
Fallado	0.06	0.03	0.02	0.02	0.04	0.035	3.5%
						1.00	100%

2.14. VECTOR SUMA PONDERADA Y "\lambda m\u00e1x" CONDICI\u00f0N DE LA VIA

Vector suma ponderada (VSP)	λ	λmá
2.74	5.46	
1.41	5.43	
0.70	5.20	5.24
0.34	5.03	
0.18	5.09	

2.15. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) - CONDICIÓN DE LA VIA

INDICE DE CONSISTENCIA	IC	0.061	OK
RELACIÓN DE CONSISTENCIA<0.10	R	0.054	OK

FRAGILIDAD ECONÓMICA 02: DEPENDENCIA DE LA INFRAESTRUCTURA VÍAL

n	3	4	5
IA	0.525	0.882	1.115

2.16. MATRIZ DE COMPARACIÓN DE PARES DEPENDENCIA DE LA INFRAESTRUCTURA VÍAL

DEPENDENCIA DE LA INFRAESTRUCTURA VÍAL	Muy alta	Alta	Notable	Leve	Baja
Muy alta	1.00	2.00	4.00	6.00	8.00
Alta	0.50	1.00	2.00	4.00	6.00
Notable	0.25	0.50	1.00	2.00	4.00
Leve	0.17	0.25	0.50	1.00	2.00
Baja	0.13	0.17	0.25	0.50	1.00
Suma	2.04	3.92	7.75	13.50	21.00
1/suma	0.49	0.26	0.13	0.07	0.05

2.17. MATRIZ DE NORMALIZACIÓN DE PARES DEPENDENCIA DE LA INFRAESTRUCTURA VÍAL

DEPENDENCIA DE LA INFRAESTRUCTURA VÍAL	Muy alta	Alta	Notable	Leve	Baja	VECTOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
Muy alta	0.49	0.51	0.52	0.44	0.38	0.468	46.8%
Alta	0.24	0.26	0.26	0.30	0.29	0.268	26.8%
Notable	0.12	0.13	0.13	0.15	0.19	0.144	14.4%
Leve	0.08	0.06	0.06	0.07	0.10	0.076	7.6%
Ваја	0.06	0.04	0.03	0.04	0.05	0.044	4.4%
						1.00	100%

2.18. VECTOR SUMA PONDERADA Y "λmάx" DEPENDENCIA DE LA INFRAESTRUCTURA VÍAL

Vector suma ponderada (VSP)	λ	λmáx
2.39	5.1	10
1.36	5.0)6
0.72	5.0)4 5.05
0.38	5.0)2
0.22	5.0)1

2.19. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) - DEPENDENCIA DE LA INFRAESTRUCTURA VÍAL

INDICE DE CONSISTENCIA	IC	0.012	OK
DELACIÓN DE CONSISTENCIA-O 10	D	0.010	OK

FRAGILIDAD ECONÓMICA 03: DRENAJE PLUVIAL

n	3	4	5
IA	0.525	0.882	1.115

2.20. MATRIZ DE COMPARACIÓN DE PARES DRENAJE PLUVIAL

DRENAJE PLUVIAL	No cuenta con drenaje	Cuenta con cuneta insuficiente	Cuenta con cuneta de tierra	Cuenta con cuneta de concreto en mal estado	Cuenta con cuneta de concreto.
No cuenta con drenaje	1.00	2.00	3.00	5.00	8.00
Cuenta con cuneta insuficiente	0.50	1.00	2.00	3.00	5.00
Cuenta con cuneta de tierra	0.33	0.50	1.00	2.00	3.00
Cuenta con cuneta de concreto en mal estado	0.20	0.33	0.50	1.00	2.00
Cuenta con cuneta de concreto.	0.13	0.20	0.33	0.50	1.00
Suma	2.16	4.03	6.83	11.50	19.00
1/suma	0.46	0.25	0.15	0.09	0.05

2.21. MATRIZ DE NORMALIZACIÓN DE PARES DRENAJE PLUVIAL

DRENAJE PLUVIAL	No cuenta con drenaje	Cuenta con cuneta insuficiente	Cuenta con cuneta de tierra	Cuenta con cuneta de concreto en mal estado	Cuenta con cuneta de concreto.	VECTOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
No cuenta con drenaje	0.46	0.50	0.44	0.43	0.42	0.451	45.1%
Cuenta con cuneta insuficiente	0.23	0.25	0.29	0.26	0.26	0.259	25.9%
Cuenta con cuneta de tierra	0.15	0.12	0.15	0.17	0.16	0.151	15.1%
Cuenta con cuneta de concreto en mal estado	0.09	0.08	0.07	0.09	0.11	0.088	8.8%
Cuenta con cuneta de concreto.	0.06	0.05	0.05	0.04	0.05	0.050	5.0%
						1.00	100%

2.22. VECTOR SUMA PONDERADA Y "\lambda m\'ax" DRENAJE PLUVIAL

Vector suma ponderada (VSP)	λ	λmáx
2.27	5.03	
1.30	5.03	
0.76	5.02	5.02
0.44	5.01	
0.25	5.02	

2.23. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) - DRENAJE PLUVIAL

INDICE DE CONSISTENCIA	IC	0.005	OK
RELACIÓN DE CONSISTENCIA<0.10	R	0.004	OK

3. PONDERACIÓN SAATY - VULNERABILIDAD AMBIENTAL

3.1. PARÁMETROS Y DESCRIPTORES

EXPOSICIÓN AMBIENTAL	FRAGILIDAD AMBIENTAL	RESILIENCIA AMBIENTAL	
EXP_AMB	FRA_AMB	RES_AMB	
PROXIMIDAD A VÍA DE TRANSITO	PÉRDIDA DE COBERTURA VEGETAL	RESTAURACIÓN DE VIA Y ECOLÓGIA	
Alta(0-50 metros)	Extremo	Muy baja	
Moderada (50-100 metros)	Alta	Baja	
Lejana (100-200 m)	Notable	Moderada	
Baja (200-500 m)	Leve	Buena	
Proximidad (>500 m)	Minimo	Alta	

3.2. PONDERACIÓN - EXPOSICIÓN, FRAGILIDAD Y RESILIENCIA AMBIENTAL

EXPOSICIÓN AMBIENTAL EXP_AMB	VECTOR PRIORIZACIÓN	FRAGILIDAD AMBIENTAL FRA_AMB	VECTOR PRIORIZACIÓN	RESILIENCIA AMBIENTAL RES_AMB	VECTOR PRIORIZACIÓN
PROXIMIDAD A VÍA DE TRANSITO	(Ponderación)	PÉRDIDA DE COBERTURA VEGETAL	(Ponderación)	RESTAURACIÓN DE VIA Y ECOLÓGIA	(Ponderación)
Alta(0-50 metros)	0.474	Extremo	0.461	Muy baja	0.472
Moderada (50-100 metros)	0.271	Alta	0.264	Baja	0.278
Lejana (100-200 m)	0.140	Notable	0.147	Moderada	0.140
Baja (200-500 m)	0.072	Leve	0.081	Buena	0.070
Proximidad (>500 m)	0.042	Minimo	0.047	Alta	0.040

EXPOSICIÓN AMBIENTAL: PROXIMIDAD A VÍA DE TRANSITO

n	3	4	5
IA	0.525	0.882	1.115

3.3. MATRIZ DE COMPARACIÓN DE PARES PROXIMIDAD A VÍA DE TRANSITO

PROXIMIDAD A VÍA DE TRANSITO	Alta(0-50 metros)	Moderada (50-100 metros)	Lejana (100- 200 m)	Baja (200-500 m)	Proximidad (>500 m)
Alta(0-50 metros)	1.00	2.00	4.00	7.00	8.00
Moderada (50-100 metros)	0.50	1.00	2.00	4.00	7.00
Lejana (100-200 m)	0.25	0.50	1.00	2.00	4.00
Baja (200-500 m)	0.14	0.25	0.50	1.00	2.00
Proximidad (>500 m)	0.13	0.14	0.25	0.50	1.00
Suma	2.02	3.89	7.75	14.50	22.00
1/suma	0.50	0.26	0.13	0.07	0.05

3.4. MATRIZ DE NORMALIZACIÓN DE PARES PROXIMIDAD A VÍA DE TRANSITO

PROXIMIDAD A VÍA DE TRANSITO	Alta(0-50 metros)	Moderada (50-100 metros)	Lejana (100- 200 m)	Baja (200-500 m)	Proximidad (>500 m)	VECTOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
Alta(0-50 metros)	0.50	0.51	0.52	0.48	0.36	0.474	47.4%
Moderada (50-100 metros)	0.25	0.26	0.26	0.28	0.32	0.271	27.1%
Lejana (100-200 m)	0.12	0.13	0.13	0.14	0.18	0.140	14.0%
Baja (200-500 m)	0.07	0.06	0.06	0.07	0.09	0.072	7.2%
Proximidad (>500 m)	0.06	0.04	0.03	0.03	0.05	0.042	4.2%
						1.00	100%

