
TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO FORESTAL Y AMBIENTAL

AUTORES: Bach. Henry Livia Astochado
Bach. Roxana Rojas Segura

ASESOR : Dr. Alexander Huamán Mera

JAÉN - PERÚ, OCTUBRE, 2019
ACTA DE SUSTENTACIÓN

En la ciudad de Jaén, el día 14... de octubre... del año... 2019..., siendo las... 9:00... horas, se reunieron los integrantes del Jurado:

Presidente: Mr. [Nombre]
Secretario: Mtro. [Nombre]
Vocal: Mtro. [Nombre]

para evaluar la Sustentación de:

() Trabajo de Investigación
() Tesis
() Trabajo de Suficiencia Profesional

Título:

"Determinación de la Calidad del Aire en la Práctica Eléctrica de Transporte Vehicular en la Ciudad de Jaén empleando Células de Bioindicadores"

Presentado por Estudiante/Egresado o Bachiller...

de la Carrera Profesional de...

de la Universidad Nacional de Jaén.

Después de la sustentación y defensa, el Jurado acuerda:

() Aprobar
() Desaprobar
() Unanimidad
() Mayoría

Con la siguiente mención:

a) Excelente 18, 19, 20
b) Muy bueno 16, 17
c) Bueno 14, 15
d) Regular 13
e) Desaprobado 12 o menos

Siendo las... 10:00... horas del mismo día, el Jurado concluye el acto de sustentación confirmando su participación con la suscripción de la presente.

[Signaturas]

Presidente

Secretario

Vocal

Dirección: Jr. Cusco N° 250 – Jaén – Cajamarca
E-mail: coor@unj.edu.pe
Web: http://www.unj.edu.pe
ÍNDICE

RESUMEN

ABSTRACT

I. INTRODUCCIÓN ... 10
II. OBJETIVOS .. 13
 2.1. Objetivo General ... 13
 2.2. Objetivos Específicos ... 13
III. MATERIALES Y MÉTODOS .. 14
 3.1. Materiales y equipos ... 14
 3.2. Software ... 14
 3.3. Metodología .. 14
 3.3.1. Área de estudio .. 14
 3.3.2. Diseño de la investigación ... 14
 3.3.3. Población, muestra y muestreo ... 15
 3.3.4. Determinación del área de muestreo .. 15
 3.3.5. Identificación del forofito .. 16
 3.3.6. Recolección de muestras e identificación de especie .. 16
 3.3.7. Medición de pH de los forofitos .. 17
 3.3.8. Determinación de la frecuencia de las especies liquénicas 17
 3.3.9. Determinación de la cobertura de las especies liquénicas 18
 3.3.10. Índice de Pureza Atmosférica (IPA) ... 18
 3.3.11. Mapa de isocontaminación .. 19
 3.3.12. Elaboración del catálogo ... 20
IV. RESULTADOS ... 21
 4.1. Identificación de especies liquénicas .. 21
 4.1.1. Frecuencia .. 21
 4.1.2. Abundancia ... 23
 4.1.3. Cobertura .. 25
 4.1.4. Orientación ... 27
 4.1.5. Forofitos muestreados ... 27
4.2. Índice de Pureza Atmosférica (IPA) ... 29
4.3. Mapa de isocontaminación ... 31
4.4. Catálogo de especies de líquenes ... 31
 4.4.1. Factor de resistencia (Qi) .. 31
4.5. Análisis de datos .. 33
 4.5.1. Correlación de Spearman .. 33

V. DISCUSIÓN ... 34
5.1. Identificación de las especies líquénicas ... 34
5.2. Índice de Pureza Atmosférica .. 34
5.3. Mapa de isocontaminación .. 35
5.4. Catálogo de especies líquénicas en base al factor de resistencia 36

VI. CONCLUSIONES Y RECOMENDACIONES... 37
6.1. Conclusiones .. 37
6.2. Recomendaciones ... 38

VII. REFERENCIAS BIBLIOGRÁFICAS ... 39
AGRADECIMIENTO ... 43
DEDICATORIA .. 44
ANEXOS ... 45
ÍNDICE DE TABLAS

Tabla 1. Especies liquénicas y su frecuencia ... 21
Tabla 2. Especies liquénicas y su abundancia .. 24
Tabla 3. Cobertura liquénica .. 26
Tabla 4. Forofitos muestreados por sector y su pH ... 28
Tabla 5. Especies liquénicas, cobertura (%), frecuencia, abundancia, factor de resistencia (Qi), riqueza e IPA sector .. 30
Tabla 6. Factor de Resistencia /Tolerancia de las especies liquénicas 32
Tabla 7. Correlación de variables por árbol ... 33
ÍNDICE DE FIGURAS

Figura 1. Mapa de ubicación de las zonas de estudio .. 16

Figura 2. Gradilla con frecuencia del 1 al 20 ... 18

Figura 3. Frecuencia relativa de las especies liquénicas ... 22

Figura 4. Porcentaje de frecuencia de las especies liquénicas por zona de estudio 22

Figura 5. Abundancia relativa de las especies liquénicas ... 24

Figura 6. Porcentaje de abundancia de las especies liquénicas por zona de estudio 25

Figura 7. Cobertura total de las especies liquénicas por zona de estudio 26

Figura 8. Orientación de las especies liquénicas .. 27

Figura 9. Porcentaje de forofitos con presencia de líquenes ... 28

Figura 10. Valores de pH de los forofitos .. 29

Figura 11. Valores del Índice de Pureza Atmosférica por zona de estudio 30

Figura 12. Mapa de isocontaminación de la ciudad de Jaén ... 31

Figura 13. Dendograma de Cluster .. 32
INDICE DE ANEXOS

<table>
<thead>
<tr>
<th>Anexo</th>
<th>Descripción</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Catálogo de especies liquénicas</td>
<td>45</td>
</tr>
<tr>
<td>2.</td>
<td>Pasos para obtener la cobertura liquénica</td>
<td>50</td>
</tr>
<tr>
<td>3.</td>
<td>Mapa de ubicación de la zona 1</td>
<td>54</td>
</tr>
<tr>
<td>4.</td>
<td>Mapa de ubicación de la zona 2</td>
<td>55</td>
</tr>
<tr>
<td>5.</td>
<td>Mapa de ubicación de la zona 3</td>
<td>56</td>
</tr>
<tr>
<td>6.</td>
<td>Mapa de ubicación de la zona 4</td>
<td>57</td>
</tr>
<tr>
<td>7.</td>
<td>Ficha de campo para recolección de datos</td>
<td>58</td>
</tr>
<tr>
<td>8.</td>
<td>Constancia de identificación taxonómica</td>
<td>59</td>
</tr>
<tr>
<td>9.</td>
<td>Información de campo de los puntos muestreados</td>
<td>60</td>
</tr>
<tr>
<td>10.</td>
<td>Panel fotográfico</td>
<td>62</td>
</tr>
</tbody>
</table>
RESUMEN

En la actualidad el parque automotor está aumentando a gran escala en la ciudad de Jaén convirtiéndose en una de las principales fuentes de contaminación atmosférica. Esta investigación tiene como objetivo determinar la calidad del aire en las principales vías de tránsito vehicular empleando líquenes como bioindicadores. Para ello se muestrearon cuatro zonas del casco urbano de la ciudad de Jaén y mediante el Índice de Pureza Atmosférica (IPA) se determinó la calidad de aire; donde la zona tres evidenció mayor contaminación (IPA=0.152) y la zona cuatro menor contaminación (IPA=5.668). Con los datos IPA obtenidos se elaboró un mapa de isocontaminación diferenciando tres niveles de contaminación (baja, moderada y máxima). Se identificaron nueve especies de líquenes en 51 forofitos (árboles), siendo las especies Candelaria concolor y Parmelia caperata las que presentaron mayor abundancia, frecuencia y cobertura líquénica y por ende son consideradas las más resistentes a la contaminación. Se encontró riqueza líquénica en el 92.16% de forofitos y la mayor presencia de líquenes se registró en la cara este. También se midió el pH de la corteza de los forofitos para descartar si este influye en el crecimiento de los líquenes.