3.5. VECTOR SUMA PONDERADA Y "\lambda m\u00e1x" PROXIMIDAD A V\u00edA DE TRANSITO

Vector suma ponderada (VSP)	λ	λmá
2.42	5.10	
1.37	5.05	
0.71	5.04	5.05
0.36	5.04	
0.21	5.01	

3.6. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) - PROXIMIDAD A VÍA DE TRANSITO

INDICE DE CONSISTENCIA	IC	0.012	OV
RELACIÓN DE CONSISTENCIA<0.10	R	0.011	UK

FRAGILIDAD AMBIENTAL: PÉRDIDA DE COBERTURA VEGETAL

n	3	4	5
IA	0.525	0.882	1.115

3.7. MATRIZ DE COMPARACIÓN DE PARES PÉRDIDA DE COBERTURA VEGETAL

PÉRDIDA DE COBERTURA VEGETAL	Extremo	Alta	Notable	Leve	Minimo
Extremo	1.00	2.00	4.00	5.00	8.00
Alta	0.50	1.00	2.00	4.00	5.00
Notable	0.25	0.50	1.00	2.00	4.00
Leve	0.20	0.25	0.50	1.00	2.00
Minimo	0.13	0.20	0.25	0.50	1.00
Suma	2.08	3.95	7.75	12.50	20.00
1/suma	0.48	0.25	0.13	0.08	0.05

3.8. MATRIZ DE NORMALIZACIÓN DE PARES PÉRDIDA DE COBERTURA VEGETAL

PÉRDIDA DE COBERTURA VEGETAL	Extremo	Alta	Notable	Leve	Minimo	VECTOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
Extremo	0.48	0.51	0.52	0.40	0.40	0.461	46.1%
Alta	0.24	0.25	0.26	0.32	0.25	0.264	26.4%
Notable	0.12	0.13	0.13	0.16	0.20	0.147	14.7%
Leve	0.10	0.06	0.06	0.08	0.10	0.081	8.1%
Minimo	0.06	0.05	0.03	0.04	0.05	0.047	4.7%
						1.00	100%

3.9. VECTOR SUMA PONDERADA Y "\lambdam\u00e1x" P\u00e9RDIDA DE COBERTURA VEGETAL

Vector suma ponderada (VSP)	λ	λmá
2.36	5.11	
1.35	5.09	
0.74	5.05	5.06
0.41	5.02	
0.23	5.03	

3.10. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) - PÉRDIDA DE COBERTURA VEGETAL

INDICE DE CONSISTENCIA	IC	0.015	OV
RELACIÓN DE CONSISTENCIA<0.10	R	0.013	UK

RESILIENCIA AMBIENTAL: RESTAURACIÓN DE VIA Y ECOLÓGIA

n	3	4	5
IA	0.525	0.882	1.115

3.11. MATRIZ DE COMPARACIÓN DE PARES RESTAURACIÓN DE VIA Y ECOLÓGIA

RESTAURACIÓN DE VIA Y ECOLÓGIA	Muy baja	Baja	Moderada	Buena	Alta
Muy baja	1.00	2.00	5.00	6.00	8.00
Baja	0.50	1.00	2.00	5.00	7.00
Moderada	0.20	0.50	1.00	2.00	5.00
Buena	0.17	0.20	0.50	1.00	2.00
Alta	0.13	0.14	0.20	0.50	1.00
Suma 1/suma	1.99 0.50	3.84 0.26	8.70 0.11	14.50 0.07	23.00 0.04

3.12. MATRIZ DE NORMALIZACIÓN DE PARES RESTAURACIÓN DE VIA Y ECOLÓGIA

RESTAURACIÓN DE VIA Y ECOLÓGIA	Muy baja	Ваја	Moderada	Buena	Alta	VECTOR PRIORIZACIÓN (Ponderación)	PORCENTAJE
Muy baja	0.50	0.52	0.57	0.41	0.35	0.472	47.2%
Baja	0.25	0.26	0.23	0.34	0.30	0.278	27.8%
Moderada	0.10	0.13	0.11	0.14	0.22	0.140	14.0%
Buena	0.08	0.05	0.06	0.07	0.09	0.070	7.0%
Alta	0.06	0.04	0.02	0.03	0.04	0.040	4.0%
						1.00	100%

3.13. VECTOR SUMA PONDERADA Y "\lambdam\ax" RESTAURACI\u00f3N DE VIA Y ECOL\u00f3GIA

Vector suma ponderada (VSP)		λ	λmáx
2.47		5.23	
1.42		5.12	
0.71		5.09	5.11
0.35		5.08	
0.20	<u>-</u>	5.02	

3.14. ÍNDICE (IC) Y RELACIÓN DE CONSISTENCIA (R) - RESTAURACIÓN DE VIA Y ECOLÓGIA

INDICE DE CONSISTENCIA	IC	0.028	OV
RELACIÓN DE CONSISTENCIA<0.10	R	0.025	UK

TESIS: IDENTIFICACIÓN DE ZONAS DE RIESGO Y CONDICIÓN DEL PAVIMENTO FLEXIBLE JAÉN - SAN IGNACIO KM 60+000 AL 70+000 MEDIANTE VEHÍCULO AÉREO NO TRIPULADO, JAÉN 2024

CÁLCULO DE VULNERABILIDAD

4.1. MATRIZ VULNERABILIDAD ECONÓMICA

	EXPOSICIÓN	ECONÓMICA		PARÁMETROS FRAGILIDAD ECONÓMICA			FRAGILIDAD ECONÓMICA		WW NED		
	V_EXPEC	PV_EXPEC	V_FREC1	PV_FREC1	V_FREC2	PV_FREC2	V_FREC3	PV_FREC3			VULNER ECONÓMICA
	RELIEVE DE	EL TERRENO	CONDICI	ÓN DE LA VIA	NCIA DE LA IN	FRAESTRUCT	TRUCT DRENAJE PLUVIAL		V_FRAEC PV_FRAEC		
D1	0.481		0.503		0.468		0.451		0.487		0.414
D2	0.269		0.260		0.268		0.259		0.262		0.229
D3	0.139	0.571	0.134	0.595	0.144	0.277	0.151	0.129	0.139	0.286	0.119
D4	0.071		0.068		0.076		0.088		0.073		0.061
D5	0.040		0.035		0.044		0.050		0.039		0.034

4.2. MATRIZ VULNERABILIDAD AMBIENTAL

	EXPOSICIÓN AMBIENTAL		FRAGILIDA	FRAGILIDAD AMBIENTAL		
	V_EXPAM	PV_EXPAM	V_FRAAM	PV_FRAAM	VULNER	
	PROXIMIDA TRAN	AD A VÍA DE ISITO	PÉRDIDA DE COBERTURA VEGETAL		AMBIENTAL	
D1	0.474		0.461		0.403	
D2	0.271		0.264		0.231	
D3	0.140	0.571	0.147	0.286	0.122	
D4	0.072		0.081		0.064	
D5	0.042		0.047		0.037	

4.3. MATRIZ VULNERABILIDAD

VULNER ECONÓMICA		VULNER.	AMBIENTAL	VALOR DE VULNERABILIDAD
0.414		0.403		0.481
0.229		0.231		0.265
0.119	0.400	0.122	0.200	0.140
0.061		0.064		0.073
0.034		0.037		0.041

4.4. NIVELES DE VULNERABILIDAD

NIVEL	RANGOS DE VULNERABILIDAD					
MUY ALTO	0.265	≤ v <	0.481			
ALTO	0.140	≤ v <	0.265			
MEDIO	0.073	≤ v <	0.140			
BAJO	0.041	≤ v <	0.073			

	ESTRATIFICACIÓN DE VULNERABII	<u>IDAD</u>		
NIVEL DE VULNERABILIDA D	DESCRIPCIÓN		RANGO	
Muy Alta	La vía está en riesgo significativo debido a deslizamientos de masa que podrían causar costos extremadamente altos en reparación y mantenimiento. La dependencia económica es crítica y los recursos financieros son insuficientes para manejar emergencia. La vulnerabilidad ambiental es alta, con graves impactos en el ecosistema. La condición del pavimento se encuentra a nivel de base debido a deslizamientos de masas. Presenta dificultades severas para implementar medidas de mitigación debido a la falta de monitoreo y predicción temprana.	0.265	≤ v <	0.481
Alta	La vía enfrenta costos elevados para reparación y mantenimiento debido a deslizamientos de masa. La economía local muestra una alta dependencia de la vía, con recursos financieros limitados para manejar emergencias, lo que puede resultar en pérdidas económicas significativas. Socialmente, se observan impactos severos, con una reducción considerable en la calidad de vida y servicios comunitarios. Los impactos ambientales son graves, con una alta vulnerabilidad del ecosistema local y desafíos importantes para la adaptación a cambios ambientales.	0.140	≤ v <	0.265
Media	Los costos de reparación y mantenimiento son significativos, y la economía local tiene una dependencia notable de la vía. Los recursos financieros para emergencias son moderados, lo que puede causar dificultades en la gestión de crisis económicas, la calidad de vida y los servicios comunitarios. Presenta una capacidad notable para adaptarse a cambios ambientales. Se requiere de tiempo y un esfuerzo significativo para implementar medidas de mitigación.	0.073	≤ v <	0.140
Baja	En este nivel, los costos de reparación y mantenimiento son mínimos, y la economía local tiene una baja dependencia de la vía, con suficientes recursos financieros para manejar emergencias. Los impactos sociales son mínimos. La resiliencia es alta, con una recuperación económica, social y ambiental rápida y una buena capacidad para implementar medidas de mitigación efectivas.	0.041	≤ v <	0.073

PONDERACIÓN SAATY - FACTORES DE RIESGO

1.0. CÁLCULO DE RIESGO

PELIGRO	VULNERABILIDAD	RIESGO
0.473	0.481	0.228
0.263	0.265	0.070
0.143	0.140	0.020
0.077	0.073	0.006
0.043	0.041	0.002

2.0. MATRIZ DE RIESGO

0	PMA	0.473	0.035	0.066	0.125	0.228
JGRO	PA	0.263	0.019	0.037	0.070	0.127
PELI	PM	0.143	0.010	0.020	0.038	0.069
ط	PB	0.077	0.006	0.011	0.021	0.037
			0.073	0.140	0.265	0.481
			VB	VM	VA	VMA

3.0. NIVELES DE RIESGO

NIVEL	RANGOS DE RIESGO					
MUY ALTO	0.070	≤ R <	0.228			
ALTO	0.020	≤ R <	0.070			
MEDIO	0.006	≤ R <	0.020			
BAJO	0.002	≤ R <	0.006			

ESTRATIFICACIÓN DE RIESGO

NIVEL DE RIESGO	DESCRIPCIÓN		RANGO	
Muy Alto	Predomina: Saturación del suelo "Altamente Saturado", con pendientes [30°-50°> y pendientes mayores que 50°, unidad geomorfológica RMC-ri: Relieve colinado en rocas intrusivas y RMC-rv: Relieve colinado en rocas volcánicas, unidad geologica NM-be: Formación bellavista, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P< = 19.1 mm" Fragilidad: Infraestructuras mal construidas y sin mantenimiento adecuado. Uso agrícola o urbanización intensiva en áreas inestables. Poca o nula gestión del riesgo. Resiliencia: Baja capacidad de respuesta ante emergencias. Escasos recursos para la recuperación y la reconstrucción. Poca o nula preparación en la comunidad. No existe un plan de mitigación.	0.077	≤ R <	0.228
	Predomina: Saturación del suelo "Muy húmedo", con pendientes [15°-30°>, unidad geomorfológica SCA-rs: Altiplanicie aluvial en rocas sedimentarias, unidad geológica Qp-fa: Depósitos fluvioaluviales, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P< = 19.1 mm"		≤ R <	0.077
Alto	Fragilidad: Población en riesgo, debido a la falta de planificación en el uso de la tierra y taludes inestables. Infraestructura de transporte y servicios limitados, con protección insuficiente contra desastres. Resiliencia: Existen algunos planes de respuesta, pero son insuficientes. Algunas			
	medidas de protección (barreras o muros de contención), pero con recursos limitados para la respuesta ante desastres.			
	Predomina: Saturación del suelo "Húmedo" , con pendientes [5°-15°>, unidad geomorfológica T:Terrazas aluviales, unidad geológica Qp-ta: Formación Tamborapa, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P< = 19.1 mm"			
Medio	Fragilidad: Población rural dispersa y viviendas construidas en zonas de riesgo moderado. Algunas infraestructuras agrícolas o rurales no están protegidas adecuadamente, pero los asentamientos son menos densos.	0.006	≤ R <	0.020
	Resiliencia: Planes básicos de respuesta a desastres, pero con capacidades limitadas. La comunidad tiene algún nivel de preparación en términos de evacuación y medidas preventivas, como drenajes o barreras en algunos puntos críticos.			
Bajo	Predomina: Saturación del suelo "[0% - 25%>: Seco"] y [25% - 50%>: Húmedo]", con pendientes menores que 5°, unidad geomorfológica Lli: Llanura y Ab: Abanico de piedemonte, con escenario crítico factor desencadenante umbral de precipitación de la estación Meteorológica San Ignacio "Lluvioso 13.5 mm < P< = 19.1 mm"			
	Fragilidad: Poca densidad poblacional y viviendas dispersas en terrenos seguros. Las viviendas son generalmente más resistentes y los servicios básicos están disponibles.		≤ R <	
	Resiliencia: La comunidad tiene capacidad para enfrentar desastres, acceso a servicios básicos y viviendas de buena calidad. La infraestructura rural está mantenida y con planes de contingencia en caso de desastres naturales.			

ANEXO 9 PANEL FOTOGRÁFICO

Identificación del tramo de estudio Km 60+000 – Km 70+000 Jaén - San Ignacio

Nota. En el anexo se observa la identificación del primer tramo de estudio.

Levantamiento topográfico del tramo de estudio

Nota. El anexo muestra el cambio de estación para realizar el levantamiento topográfico del km 60+000 hasta el km 70+000 de la Carretera Jaén- San Ignacio.

Planeamiento del vuelo fotogramétrico utilizando el Dron Phantom 4 RTK

Nota. El anexo presenta la elaboración del plan de vuelo del dron Phantom 4 RTK en gabinete

Vuelo fotogramétrico utilizando el Dron Phantom 4 RTK

Nota. El anexo presenta el levantamiento fotogramétrico del tramo de estudio mediante metodología VANT

Identificación in situ de las zonas de riesgo por deslizamiento de rocas en taludes

Nota. El anexo presenta el deslizamiento rocas en los taludes de corte artificial en el Km 62+060 de la carretera Jaén- San Ignacio.

Identificación in situ de las zonas de riesgo por falla rotacional en taludes

Nota. El anexo presenta el deslizamiento de falla rotacional en el Km 66+800 de la carretera Jaén - San Ignacio, con conglomerado de rocas intrusivas y areniscas con matriz limosa de color amarillo.

ANEXO 10 CERTIFICACIÓN DE CALIBRACIÓN DE EQUIPOS

COMERCIO & CONSTRUCCIÓN DEL PERÚ EIRL

IMPORTADOR - DISTRIBUIDOR

Equipos Topográficos:

Estación Total - Teodolitos - Niveles Topográficos - GPS - Trípodes - Prismas - Etc.

COMERCIO & CONSTRUCCION DEL PERU E.I.R.L.

Chiclayo, 10 de Enero del 2024

CERTIFICADO DE CALIBRACION Nº 16-00180

DATOS DEL EQUIPO

Nombre	ESTACION TOTAL	Precision Angular	05"
Marca	TOPCON	Lectura minima	05 " / 07 "
Modelo	ES-105	Precision de distancia	± 2mm.x 2ppmxD No prisma: ±3mm.x 2ppmxD
Serie	GZ1909	Alcance	4000 m.c/01 prisma - No prisma: 1.5 a 500m.
		Enfoque minimo	1.5 m

METODOLOGIA APLICADA Y TRAZABILIDAD DE LOS PATRONES

Para controlar y calibrar los ángulos se contrastan con un colimador TOPCON modelo: TC6 con telescopio de 32x en cuyo retículo enfocado al infinito, el grosor de sus trazos está dentro de 01"; que es patronado periódicamente por un teodolito KERN modelo DKM 2A precisión al 01" con el método de lectura Directa-Inversa

Para controlar y calibrar la constante promedio en las Distancias se hacen las mediciones en una base establecida con una Estación Total Marca TOPCON modelo GPT-3002W nueva de precisión en distancia de +/- (2mm + 2 ppm x D) m.s.e. = línea de la medida. El control angular se ejecuta en la base soporte metálica fijada en cimiento específico a influencias del clima y enfocados los retículos al infinito.

Las distancias son medidas con la Estación total instalada en una base fijada en la pared y el prisma estacionado sobre un trípode KERN de bastón centrador en cada punto de control establecido, tomando en consideración la temperatura y la presión atmosférica.