Palabras clave: Bioindicadores; calidad de aire; Índice de Pureza Atmosférica (IPA); mapa de isocontaminación.
ABSTRACT

Currently the automotive park is constantly increased in the Jaen city, this trouble has became in the main source of air pollution. The aim of this research was to determinate the air quality of main streets with vehicule circulation using lichens as bioindicators of air quality. Four areas of the urban area of the city of Jaen (Peru) were sampled and using the Index of Atmospheric Purity (IAP) was determinated the quality of air. The area number three showed higher pollution (IAP=0.152) than the others and the area number four showed lower pollution (IAP=5.668) than the others. A map of IsoContamination were built with IAP data where three levels of pullution were established (Low, Moderate, and Maximum). Present study identified nine species of lichens in 51 Forophytes (trees). Among 51 species, Candelaria concolor and Parmelia caperata exhibited grater abundance, frecuency, and lichen coverage, so they could be considered the more resistance to pollution. The 91% of forophytes evidenced lichen richness and the greatest presence of lichens were limitated to East face of forophytes. Additionaly it was measured the pH of forophyte bark to rule out if this influences the growth of lichens

Keywords: Bioindicators; Air quality; index of atmospheric purity (IAP); map of isoContamination.
I. INTRODUCCIÓN

La contaminación del aire es uno de los problemas ambientales que preocupa desde hace muchos años. Aproximadamente el 92% de los habitantes del planeta conviven en lugares donde la polución del aire excede los límites establecidos por la Organización Mundial de la Salud (OMS, 2016). La principal fuente de contaminación en las áreas urbanas está dada por el parque automotor (Cortes, Cardona, Segura y Garzón, 2016). Entre los contaminantes atmosféricos presentes en mayores cantidades y que afectan la salud humana y del ecosistema, se encuentran: dióxido de azufre (SO$_2$), óxidos de nitrógeno (NO$_X$), monóxido de carbono (CO), dióxido de carbono (CO$_2$), ozono (O$_3$), plomo (Pb) y material particulado (hollín, cenizas y polvos) (Ayora, 2010).

En la actualidad existen diferentes métodos y tecnologías que ayudan a detectar focos de contaminación o cantidad de contaminantes, pero en la mayoría son costosos y no identifican en qué medida está contaminación daña a los seres vivos. Para poder medir la contaminación atmosférica han surgido métodos complementarios a la medición directa, uno de ellos es el uso de bioindicadores. Un organismo es considerado un bioindicador de contaminación ambiental por tener la capacidad de acumular contaminantes los cuales producen alteraciones en su fisiología, además de proporcionar información del ambiente donde se encuentran (Pignata, 2003).

Entre los bioindicadores de contaminación mejor documentados se encuentran los líquenes. Los líquenes son asociaciones mutualistas, donde el hongo (micobionte) se encarga de proteger, proveer de agua y sales minerales al alga (fotobionte) para que está realice el proceso de fotosíntesis y así obtener nutrientes para su supervivencia (Lijteroff, Lima, y Prieri, 2009). Debido a los cambios que pueden sufrir en su diversidad, distribución, morfología y fisiología los líquenes son considerados excelentes indicadores de contaminación atmosférica (Rivera, 2008).
Las especies de líquenes tienen distinta tolerancia a la contaminación atmosférica, algunas son capaces de sobrevivir a contaminaciones muy severas, mientras que otras son extremadamente sensibles a la contaminación, por lo cual pueden desaparecer con las primeras alteraciones ya que al no tener raíces dependen de nutrientes aéreos y a medida que absorben los nutrientes, absorben también los contaminantes que se acumulan en sus tejidos (Zambrano y Rodríguez, 2011).

Según LeBlanc y De Sloover (1970), el Índice de Pureza Atmosférica (IPA) relaciona la frecuencia y cobertura de los líquenes con su resistencia a los contaminantes en una determinada área. Existen diferentes investigaciones donde utilizaron el IPA como variable de medida de la calidad del aire; en Bolivia utilizaron líquenes epífitos como bioindicadores y mediante la aplicación del IPA se logró identificar zonas de isocontaminación (Gonzales, Luján, Navarro y Flores, 2016). En Guatemala categorizaron los niveles de contaminación aérea por medio del IPA donde indicaron homogeneidad en los índices de contaminación a lo largo del corredor metropolitano (Cohn y Quezada, 2016). También en Ecuador determinaron los niveles de contaminación de la ciudad de Loja con el IPA, descubrieron cambios en la diversidad de las comunidades de líquenes epífitos a medida que se adentraban en la ciudad (Ochoa, Cueva, Prieto, Aragón, y Benitez 2015). De igual manera en San Luis, Argentina se utilizó el IPA, como variable de análisis para determinar la existencia de contaminación atmosférica (Lijteroff et al., 2009).

Rubiano (1983) con los datos IPA obtenidos en su investigación elaboró un mapa de isocontaminación donde clasificó seis zonas en Cundimarca: contaminación máxima, aguda, media, moderada, zona de transición y sin contaminación; donde la contaminación máxima se dio por la contaminación industrial generada por la central térmica Martín del Corral. Entre las investigaciones nacionales Huamán (2018) en base a la similitud de los valores del IPA árbol elaboró un mapa de isocontaminación para la ciudad de Bagua Grande, encontrando la máxima contaminación en la zona abarcada por la carretera Fernando Belaúnde Terry que atraviesa la ciudad. Del mismo modo esta metodología fue utilizada por Mendoza (2017) para la ciudad de Chachapoyas donde la parte centro presentó los valores máximos de contaminación seguido por la parte norte, la parte sur presentó buena calidad de aire, mientras que el este y oeste fueron de calidad media.

Las instituciones inmersas en el control de la calidad del aire en el Perú son: Ministerio del Ambiente (MINAM), Dirección General de Salud Ambiental (DIGESA), Servicio Nacional
de Meteorología e Hidrología del Perú (SENAMHI) y el Organismo de Evaluación y Fiscalización Ambiental (OEFA); estos órganos son los encargados de la legislación, fiscalización y monitoreo del aire, además establecen medidas de prevención y mitigación a fin de asegurar un ambiente saludable. Según el MINAM (2014) los Estándares de Calidad Ambiental (ECA) que se aplican al aire en su condición de cuerpo receptor y los Límites Máximos Permisibles (LMP) exigidos para las fuentes puntuales de emisión de contaminantes atmosféricos, son los instrumentos de Gestión Ambiental que regulan la calidad del aire en nuestro país. Estos instrumentos garantizan que la concentración de contaminantes en el ambiente no excedan los niveles permitidos y por lo tanto que no representen un riesgo significativo para la salud.

En la ciudad de Jaén no existen reportes de las instituciones nacionales a cerca de la calidad del aire, además las investigaciones son escasas. Por tal motivo se realizó esta investigación con la finalidad de contribuir con métodos innovadores y económicos, los cuales pueden servir para posteriores investigaciones referentes a la calidad del aire con el uso de líquenes como bioindicadores.
II. OBJETIVOS

2.1. Objetivo General

- Determinar la calidad del aire de las principales vías de tránsito vehicular en la ciudad de Jaén empleando líquenes como bioindicadores.

2.2. Objetivos Específicos

- Identificar las especies de líquenes encontradas en las principales vías de tránsito vehicular en la ciudad de Jaén.
- Calcular el Índice de Pureza Atmosférica (IPA) de las principales vías de tránsito vehicular en la ciudad de Jaén.
- Elaborar un mapa de Isocontaminación con datos del IPA, haciendo uso del programa ArcGis 10.5.
- Elaborar un catálogo de especies de líquenes presentes en las principales vías de tránsito vehicular en la ciudad de Jaén en base al factor de resistencia de cada especie.
III. MATERIALES Y MÉTODOS

3.1. Materiales y equipos

- Cinta métrica
- Navajas
- Bisturí
- Pinzas
- Lupa
- Cajas de papel
- Caja de cartón
- Gradilla de 10 cm x 50 cm
- Cloruro de potasio
- Balanza analítica
- pH-metro analítico
- Cámara fotográfica
- GPS
- Estereoscopio
- Estufa

3.2. Software

- Adobe Photoshop CS6
- ArcGis 10.5
- SPSS (versión 25)

3.3. Metodología

3.3.1. Área de estudio

Este estudio se realizó en el departamento de Cajamarca, provincia y distrito de Jaén, el cual se encuentra ubicado a 729 msnm, posee un clima cálido todo el año y su temperatura anual oscila entre los 18.7° C y 29.8° C.