MEDICIONES DE PATRON		MEDICIONES ANGULARES	
ANG. HZ:	00°00'00" / 180°00'00"	00°00'00" / 180°00'00"	00"
ANG. V:	90°00'00" / 270°00'00"	90°00'00" / 270°00'00"	00"

NORMA APLICADA

Desviación estándar basada en la norma ISO 9001:2000 FM /ISO 14001 para Estación Total GPT-3002W fabricada por TOPCON CORPORATION.

CALIBRACION Y MANTENIMIENTO

Fecha	Mantenimiento	Calibración	Observación	Prox. calibración
10/01/2024		X	% 100 OPERATIVO	06 MESES

GARANTIA DE CALIBRACION: 01 AÑO

COMERCIO & CONSTRUCCION	Propietario FERDI INGENIEROS SAC RUC: 20488077717	
DEL PERU EIRL		
COMERCIO & CONSTBUCCION DE PERU E.I.B.L	FERDI INGENIEROS S.A.C.	
Hamilton Viadimir Cheva Campos GERENTE GENERAL	Ing. Juan Daniel Diaz Diaz	

SOKKIA

CERTIFICADO DE OPERATIVIDAD Nº026

G-6976/24

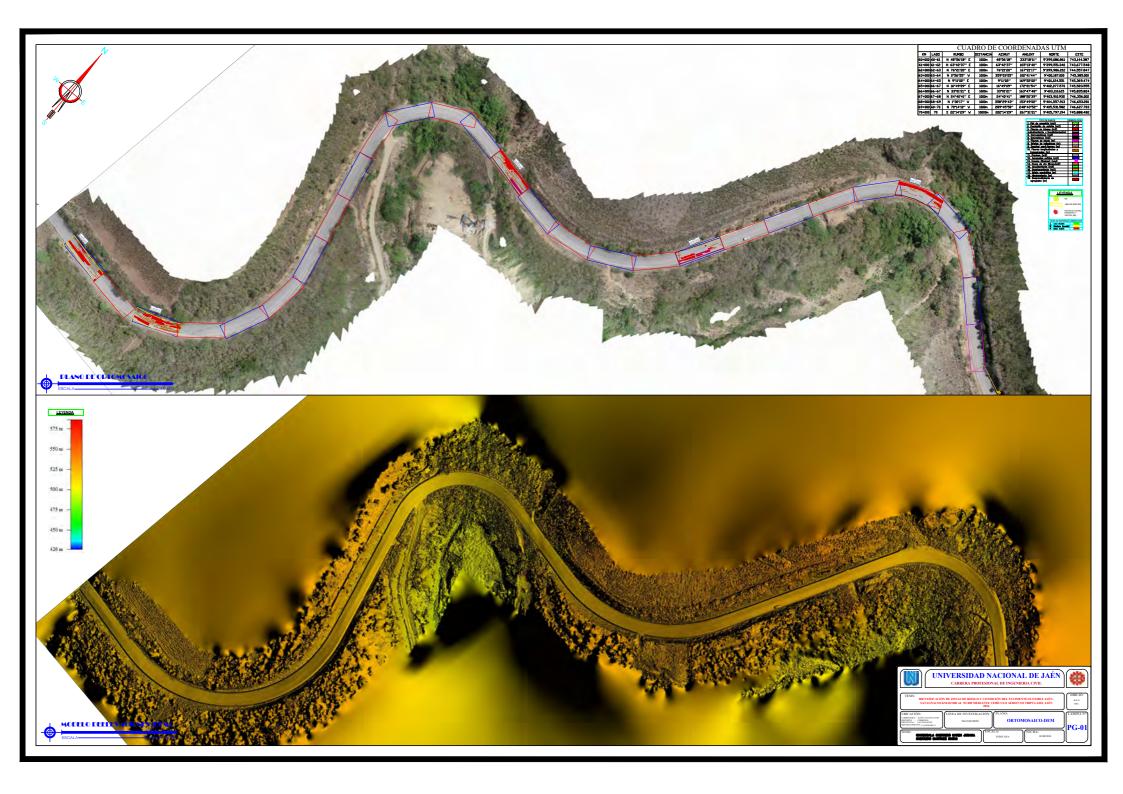
DATOS DEL EQUIPO

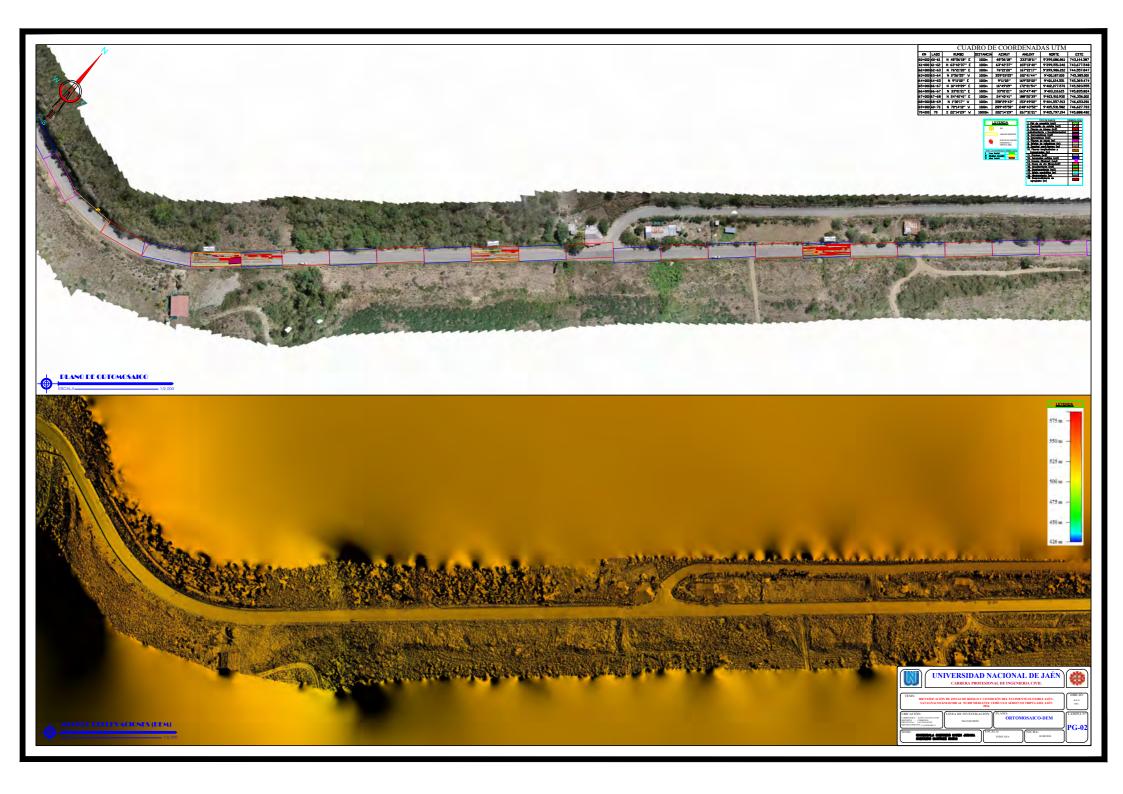
Nombre :	DRONE	. Modos de video H.264, 4K.3840X2160 30P	
Marca :	DJI	. Camara con un sensor 1" CMOS efectivos 20HP	
Modelo :	PHANTOM 4 RTK	. Objetivo FOV 84° 8.8mm/24mm/2.8-f/11 enf-1m	
Serie No.	0V2DJ8CRA40295	. Bateria inteligente: 84-5870 mAh -15.2V.	
		- Bateria. Serie No. 0DQAK6803502H5	
		- Control Serie No. OYUCJ8DRC503H2	
		- Estación Movil D-RTK 2 Serie No. 359BJ1S001007X	