3.3.2. Diseño de la investigación

El diseño del proyecto es un diseño de casilla única, presenta lo siguiente:
Donde:
M = Unidad de muestreo: Forofitos (árboles) dentro de cada zona de estudio en la ciudad de Jaén.
O = Información de interés recogida en cada una de las unidades de muestreo.

Forofito: es el sustrato para los líquenes cortícolas, es decir los que crecen sobre la corteza de los árboles (Eduardo, Lücking y Anze, 2009).

3.3.3. Población, muestra y muestreo

- **Población:** Forofitos existentes dentro de las principales vías de tránsito vehicular de la ciudad de Jaén.
- **Muestra:** Especies de líquenes presentes en el área muestreada de cada forofito cuyo Diámetro a la Altura del Pecho (DAP) sea mayor o igual a 0.13 metros, encontradas en las principales vías de tránsito vehicular de la ciudad de Jaén.
- **Muestreo:** Se realizó un muestreo no probabilístico, basado en el reconocimiento previo del área de estudio.

3.3.4. Determinación del área de muestreo

Se hizo previo recorrido de la ciudad de Jaén teniendo en cuenta las vías con mayor tránsito vehicular durante las 24 horas. También se realizó un inventario de los forofitos y especies liquénicas presentes en las vías de la ciudad (Lijteroff et al., 2009). Se determinó cuatro zonas (Figura 1):

Zona 1: Avenida Mesones Muro desde el parque Arana Vidal hasta el Mega Plaza.
Zona 2: Avenida Orient desde la cuadra N° 01 hasta La Huaca de Montegrande.
Zona 3: Avenida Mariscal Castilla desde el parque Miguel Grau hasta el parque Binacional Perú - Ecuador.
Zona 4: Avenida Pakamuros desde el parque Binacional Perú - Ecuador hasta la I.E N°16042 Francisco Bolognesi Cervantes del sector Linderos.
3.3.5. Identificación del forofito

Se realizó un inventario de forofitos existentes en las vías de la ciudad (Asta, Erhardt, Ferretti, y Fornasier, 2002; Lijteroff et al., 2009; Llop, Pinho, Matos, Pereira y Branquinho, 2012). Los forofitos muestreados tuvieron las siguientes características: forofitos cuyos troncos recibían radiación directa por lo menos una parte del día, con troncos de al menos 40 cm de perímetro (13 cm de DAP aproximadamente) (Mendoza, 2018). No se registró forofitos que mostraban sus cortezas dañadas (por acción humana, de animales o por incendios) o con alteraciones fitosanitarias (Lijteroff et al., 2009). Así como también se descartó forofitos inclinados que excedían los 10° desde la vertical (Gonzales et al., 2016).

3.3.6. Recolección de muestras e identificación de especies

Se utilizó una gradilla elaborada de hilo y cartón de 10 cm de ancho por 50 cm de alto, dividida en 20 cuadrados iguales de 5 cm de lado (Figura 2). Se seleccionó la cara del
forofito con mayor cobertura liquénica, colocando la base de la gradilla a partir de 1.20 metros de altura sobre el suelo (Lijteroff et al., 2009).

Para realizar la toma de muestras se trabajó con especies liquénicas que se observaron a simple vista o con el uso de una lupa de campo (Lijteroff et al., 2009). Con ayuda de una navaja se retiró las muestras para la identificación de líquenes y medición de pH de los forofitos; las cuales se colocaron dentro de cajitas de cartón codificadas y sucesivamente se fueron almacenando en una caja más grande. También se tomó fotografías de la gradilla ubicada en cada forofito para luego ser utilizadas en el programa Adobe Photoshop.

Los datos se recopilaron en una ficha de campo (Anexo N° 7) elaborada para esta investigación, donde se registró: zona, fecha, coordenadas geográficas, forofito, DAP, especies liquénicas, abundancia, frecuencia, código fotográfico y orientación.

Las muestras de líquenes fueron llevadas a laboratorio de Ingeniería Forestal y Ambiental de la Universidad Nacional de Jaén para ser observadas en el estereoscopio y posteriormente identificadas de acuerdo al tipo de especie, morfología, color, hábitat de las especies y otras características. También se utilizó claves dicotómicas estandarizadas y se contó con la ayuda de un especialista (Anexo N° 8).

3.3.7. Medición de pH de los forofitos

Para comprobar al pH como variable que pudiera afectar el crecimiento liquénico se utilizó la metodología propuesta por Kricke (2002), para ello se recolectó tres gramos de corteza del forofito lo más delgado posible para medir solo la capa de corteza externa donde se encuentra la flora liquénica. En laboratorio se pesó un gramo de corteza de forofito por triplicado, cada muestra se colocó en 50 mL de KCl 0,25 M. Se dejó en la estufa por un lapso de una hora a 80 °C y posteriormente se dejó enfriar hasta los 20°C; finalmente utilizando el pH-metro analítico se midió cada una de las muestras obteniendo un pH promedio por especie de forofito.

3.3.8. Determinación de la frecuencia de las especies liquénicas

A cada una de las especies presentes en el área abarcada por la gradilla se le asignó un valor de frecuencia de 1 a 20, en función al número de cuadros de la gradilla en los que se encontraban presentes (Lijteroff et al., 2009).
3.3.9. Determinación de la cobertura de las especies liquénicas

Haciendo uso de la metodología descrita por Ambrosio y Bringas (2017), se procesó cada una de las fotografías obtenidas en campo, utilizando el programa Adobe Photoshop Cs6 - 622 bytes para determinar el área en centímetros cuadrados (cm2) ocupada por cada especie de liquen encontrada dentro de la gradilla (Anexo N° 2).

3.3.10. Índice de Pureza Atmosférica (IPA)

La calidad de aire en cada zona se determinó utilizando el Índice de Pureza Atmosférica (IPA), propuesto por Le Blanc y De Sloover (1970) y modificado por Rubiano (1983); este valor se determina con la siguiente fórmula:

$$\text{IPA}_j = \sum_{i}^{n} \frac{(f_i \times Q_i)}{n} \times C_i$$

Donde:

IPA$_j$: Índice de Pureza Atmosférica de la estación (j) (estación = forofito).

Figura 2. Gradilla con frecuencia del 1 al 20.
Ci: Cobertura relativa de la especie (i) en la estación (j).

fi: Frecuencia de la especie (i) (número de forofitos de la estación (j) en que aparece la especie (i)).

n: Número de forofitos censados en la estación (j).

Qi: Factor de resistencia de la especie (i).

Para ello:

\[Q_i = \sum_{j}^{n} \frac{A_j - 1}{E_j} \]

Donde:

Qi: Factor de resistencia de la especie (i).

Aj: Número de especies presentes en cada estación (j) donde se encuentre encuentra la especie (i).

Ej: Número de estaciones (j) donde se halle la especie (i).

El IPA toma valores que varían entre cero (ausencia total de líquenes) y un valor positivo cualquiera que será máximo para la estación que se asume como zona libre de contaminación atmosférica. Dicho máximo tiene solamente validez local pues los valores del IPA guardan relación con la riqueza de especies; esto quiere decir que los parámetros de la bioindicación son independiente para cada ciudad o región de estudio y dependen de la relación local entre los líquenes, la fuente contaminante, y el medio abiótico (Rubiano, 1983; Simijaca, Vargas y Morales, 2014).

3.3.11. Mapa de isocontaminación

Para la elaboración del mapa de isocontaminación se extrapoló los datos del IPA árbol con el casco urbano de la ciudad de Jaén, agrupándolos en clases de acuerdo a su dispersión y/o similitud; utilizando la herramienta de interpolación de Kriging del programa ArcGis 10.5 (Gonzales et al., 2016).
3.3.12. Elaboración del catálogo

Se elaboró un catálogo con las especies de líquenes existentes en las principales vías de tránsito vehicular de la ciudad de Jaén en base al factor de resistencia de cada especie (Qi). Se realizó un Análisis Cluster empleando el Método de Ward y el intervalo de Distancia euclídea al cuadrado, para determinar las especies tolerantes y sensibles a la contaminación atmosférica. Cada especie de liquen cuenta con su ficha de clasificación taxonómica.
IV. RESULTADOS

4.1. Identificación de las especies liquénicas

Se establecieron cuatro zonas de muestreo, monitoreándose 51 forofitos en los cuales se identificó nueve especies de líquenes: *Candelaria concolor*, *Flavoparmelia soredians*, *Graphys sp.*, *Lepraria sp.*, *Lobaria sp.*, *Parmelia caperata*, *Pertusaria sp.*, *Phaeophyscia sp.* y *Physcia sp.*

4.1.1. Frecuencia

La tabla 1 muestra la frecuencia de las especies liquénicas encontradas en las cuatro zonas estudiadas en la ciudad de Jaén. La especie *Parmelia caperata* obtuvo la mayor frecuencia en las cuatro zonas; mientras que la menor frecuencia en la zona uno lo obtuvo la especie *Flavoparmelia soredians* (6), en la zona dos la especie *Lobaria sp.* (2), en la zona tres la especie *Physcia sp.* (4) y en la zona cuatro las especies *Lepraria sp.* (2) y *Physcia sp.* (2).

La mayor frecuencia relativa lo obtuvo la especie *Parmelia caperata* con 42.61 % y la menor frecuencia relativa lo obtuvo la especie *Lobaria sp.* con 0.15 %.

Tabla 1

<table>
<thead>
<tr>
<th>Especie</th>
<th>Zona 1</th>
<th>Zona 2</th>
<th>Zona 3</th>
<th>Zona 4</th>
<th>Frecuencia</th>
<th>Frecuencia relativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candelaria concolor</td>
<td>131</td>
<td>85</td>
<td>20</td>
<td>120</td>
<td>356</td>
<td>25.93</td>
</tr>
<tr>
<td>Flavoparmelia soredians</td>
<td>6</td>
<td>29</td>
<td>17</td>
<td>84</td>
<td>136</td>
<td>9.91</td>
</tr>
<tr>
<td>Graphys sp.</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>2.11</td>
</tr>
<tr>
<td>Lepraria sp.</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>0.66</td>
</tr>
<tr>
<td>Lobaria sp.</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0.15</td>
</tr>
<tr>
<td>Parmelia caperata</td>
<td>136</td>
<td>191</td>
<td>30</td>
<td>228</td>
<td>585</td>
<td>42.61</td>
</tr>
<tr>
<td>Pertusaria sp.</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0.66</td>
</tr>
<tr>
<td>Phaeophyscia sp.</td>
<td>84</td>
<td>36</td>
<td>0</td>
<td>26</td>
<td>146</td>
<td>10.63</td>
</tr>
<tr>
<td>Physcia sp.</td>
<td>89</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>101</td>
<td>7.36</td>
</tr>
<tr>
<td>Total</td>
<td>446</td>
<td>394</td>
<td>71</td>
<td>462</td>
<td>1 373</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Figura 3. Frecuencia relativa de las especies liquénicas.

La figura 3 muestra los valores de la frecuencia relativa de las especies liquénicas encontradas en las cuatro zonas de estudio, donde la especie *Parmelia caperata* representa la mayor frecuencia relativa con 42.61%; mientras que las especies *Lobaria sp.* con 0.15%, *Lepraria sp.* con 0.66% y *Pertusaria sp.* con 0.66% representan la menor frecuencia relativa.

Figura 4. Porcentaje de frecuencia de las especies liquénicas por zona de estudio.
La figura 4 muestra el comportamiento de las especies liquénicas en cuanto al porcentaje de frecuencia por zona de estudio. La especie *Graphys sp.*, *Lobaria sp.* y *Pertusaria sp.* obtuvieron una frecuencia de 100 % en la zona dos, la especie *Candelaria concolor* obtuvo mayor frecuencia en la zona uno (36.8 %) y menor en la zona tres (5.62 %), la especie *Flavoparmelia soredians* obtuvo mayor frecuencia en la zona cuatro (61.76 %) y menor en la zona uno (4.41 %), la especie *Parmelia caperata* obtuvo mayor frecuencia en la zona cuatro (38.97 %) y menor en la zona tres (5.13 %), la especie *Physcia sp.* obtuvo mayor frecuencia en la zona uno (88.12 %) y menor en la zona cuatro (1.98 %), la especie *Phaeophyscia sp.* obtuvo mayor frecuencia en la zona uno (57.53 %) y menor en la zona cuatro (17.81 %) pero no se encontró en la zona tres y la especie *Lepraria sp.* solo se encontró en la zona dos (77.78 %) y cuatro (22.22 %).

4.1.2. Abundancia

La tabla 2 muestra la abundancia de las especies liquénicas encontradas en las cuatro zonas estudiadas en la ciudad de Jaén. En la zona uno la mayor abundancia lo obtuvo la especie *Candelaria concolor* (467) y la menor abundancia la especie *Flavoparmelia soredians* (13); en la zona dos la mayor abundancia lo obtuvo la especie *Parmelia caperata* (1 124) y la menor abundancia la especie *Lobaria sp.* (1); en la zona tres la mayor abundancia lo obtuvo la especie *Parmelia caperata* (69) y la menor abundancia la especie *Physcia sp.* (3) y en la zona cuatro la mayor abundancia lo obtuvo la especie *Parmelia caperata* (1 422) y la menor abundancia lo obtuvieron las especies *Lepraria sp.* (2) y *Physcia sp.* (2). La mayor abundancia relativa lo obtuvo la especie *Parmelia caperata* con 53.53 % y la menor abundancia relativa lo obtuvieron las especies *Lobaria sp.* con 0.02 % y *Lepraria sp.* con 0.22 %.
Tabla 2

Especies liquénicas y su abundancia

<table>
<thead>
<tr>
<th>Especie</th>
<th>Zona 1</th>
<th>Zona 2</th>
<th>Zona 3</th>
<th>Zona 4</th>
<th>Abundancia</th>
<th>Abundancia Relativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candelaria concolor</td>
<td>467</td>
<td>307</td>
<td>31</td>
<td>832</td>
<td>1 637</td>
<td>30.46</td>
</tr>
<tr>
<td>Flavoparmelia soredians</td>
<td>13</td>
<td>198</td>
<td>0</td>
<td>0</td>
<td>329</td>
<td>6.12</td>
</tr>
<tr>
<td>Graphys sp.</td>
<td>0</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>59</td>
<td>1.10</td>
</tr>
<tr>
<td>Lepraria sp.</td>
<td>0</td>
<td>10</td>
<td>2</td>
<td>12</td>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>Lobaria sp.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>59</td>
<td>1.10</td>
</tr>
<tr>
<td>Parmelia caperata</td>
<td>262</td>
<td>1 124</td>
<td>69</td>
<td>1 422</td>
<td>2 877</td>
<td>53.53</td>
</tr>
<tr>
<td>Pertusaria sp.</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0.07</td>
</tr>
<tr>
<td>Phaeophyscia sp.</td>
<td>148</td>
<td>66</td>
<td>0</td>
<td>72</td>
<td>286</td>
<td>5.32</td>
</tr>
<tr>
<td>Physcia sp.</td>
<td>159</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>170</td>
<td>3.16</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1 049</td>
<td>1 775</td>
<td>137</td>
<td>2 414</td>
<td>5 375</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

![ABUNDANCIA_RELATIVA](image)

Figura 5. Abundancia relativa de las especies liquénicas.

La figura 5 muestra los valores de la abundancia relativa de las especies liquénicas encontradas en las cuatro zonas de estudio, donde la especie *Parmelia caperata* representa la mayor abundancia relativa con 53.53 %; mientras que las especies *Lobaria sp.* con 0.02 %, *Pertusaria sp.* con 0.07 % y *Lepraria sp.* con 0.22 % representan la menor abundancia relativa.
La figura 6 muestra el comportamiento de las especies liquénicas en cuanto al porcentaje de abundancia por zona de estudio. La especie *Graphys sp.*, *Lobaria sp.* y *Pertusaria sp.* obtuvieron una abundancia de 100 % en la zona dos, la especie *Candelaria concolor* obtuvo mayor abundancia en la zona cuatro (50.82 %) y menor en la zona tres (1.89 %), la especie *Flavoparmelia soredians* obtuvo mayor abundancia en la zona dos (60.18 %) y menor en la zona uno (3.95 %), la especie *Parmelia caperata* obtuvo mayor abundancia en la zona cuatro (49.43 %) y menor en la zona tres (2.40 %), la especie *Physcia sp.* obtuvo mayor abundancia en la zona uno (93.53 %) y menor en la zona cuatro (1.18 %), la especie *Phaeophyscia sp.* obtuvo mayor abundancia en la zona uno (51.75) y menor en la zona dos (23.08 %) pero no se encontró en la zona tres y la especie *Lepraria sp.* solo se encontró en la zona dos (83.33 %) y cuatro (16.67 %).