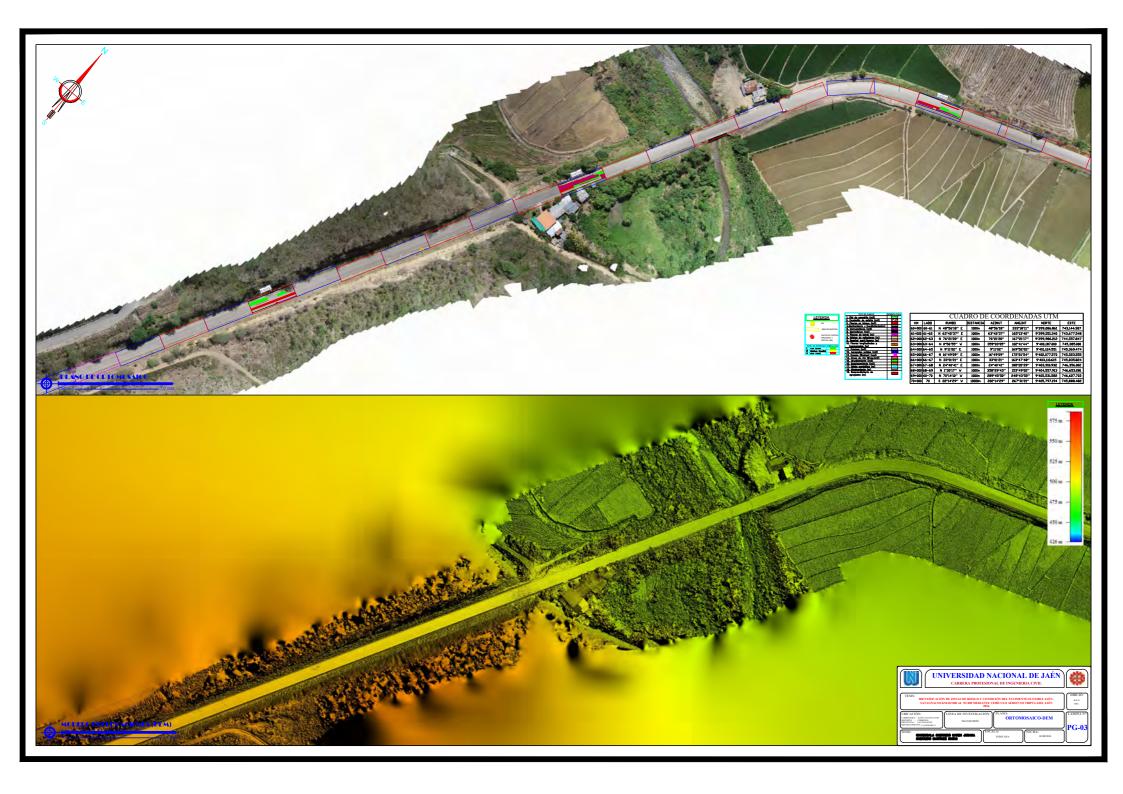
GEOPERU CORPORATION S.A.C certifica que el instrumento identificado há sido revisado, controlados calibrados y 100% operativos, cumpliendo con las especificaciones técnicas establecidas por el fabricante.

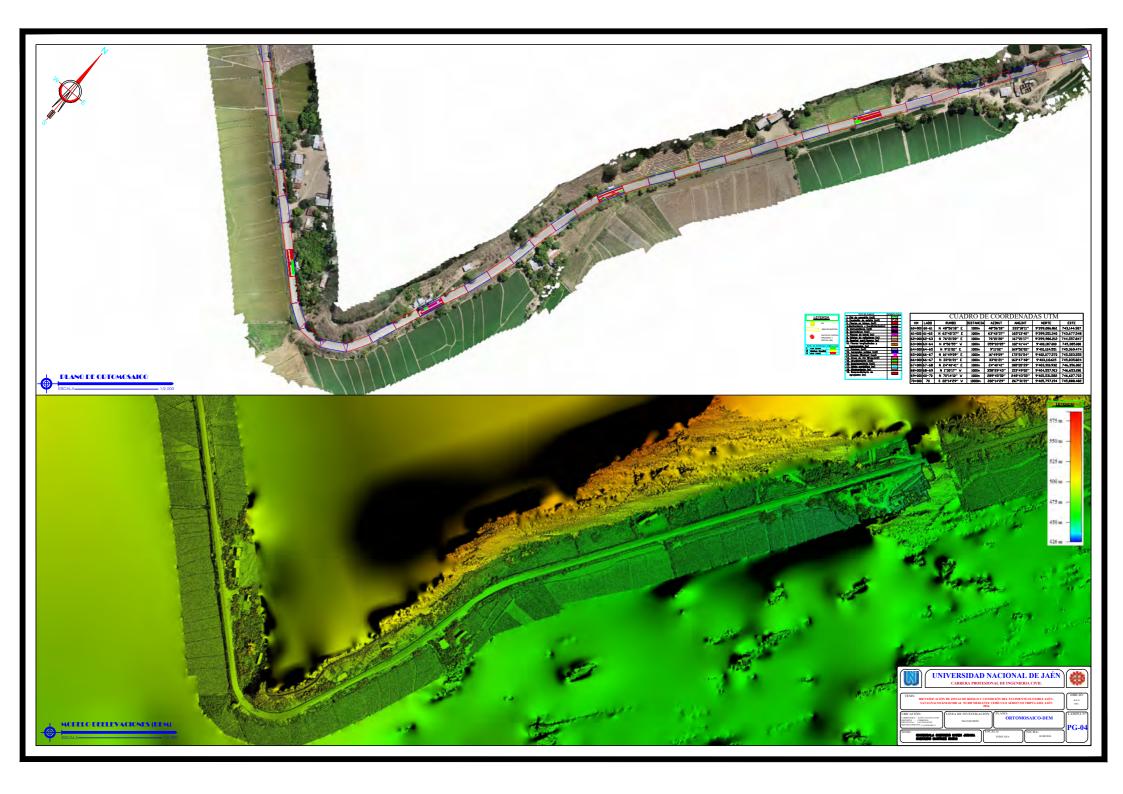
CALIBRACIÓN

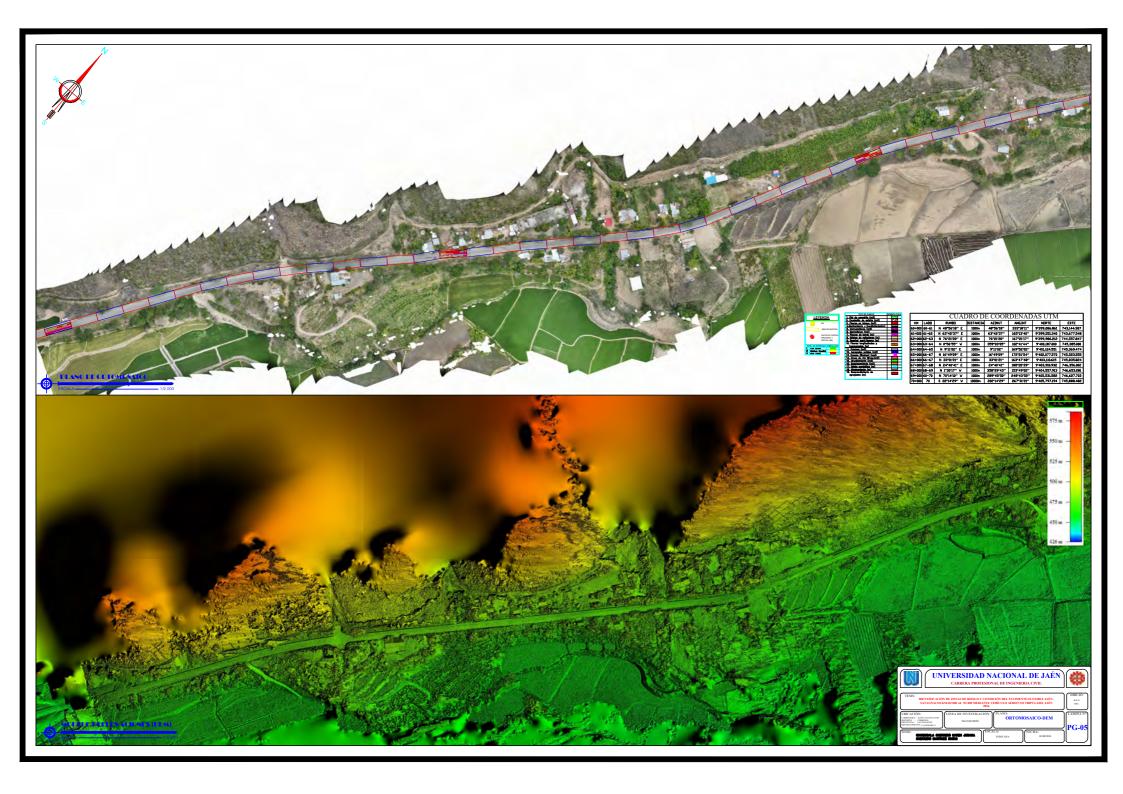
Fecha	Prox.Calibración	Validez del Certificado	Observación
14/05/2024	14/11/2024	06 meses	% 100 OPERATIVO