4.1.3. Cobertura

La tabla 3 muestra la cobertura de las especies liquénicas por zona de estudio expresada en centímetros cuadrados (cm2). En la zona uno se observa ausencia de las especies *Graphys sp.*, *Lepraria sp.*, *Lobaria sp.* y *Pertusaria sp.* mientras que la especie *Physcia sp.* presenta mayor cobertura liquénica (281.32 cm2) y la especie *Flavoparmelia soredians* menor cobertura (28.6 cm2). En la zona dos las especie *Parmelia caperata* presenta mayor cobertura liquénica (1 318.62 cm2) y la especie *Lobaria sp.* menor cobertura (3.83 cm2). En la zona tres se observa ausencia de las especies *Graphys sp.*, *Lepraria sp.*, *Lobaria sp.* y *Pertusaria sp.*
sp. y Phaeophyscia sp. mientras que la especie Flavoparmelia soredians presenta mayor cobertura liquénica (65.14 cm²) y la especie Candelaria concolor menor cobertura (2.86 cm²). En la zona cuatro se observa ausencia de las especies Graphys sp., Lobaria sp. y Pertusaria sp. mientras que la especie Flavoparmelia soredians presenta mayor cobertura liquénica (1 127.99 cm²) y la especie Lepraria sp. menor cobertura (0.60 cm²).

Tabla 3

Cobertura liquénica

<table>
<thead>
<tr>
<th>Especie</th>
<th>Zona 1 (cm²)</th>
<th>Zona 2 (cm²)</th>
<th>Zona 3 (cm²)</th>
<th>Zona 4 (cm²)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candelaria concolor</td>
<td>97.93</td>
<td>30.77</td>
<td>2.86</td>
<td>141.43</td>
<td>272.99</td>
</tr>
<tr>
<td>Flavoparmelia soredians</td>
<td>28.60</td>
<td>285.24</td>
<td>65.14</td>
<td>1 127.99</td>
<td>1 506.97</td>
</tr>
<tr>
<td>Graphys sp.</td>
<td>-</td>
<td>81.59</td>
<td>-</td>
<td>-</td>
<td>81.59</td>
</tr>
<tr>
<td>Lepraria sp.</td>
<td>-</td>
<td>10.40</td>
<td>-</td>
<td>0.60</td>
<td>11.00</td>
</tr>
<tr>
<td>Lobaria sp.</td>
<td>-</td>
<td>3.83</td>
<td>-</td>
<td>-</td>
<td>3.83</td>
</tr>
<tr>
<td>Parmelia caperata</td>
<td>217.98</td>
<td>1 318.62</td>
<td>32.12</td>
<td>994.66</td>
<td>2 563.38</td>
</tr>
<tr>
<td>Pertusaria sp.</td>
<td>-</td>
<td>25.85</td>
<td>-</td>
<td>-</td>
<td>25.85</td>
</tr>
<tr>
<td>Phaeophyscia sp.</td>
<td>119.59</td>
<td>57.20</td>
<td>-</td>
<td>50.42</td>
<td>227.21</td>
</tr>
<tr>
<td>Physcia sp.</td>
<td>281.32</td>
<td>17.98</td>
<td>37.47</td>
<td>10.04</td>
<td>346.81</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Figura 7. Cobertura total de las especies liquénicas por zona de estudio.
En la figura 7 se puede apreciar que la especie *Parmelia caperata* y *Flavoparmelia soredians* tienen la mayor cobertura 2 563.38 cm² y 1 506 97 cm² respectivamente; mientras que las especies *Lobaria sp.* (3.83 cm²), *Lepraria sp.* (11 cm²) y *Pertusaria sp.* (25.85 cm²) son las que tienen menor cobertura.

4.1.4. Orientación

![Figura 8. Orientación de las especies liquénicas.](image)

La figura 8 muestra que la orientación tuvo menor incidencia en lado oeste de la corteza de los forofitos (19 %), seguido por el norte (21%) y el sur (26 %); mientras que el lado este presento mayor incidencia de líquenes (34 %).

4.1.5. Forofitos muestreados

En la tabla 4 se observa 51 forofitos muestreados de los cuales 47 presentaron líquenes. La zona uno presentó el mayor número de forofitos muestreados (19) y la zona tres presento el menor con seis forofitos. La especie *Cedrela odorata* L. fue la más muestreada con 22 forofitos, mientras que las especies menos muestreadas fueron: *Azaridachta indica* A. Juss.,
Cocos nucifera L., Guazuma ulmifolia Lam., Persea americana Mill. y Theobroma cacao L. con un forofito cada especie. La zona dos presentó el 100 % de forofitos con cobertura liquénica y todas las especies obtuvieron un pH ácido.

Tabla 4

Forofitos muestreados por sector y su pH

<table>
<thead>
<tr>
<th>Nombre científico</th>
<th>Forofito</th>
<th>Zona 1</th>
<th>Zona 2</th>
<th>Zona 3</th>
<th>Zona 4</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artocarpus altilis (S. Park.) Fosb.</td>
<td>pan de árbol</td>
<td>-</td>
<td></td>
<td>2</td>
<td>-</td>
<td>6.31</td>
</tr>
<tr>
<td>Azaridachta indica A. Juss.</td>
<td>neem</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>5.49</td>
</tr>
<tr>
<td>Cedrela odorata L.</td>
<td>cedro</td>
<td>19</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>5.61</td>
</tr>
<tr>
<td>Cocos nucifera L.</td>
<td>coco</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>6.14</td>
</tr>
<tr>
<td>Ficus benjamina L.</td>
<td>ficus</td>
<td>-</td>
<td></td>
<td>-</td>
<td>1</td>
<td>6.18</td>
</tr>
<tr>
<td>Guazuma ulmifolia Lam.</td>
<td>guazuma</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>6.64</td>
</tr>
<tr>
<td>Inga edulis Mart.</td>
<td>guaba</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>5.48</td>
</tr>
<tr>
<td>Jacaranda mimosifolia D. Don.</td>
<td>jacaranda</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>6.07</td>
</tr>
<tr>
<td>Mangifera indica L.</td>
<td>mango</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>5.66</td>
</tr>
<tr>
<td>Persea americana Mill.</td>
<td>palta</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>5.75</td>
</tr>
<tr>
<td>Terminalia catappa L.</td>
<td>almendra</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>5.54</td>
</tr>
<tr>
<td>Theobroma cacao L.</td>
<td>cacao</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>6.04</td>
</tr>
<tr>
<td>árboles muestreados</td>
<td>19</td>
<td>12</td>
<td>6</td>
<td>14</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>árboles con líquenes</td>
<td>17</td>
<td>12</td>
<td>5</td>
<td>13</td>
<td>89.47</td>
<td>100</td>
</tr>
<tr>
<td>% árboles con líquenes</td>
<td>89.47</td>
<td>100</td>
<td>83.33</td>
<td>92.86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

![Figura 9. Porcentaje de forofitos con presencia de líquenes](image-url)
La figura 9 muestra el porcentaje de forofitos con presencia de líquenes en cada zona, donde la zona uno presentó el 89.47 %, la zona dos el 100 %, la zona tres el 83.33 % y la zona cuatro el 92.86 %.

La figura 10 muestra la presencia de líquenes en cada zona, donde la zona uno presentó el 89.47 %, la zona dos el 100 %, la zona tres el 83.33 % y la zona cuatro el 92.86 %.

4.2. Índice de Pureza Atmosférica (IPA)

La tabla 5 muestra los valores de porcentaje de cobertura, frecuencia y abundancia por especie liquénica, donde la especie Parmelia caperata obtuvo los valores más altos con un factor de resistencia de 2.579; por otro lado la especie Lobaria sp. obtuvo los valores más bajos con un factor de resistencia de cinco. La zona uno (1.231) y tres (0.152) presentaron menor IPA, mientras que la zona dos (4.283) y cuatro (5.668) presentaron un IPA mayor.
También muestra los valores de riqueza liquénica donde el mayor valor lo obtuvo la zona dos con nueve especies.