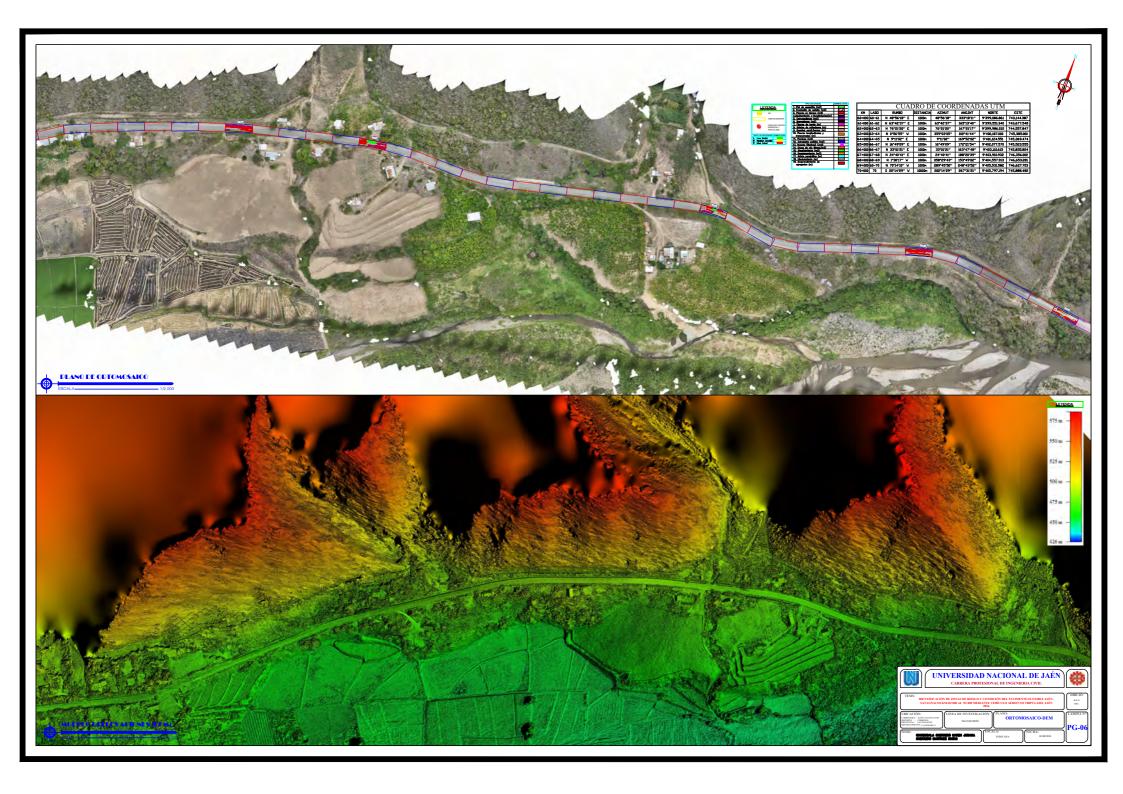

Responsable de Calibración	Propietario	
GEOPERU CORPORATION S.A.C	UNIVERSIDAD NACIONAL DE JAEN	

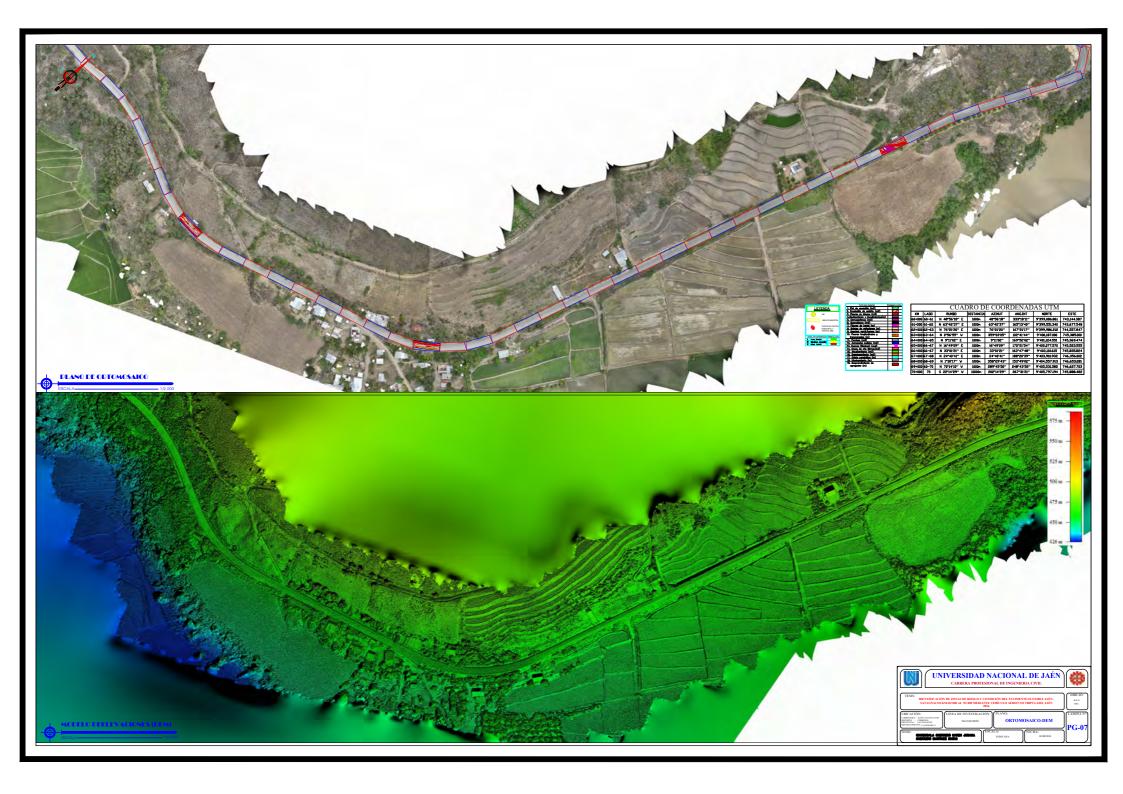

Andy Tena Vega Área Técnica GEOPERU

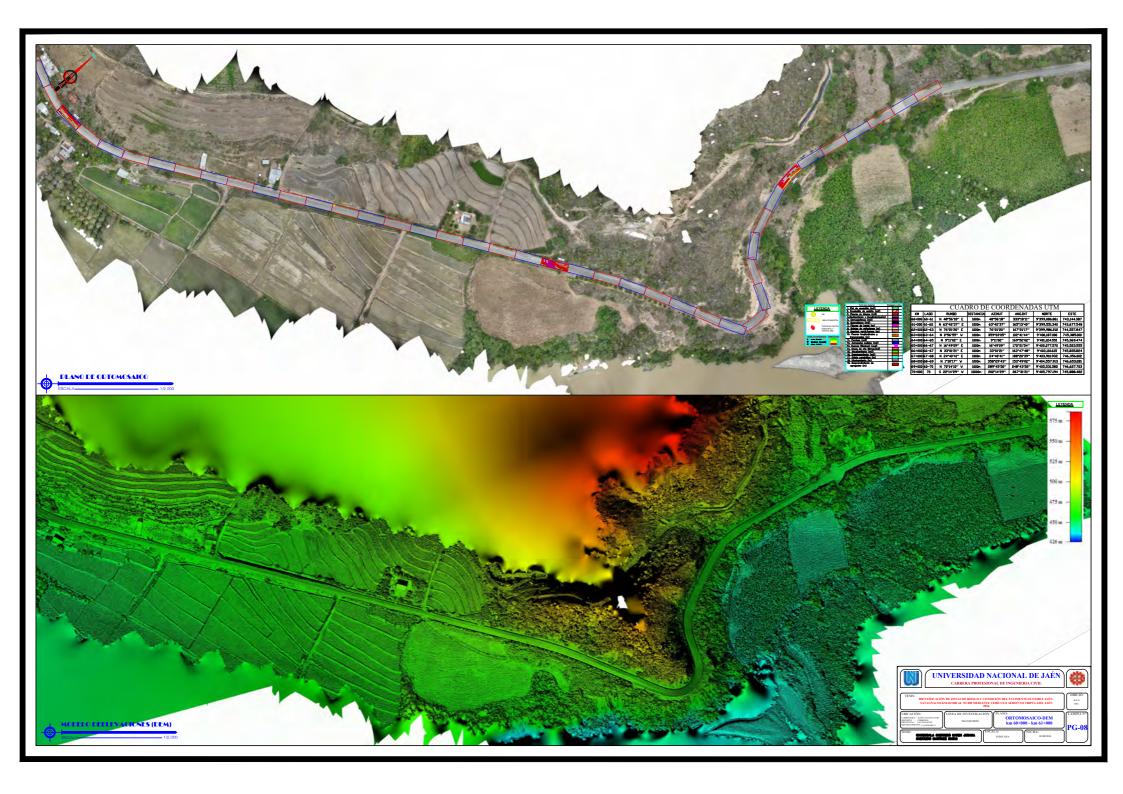


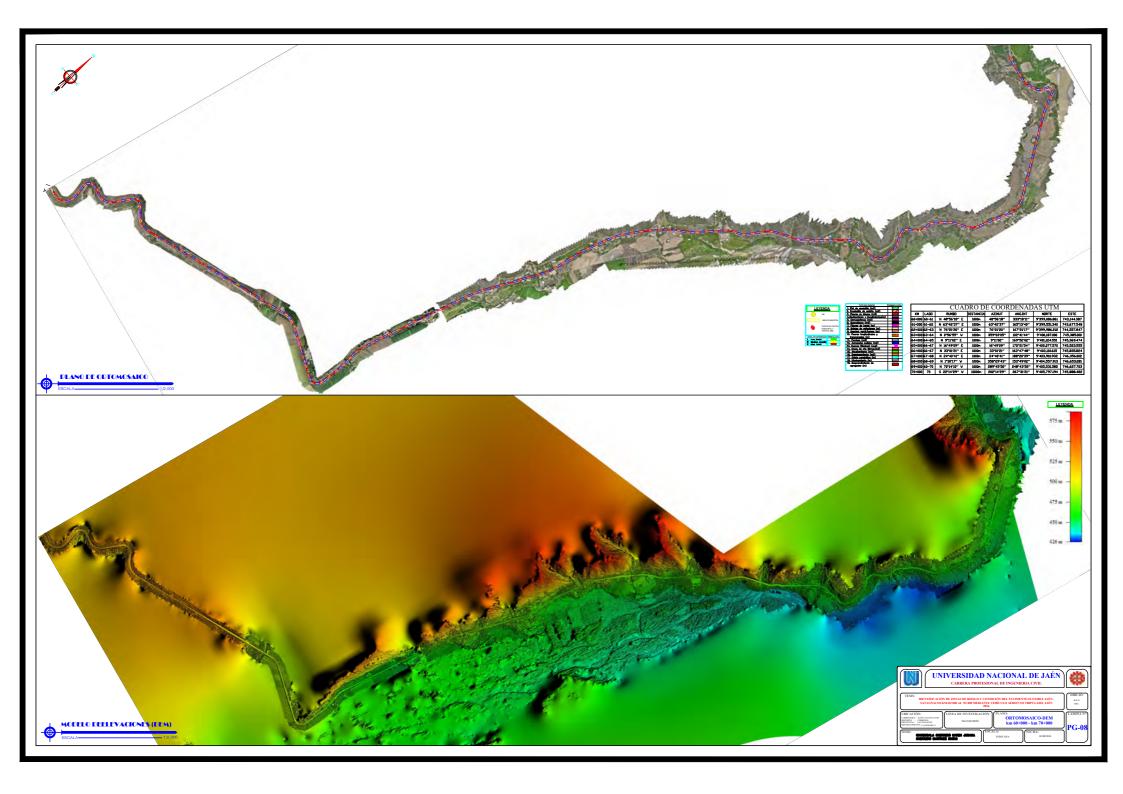


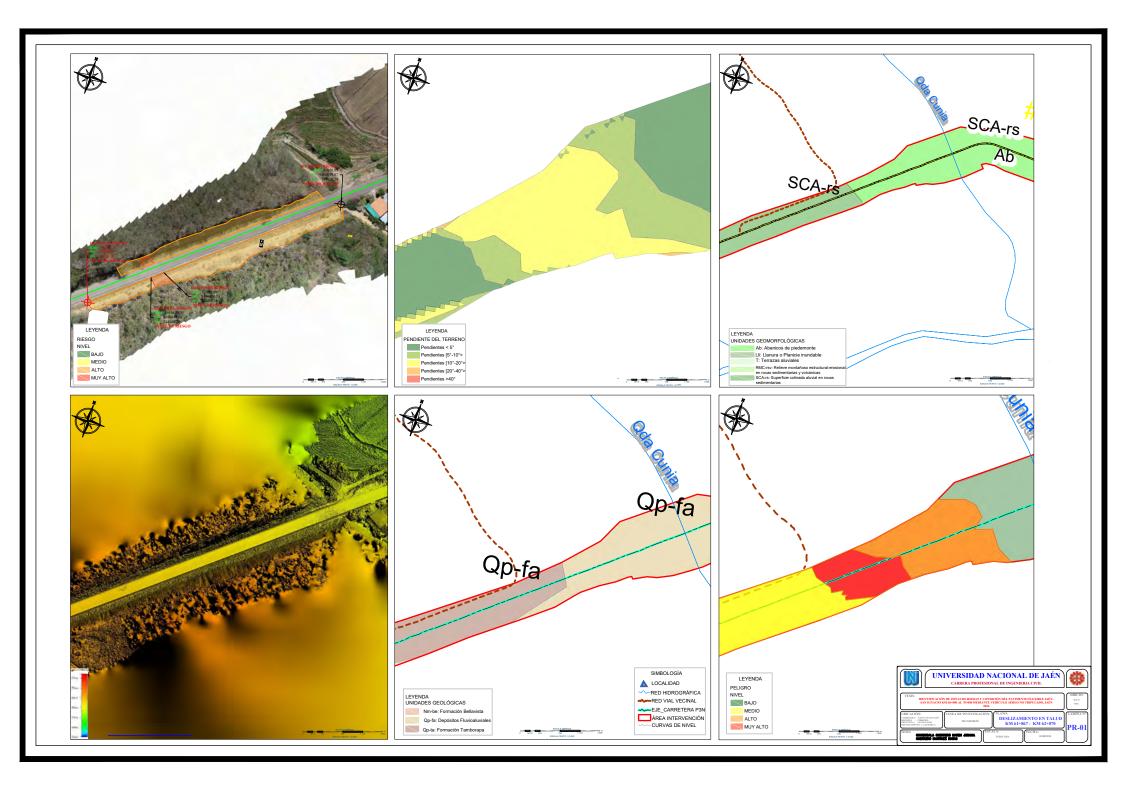