Tabla 5

Especies liquénicas, cobertura (%), frecuencia, abundancia, factor de resistencia (Qi), riqueza e IPA sector

<table>
<thead>
<tr>
<th>Especie</th>
<th>Zona 1</th>
<th>Zona 2</th>
<th>Zona 3</th>
<th>Zona 4</th>
<th>Frecuencia</th>
<th>Abundancia</th>
<th>Qi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candelaria concolor</td>
<td>35.87</td>
<td>11.27</td>
<td>1.05</td>
<td>51.81</td>
<td>356</td>
<td>1,637</td>
<td>2.513</td>
</tr>
<tr>
<td>Flavoparmelia soredians</td>
<td>1.90</td>
<td>18.93</td>
<td>4.32</td>
<td>74.85</td>
<td>136</td>
<td>329</td>
<td>2.833</td>
</tr>
<tr>
<td>Graphys sp.</td>
<td>0.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>29</td>
<td>59</td>
<td>3.600</td>
</tr>
<tr>
<td>Lepraria sp.</td>
<td>0.00</td>
<td>94.58</td>
<td>0.00</td>
<td>5.42</td>
<td>9</td>
<td>12</td>
<td>3.000</td>
</tr>
<tr>
<td>Lobaria sp.</td>
<td>0.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2</td>
<td>1</td>
<td>5.000</td>
</tr>
<tr>
<td>Parmelia caperata</td>
<td>8.50</td>
<td>51.44</td>
<td>1.25</td>
<td>38.80</td>
<td>585</td>
<td>2,877</td>
<td>2.579</td>
</tr>
<tr>
<td>Pertusaria sp.</td>
<td>0.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>9</td>
<td>4</td>
<td>3.000</td>
</tr>
<tr>
<td>Phaeophyscia sp.</td>
<td>52.63</td>
<td>25.18</td>
<td>0.00</td>
<td>22.19</td>
<td>146</td>
<td>286</td>
<td>3.000</td>
</tr>
<tr>
<td>Physcia sp.</td>
<td>81.12</td>
<td>5.18</td>
<td>10.80</td>
<td>2.89</td>
<td>101</td>
<td>170</td>
<td>3.105</td>
</tr>
<tr>
<td>IPA sector</td>
<td>1.231</td>
<td>4.283</td>
<td>0.152</td>
<td>5.668</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riqueza</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Figura 11. Valores del Índice de Pureza Atmosférica por zona de estudio.

En la figura 11 se observa que la zona cuatro obtuvo el mayor IPA (5.668) y la zona tres obtuvo el menor IPA (0.152).
4.3. Mapa de Isocontaminación

![Mapa de Isocontaminación](image)

Figura 12. Mapa de isocontaminación de la ciudad de Jaén.

La figura 13 presenta tres niveles de contaminación en base al Índice de Pureza Atmosférica. La zona de color verde representa una contaminación baja generado por los IPA más altos (zona dos y cuatro), la zona de color amarillo representa a una contaminación moderada y la zona de color rojo representa una contaminación máxima generada por los IPA más bajos (zona uno y tres). La zona de color blanco representa el área que no se ha muestreado en esta investigación.

4.4. Catálogo de especies de líquenes

4.4.1. Factor de resistencia (Qi)

La tabla 6 manifiesta los valores del factor de resistencia (Qi) de las especies liquénicas encontradas en la ciudad de Jaén. La especie *Lobaria sp.* tiene un Qi igual a cinco, lo que representa el mayor valor numérico y las especies *Parmelia caperata* (Qi = 2.579) y la especie *Candelaria concolor* (Qi = 2.513) representan el menor valor numérico.
Tabla 6
Factor de resistencia/tolerancia de las especies liquénicas.

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>Qi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candelaria concolor</td>
<td>2.513</td>
</tr>
<tr>
<td>Flavoparmelia soredians</td>
<td>2.833</td>
</tr>
<tr>
<td>Graphys sp.</td>
<td>3.600</td>
</tr>
<tr>
<td>Lepraria sp.</td>
<td>3.000</td>
</tr>
<tr>
<td>Lobaria sp.</td>
<td>5.000</td>
</tr>
<tr>
<td>Parmelia caperata</td>
<td>2.579</td>
</tr>
<tr>
<td>Pertusaria sp.</td>
<td>3.000</td>
</tr>
<tr>
<td>Phaeophyscia sp.</td>
<td>3.000</td>
</tr>
<tr>
<td>Physcia sp.</td>
<td>3.105</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

La figura 14 muestra tres grupos formados a partir del factor de resistencia/tolerancia de las especies liquénicas. El grupo uno conformado por la especie *Lobaria sp.* representa a las “especies sensibles a la contaminación”, el grupo dos conformado por la especie *Graphys sp.* representa a las “especies con resistencia media a la contaminación” y el grupo tres conformado las especies *Candelaria concolor, Parmelia caperata, Flavoparmelia soredians, Physcia sp., Phaeophyscia sp., Lepraria sp.* y *Pertusaria sp.* representan a las “especies resistentes a la contaminación” para la ciudad de Jaén.

4.5. **Análisis de datos**

4.5.1. **Correlación de Spearman**

Esta correlación se realizó entre todas las variables por forofito muestreado, con un nivel de confianza de 95%. El IPA árbol presentó una fuerte correlación positiva con la cobertura y riqueza liquénica, pero presentó una correlación baja con el pH. Por otro lado la cobertura liquénica presento una fuerte correlación positiva con la riqueza liquénica y el DAP no presentó relación alguna con las variables evaluadas. Estos resultados se observan en la tabla 7.

Tabla 7

Correlación de variables por árbol

<table>
<thead>
<tr>
<th></th>
<th>IPA</th>
<th>COBERTURA</th>
<th>RIQUEZA</th>
<th>pH</th>
<th>DAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPA</td>
<td>1.000</td>
<td>0.987**</td>
<td>0.438**</td>
<td>0.296*</td>
<td>-0.114</td>
</tr>
<tr>
<td>COBERTURA</td>
<td>0.987**</td>
<td>1.000</td>
<td>0.479**</td>
<td>0.274</td>
<td>-0.095</td>
</tr>
<tr>
<td>RIQUEZA</td>
<td>0.438**</td>
<td>0.479**</td>
<td>1.000</td>
<td>-0.087</td>
<td>-0.037</td>
</tr>
<tr>
<td>pH</td>
<td>0.296*</td>
<td>0.274</td>
<td>-0.087</td>
<td>1.000</td>
<td>-0.111</td>
</tr>
<tr>
<td>DAP</td>
<td>-0.114</td>
<td>-0.095</td>
<td>-0.037</td>
<td>-0.111</td>
<td>1.000</td>
</tr>
</tbody>
</table>

** La correlación es significativa en el nivel 0.01 (bilateral).
* La correlación es significativa en el nivel 0.05 (bilateral).
V. DISCUSIÓN

5.1. Identificación de las especies liquénicas

Los líquenes identificados a nivel de especies como *Candelaria concolor* y *Parmelia caperata* han sido encontrados en otros estudios a nivel nacional que se realizaron en lugares con ambientes húmedos (Cajamarca y Chachapoyas) y cálidos (Bagua Grande) por lo que se asume que son especies cosmopolitas (Ambrosio y Bringas, 2017; Huamán, 2018; Mendoza, 2018). Los líquenes *Graphys sp.*, *Lobaria sp.*, *Pertusaria sp.*, *Physcia sp.*, *Phaeophyscia sp.* y *Lepraria sp.* al igual que en otras investigaciones han sido identificadas hasta el nivel de género debido a la complejidad del reconocimiento de sus características morfológicas y la diversidad de taxones que tienen estos géneros (Llatance, 2017; Fontecha y Burgaz, 2014; Gonzales et al., 2016, Rubiano, 1983).

Riquelme (2008); Lijteroff et al., (2009) y Huamán (2018), observaron la mayor orientación de los líquenes en el lado sur de la cara de los forofitos, mientras que en este estudio la mayor orientación se presentó en el lado este de los forofitos, asumiendo que este lado también recibe menor insolación lo cual favorece la conservación de la humedad y por ende el crecimiento de los líquenes.