ANEXO 11 PLANOS DE ORTOMOSAICOS

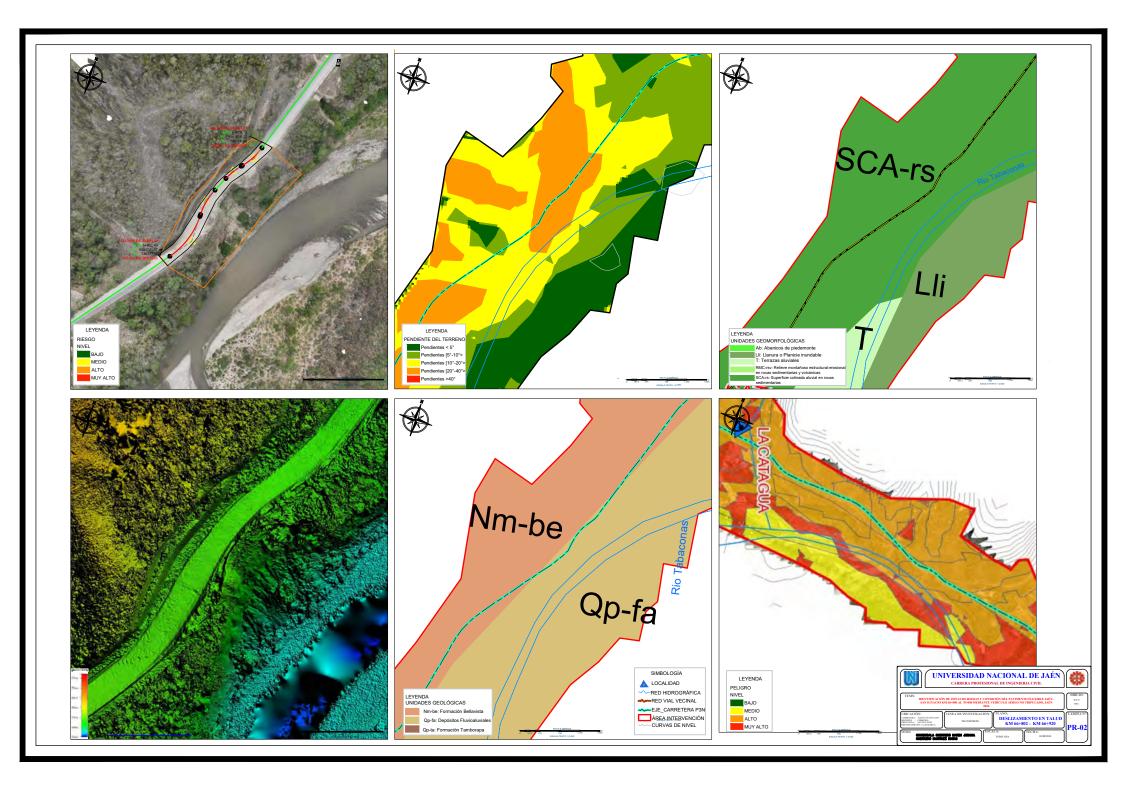


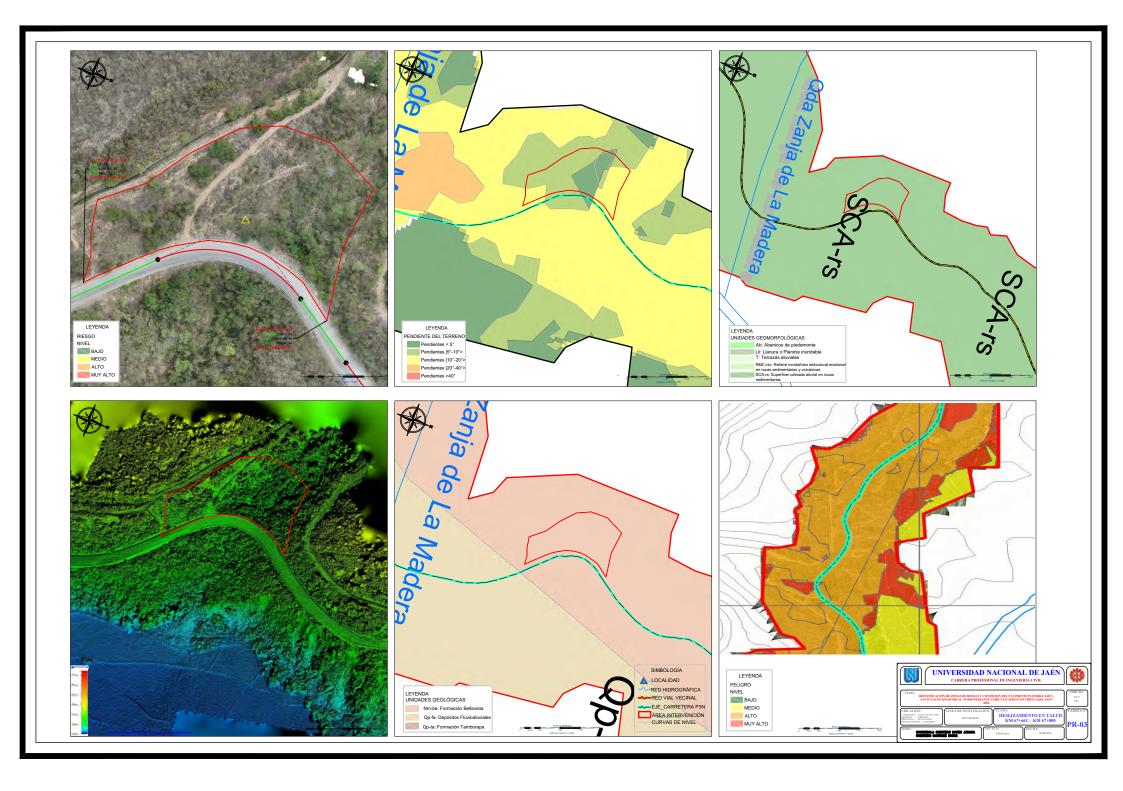


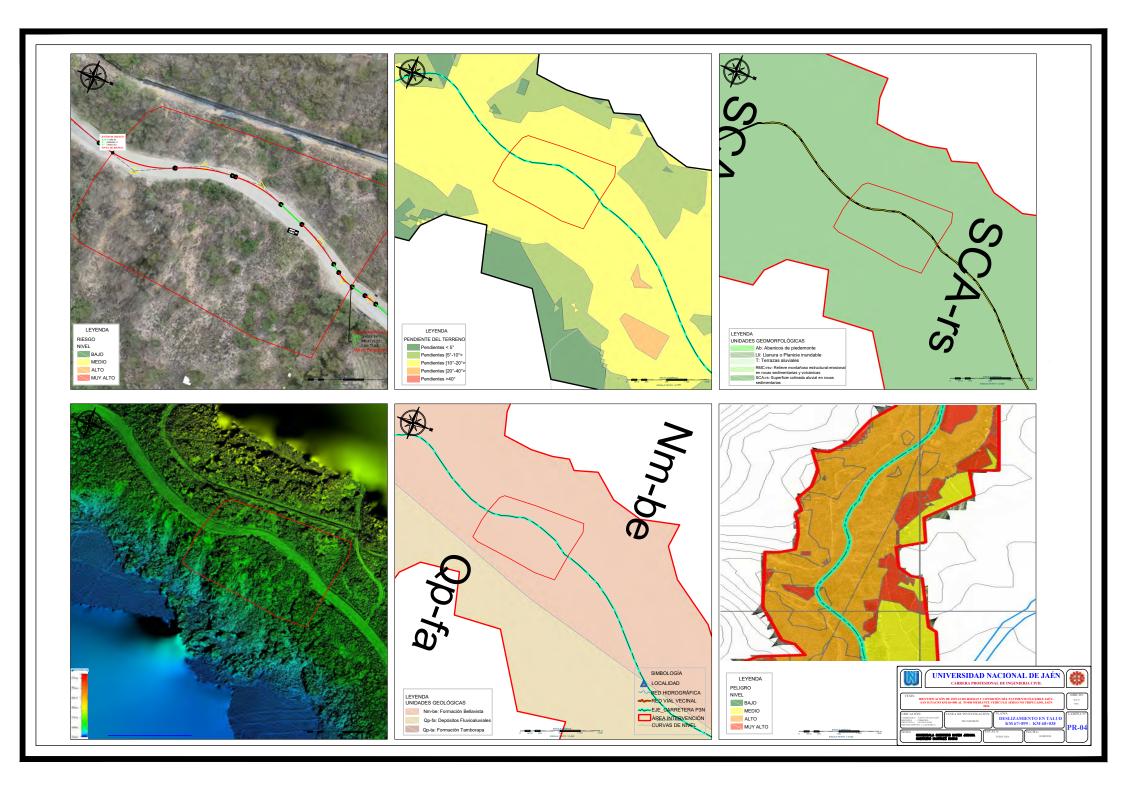


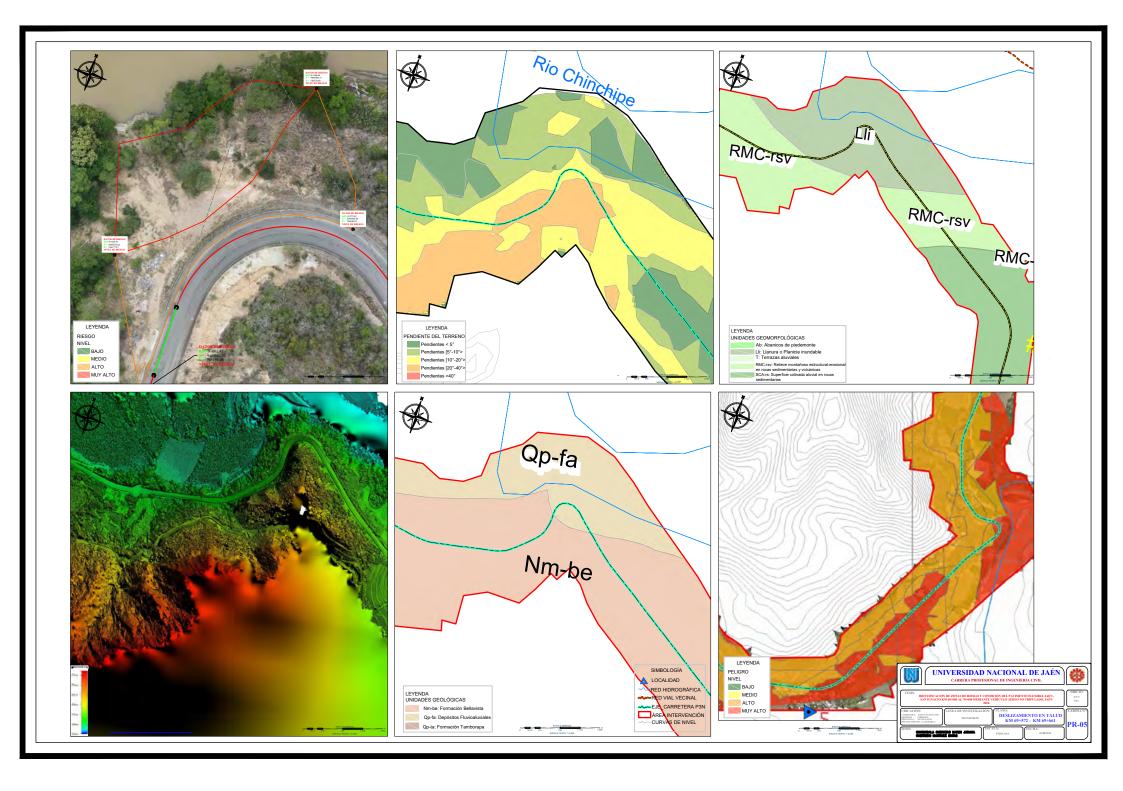











ANEXO 12 MAPAS DE RIESGO