5.2. Índice de Pureza Atmosférica

De las cuatro vías consideradas con mayor tráfico vehicular, la zona tres (Avenida Mariscal Castilla desde el parque Miguel Grau hasta el parque Binacional Perú – Ecuador) registró el menor valor de IPA presentando escasa riqueza y cobertura de líquenes. Estos resultados concuerdan con otras investigaciones donde manifiestan que los bajos valores del IPA están relacionados con el elevado flujo vehicular y la ubicación de la zona, siendo esta una calle céntrica y una de las más transitadas de la ciudad; además se debe al grado de intervención humana y a la presencia de zonas industriales (Lijteroff et al., 2009; Figueroa y Méndez, 2015; Ochoa et al., 2015;
Ambrosio y Bringas, 2017; Huamán, 2018). La zona dos (Avenida Oriente desde la cuadra N° 01 hasta La Huaca de Montegrande) y la zona cuatro (Avenida Pakamuros desde el parque Binacional Perú - Ecuador hasta la I.E N°16042 Francisco Bolognesi Cervantes) registraron el mayor valor de IPA presentando abundante riqueza y cobertura liquénica, este valor refleja una baja contaminación del aire atribuido a la dispersión de los contaminantes por una buena ventilación y poca edificación (Gonzales et al., 2016). Cabe resaltar que los valores del IPA guardan relación con la riqueza de especies liquénicas, la fuente contaminante y el medio abiótico por ende son válidos únicamente a nivel comparativo entre territorios o regiones que presentan similar climatología y ecología (Rubiano, 1983; Canseco, 2004).

Al igual que en el estudio de Huamán (2018) en esta investigación los valores de IPA árbol presentaron una fuerte correlación positiva con la cobertura y riqueza liquénica es decir que estas variables influyeron en los valores del IPA. Para Figueroa y Méndez (2015) las variables DAP y pH no se relacionaron significativamente con el IPA; en este estudio el DAP tampoco presentó relación alguna con las variables evaluadas, mientras que el pH presentó una correlación débil con el IPA. Lijteroff et al., (2009) en su estudio también encontró correlación entre el IPA y pH indicando que este puede influir en la presencia o ausencia de líquenes y en la distribución de los mismos, por lo que los forofitos con valores de pH similares desarrollan en sus cortezas especies liquénicas similares; lo cual justifica que en este estudio se hayan encontrado especies similares en las cuatro zonas evaluadas.

5.3. Mapa de Isocontaminación

Los resultados del mapa de isocontaminación están dado por los valores del IPA árbol y presenta tres niveles de contaminación atmosférica: baja, moderada y máxima. La zona de contaminación máxima abarca una de las principales vías de la ciudad (avenida Pakamuros) asumiendo que dicha contaminación es generada por los
principales contaminantes del tráfico vehicular como NO\textsubscript{x} (óxidos de nitrógeno), SO\textsubscript{2} (dióxido de azufre), CO (monóxido de carbono), CO\textsubscript{2} (dióxido de carbono) y O\textsubscript{3} (Ozono) (Purvis y Pawlik-Skowronska, 2008; Fenn, Geiser, Bachman, Blubaugh y Bytnerowi, 2007; Huamán, 2018). Otras investigaciones también documentan niveles de contaminación a partir de este índice (Rubiano, 1983; Rubiano y Chaparro, 2006; Gonzales et al., 2016; Llatance, 2017; Mendoza, 2018).

5.4. **Catálogo de especies liquénicas en base al factor de resistencia**

La especie más sensible a la contaminación ha sido identificada a nivel de género (*Lobaria* sp.) por lo que no se pudo hacer una comparación puntual; pero se ha encontrado estudios donde registran a este género como el más sensible a la contaminación (Rubiano, 1983) y otros lo registran con una sensibilidad media a la contaminación (Llatance, 2017). La especie *Candelaria concolor* ha sido reportada al igual que en este estudio como resistente a la contaminación (Lijteroff et al., 2009; Rincón, 2012; Ochoa et al., 2015; Gonzales et al., 2016, Mendoza, 2017; Huamán, 2018). Llatance (2017) en su investigación realizada en la microcuenca del lago Pomacochas encontró al género *Graphys* como el más resistente, mientras que en este estudio está en el grupo de resistencia media ya que se encontró solo en la zona dos con una abundancia de 59 individuos.
VI. CONCLUSIONES Y RECOMENDACIONES

6.1. Conclusiones

- Se encontraron nueve especies liquénicas de las cuales tres se identificaron hasta nivel de especie y seis hasta nivel de género debido a complejidad de reconocimiento de las características morfológicas y la diversidad de taxones que tienen estos géneros.
- La mayor frecuencia y abundancia liquénica lo presentaron las especies *Parmelia caperata* y *Candelaria concolor*.
- En cuanto a los valores del Índice de Pureza Atmosférica la zona uno (1.231) y zona tres (0.152) presentaron los valores más bajos; mientras que la zona dos (4.283) y zona cuatro (5.668) presentaron los valores más altos.
- El mapa de Isocontaminación muestra tres niveles de contaminación: baja, moderada y alta; donde la zona de color rojo representa la máxima contaminación asumiendo que es generada por los principales contaminantes del tráfico vehicular como NOx (óxidos de nitrógeno), SO2 (dióxido de azufre), CO (monóxido de carbono), CO2 (dióxido de carbono) y O3 (Ozono).
- El catálogo contiene nueve especies liquénicas con sus respectivas clasificaciones taxonómicas, las cuales se muestran de acuerdo al grado de resistencia a la contaminación, donde la especie *Lobaria* sp. representa a las “especies sensibles a la contaminación”, la especie *Graphys* sp. representa a las “especies con resistencia media a la contaminación” y las especies *Candelaria concolor*, *Parmelia caperata*, *Flavoparmelia soredians*, *Physcia* sp., *Phaeophyscia* sp., *Lepraria* sp. y *Pertusaria* sp. representan a las “especies resistentes a la contaminación”.

37
6.2. **Recomendaciones**

- Realizar más investigaciones en cuanto a la contaminación atmosférica ya que cabe resaltar que en la ciudad de Jaén no existen antecedentes de estudios hechos en el área urbana referidos a la calidad del aire mediante bioindicadores.

- Para realizar el mapa de isocontaminación es necesario tomar puntos más dispersos para abarcar más área de estudio y así poder hacer una simulación de calidad de aire de toda la ciudad.

- Los organismos nacionales encargados de la gestión de la calidad del aire deben realizar monitoreos en la ciudad de Jaén y así obtener datos cuantitativos para tomar acciones de prevención y mitigación asegurando la calidad de vida de los ciudadanos.
VII. REFERENCIAS BIBLIOGRÁFICAS

AGRADECIMIENTO

Agradecemos a Dios por darnos la vida y permitirnos lograr nuestros objetivos y metas trazadas.

A nuestras familias por la confianza y el apoyo incondicional brindado a lo largo de nuestra vida.

Al Dr. Alexander Huamán Mera, a la Ing. Silvia Huamán Zelada y a la Msc. Blgo. Yuriko Sumiyo Murillo Domen por su tiempo y dedicación para concretizar este proyecto de investigación.
DEDICATORIA

Dedicado a mis padres Neria Astochado y Luis Livia. A mis Hermanos Eyner, Luz Yobani y Luis Alberto, porque siempre me brindaron su apoyo y me acompañaron durante el transcurso de mi vida universitaria, dándome las fuerzas para superar las dificultades.

Henry Livia Astochado

Dedicado a mis padres Rosa y Vidal, a mis hermanos José Manuel, Nelida, Luz Magaly y Julio César; por ser el motivo de mi superación y por brindarme su apoyo incondicional y desinteresado.

Roxana Rojas Segura
ANEXOS

Anexo 1: Catálogo de especies liquénicas

Candelaria concolor (Dicks.) B. Stein

<table>
<thead>
<tr>
<th>Reino</th>
<th>Plantae</th>
<th>Orden</th>
<th>Candelarieales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllum/División</td>
<td>Ascomycota</td>
<td>Familia</td>
<td>Candelariaceae</td>
</tr>
<tr>
<td>Clase</td>
<td>Lecanoromycetes</td>
<td>Género</td>
<td>Candelaria</td>
</tr>
</tbody>
</table>

Líquenes saxícolas y cortícolas, talo fóliáceo hasta crustáceo de color amarillo o verde amarillento, con lóbulos irregularmente ramificados de 0,5 x 2 mm, en rosetas o agregados en una costra. Soredios marginales, granulosos y amarillos. Apotecios raros, laminares redondos o terminales, sésiles, de cerca de 1 mm de diámetro. Esporas abundantes, hialinas, elipsoides a ovoide-ellipsoides, no septadas. **Resistente a la contaminación atmosférica.**

Parmelia caperata

<table>
<thead>
<tr>
<th>Reino</th>
<th>Plantae</th>
<th>Orden</th>
<th>Lecanorales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllum/División</td>
<td>Ascomycota</td>
<td>Familia</td>
<td>Parmeliaceae</td>
</tr>
<tr>
<td>Clase</td>
<td>Lecanoromycetes</td>
<td>Género</td>
<td>Parmelia</td>
</tr>
</tbody>
</table>

Líquenes cortícolas, fóliáceos. Talo color verde pálido, cuando está húmedo y blanco, gris, marrón o amarillento, cuando está deshidratado. Rizinas presentes hasta el margen del talo; manchas blancas (pseudocifelas) presentes en la corteza superior. Esporas hialinas. Ficobionte **Protococcus. Resistente a la contaminación atmosférica.**
Flavoparmelia soredians

<table>
<thead>
<tr>
<th>Reino</th>
<th>Plantae</th>
<th>Orden</th>
<th>Lecanorales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllum/División</td>
<td>Ascomycota</td>
<td>Familia</td>
<td>Parmeliaceae</td>
</tr>
<tr>
<td>Clase</td>
<td>Lecanoromycetes</td>
<td>Género</td>
<td>Flavoparmelia</td>
</tr>
</tbody>
</table>

Talo folioso, lóbulos anchos, redondeados, no profundamente divididos, de 3-5 mm de ancho. Superficie superior color verde claro, córtex inferior marrón a negro, libre sólo en los bordes, parte central adherida al sustrato. Apotecios lecanorinos, sésiles, epitecio marrón. Paráfisis hialinas, simples.Ascas hialinas, globosas; ascosporas hialinas, redondeadas a elípticas. Fotobionte asociado *Trebouxia*. **Resiste a la contaminación atmosférica.**

Physcia sp.

<table>
<thead>
<tr>
<th>Reino</th>
<th>Plantae</th>
<th>Orden</th>
<th>Pertusariales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllum/División</td>
<td>Ascomycota</td>
<td>Familia</td>
<td>Pertusariaceae</td>
</tr>
<tr>
<td>Clase</td>
<td>Lecanoromycetes</td>
<td>Género</td>
<td>Pertusaria</td>
</tr>
</tbody>
</table>

Talo folioso-lobulado, adnato, verdoso a grisáceo. Talo adherido al sustrato por medio de rizinas que generalmente se ramifican dicotómicamente. Apotecios lecanoricos, laminares, sésiles o estipitados; disco marrón hasta negro. Isidios presentes. Fotobionte asociado *Trebouxia*. **Resiste a la contaminación atmosférica.**
Phaeophyscia sp.

<table>
<thead>
<tr>
<th>Reino</th>
<th>Plantae</th>
<th>Orden</th>
<th>Teloschistales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum/División</td>
<td>Ascomycota</td>
<td>Familia</td>
<td>Physciaceae</td>
</tr>
<tr>
<td>Clase</td>
<td>Lecanoromycetes</td>
<td>Género</td>
<td>Phaeophyscia</td>
</tr>
</tbody>
</table>

Talo folioso-lobulado, adnato, gris castaño a castaño, a veces verdoso, siempre epruinoso, a menudo con pelos corticales laminares y marginales. Apotecios lecanorinos, laminares, sésiles, márgenes con algas persistentes, generalmente con una corona de cilias en la base, discos castaños a negros. **Resistente a la contaminación atmosférica.**

Lepraria sp.

<table>
<thead>
<tr>
<th>Reino</th>
<th>Fungi</th>
<th>Orden</th>
<th>Lecanorales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum/División</td>
<td>Ascomycota</td>
<td>Familia</td>
<td>stereocaulaceae</td>
</tr>
<tr>
<td>Clase</td>
<td>Lecanoromycetes</td>
<td>Género</td>
<td>Lepraria</td>
</tr>
</tbody>
</table>

Talo crustoso-granular, de apariencia pulverulenta, gránulos pequeños de 0,1-0,3 mm, bordes ligeramente lobulados. Forma costras irregulares de color verdeamarillento. No se observan estructuras reproductivas. Fotobionte asociado no determinado. **Resistente a la contaminación atmosférica.**
Pertusaria sp.

<table>
<thead>
<tr>
<th>Reino</th>
<th>Fungi</th>
<th>Orden</th>
<th>Pertusariales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum/División</td>
<td>Ascomycota</td>
<td>Familia</td>
<td>Pertusariaceae</td>
</tr>
<tr>
<td>Clase</td>
<td>Lecanoromycetes</td>
<td>Género</td>
<td>Pertusaria</td>
</tr>
</tbody>
</table>

Talos crustosos, superficiales, desde muy finos hasta muy gruesos, continuos, verrugosos, rimosos, fisurados o areolados. Fotobionte asociado *Trebuoxia*. Los cuerpos fruticulares son apotecios modificados enterrados en las verrugas del talo que se abren por uno o más ostiolo. Presentan esporas uniceladas y grandes (hasta 300 µm de longitud) usualmente con una pared gruesa. Se les encuentra sobre madera, rocas, musgos o suelo. **Resistente a la contaminación atmosférica.**

Graphys sp.

<table>
<thead>
<tr>
<th>Reino</th>
<th>Plantae</th>
<th>Orden</th>
<th>Ostropales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum/División</td>
<td>Ascomycota</td>
<td>Familia</td>
<td>Ostropomycetidae</td>
</tr>
<tr>
<td>Clase</td>
<td>Lecanoromycetes</td>
<td>Género</td>
<td>Graphys</td>
</tr>
</tbody>
</table>

Líquenes típicamente crustosos con un talo delgado y de color pálido. Fotobionte asociado del género *Trentepobilia* presenta lirelas, estructuras elongadas que corresponderían a los apotecios, con paredes negras o colores pálidos. Presentan esporas coloridas, fusiformes y multiceladas. Crecen principalmente sobre la corteza de árboles. **Resistencia media a la contaminación atmosférica.**
Lobaria sp.

<table>
<thead>
<tr>
<th>Reino</th>
<th>Orden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantae</td>
<td>Peltigerales</td>
</tr>
<tr>
<td>Phyllum/División</td>
<td>Ascomycota</td>
</tr>
<tr>
<td>Familia</td>
<td>Lobariaceae</td>
</tr>
<tr>
<td>Clase</td>
<td>Lecanoromycetes</td>
</tr>
<tr>
<td>Género</td>
<td>Lobaria</td>
</tr>
</tbody>
</table>

Líquenes foliáceos de lóbulos anchos, tomentosos en la corteza ventral. Talo verdegrísáceo cuando está hidratado y marrón pálido, gris o blanco cuando está deshidratado. Cara superior lisa, plana, rugosa, costulada y atravesada por depresiones poco profunda hasta claramente escrobiculada o alveolada. Los apotecios cuando están presentes se encuentran en la cara superior o cerca a los márgenes. Ficobionte asociado del género *Nostoc*. Sensible a la contaminación atmosférica.

Fuente: Elaboración propia
Anexo 2: Pasos para obtener la cobertura liquénica.

Figura 15. Paso 1: abrir Photoshop Cs6 y elegir la imagen que se va a trabajar.

Figura 16. Paso 2: recortar de tal modo que quede solo la parte de la gradilla.
Figura 17. Paso 3: seleccionar el área que se desea medir.

Figura 19. Paso 5: escribir la longitud de medida “5” y unidad lógica “cm”.

Figura 20. Paso 6: grabar las medidas.

Figura 22. Paso 8: guardar el registro de medidas.
Anexo 3: Mapa de ubicación de la zona 1.
Anexo 4: Mapa de ubicación de la zona 2.
Anexo 5: Mapa de ubicación de la zona 3.
Anexo 6: Mapa de ubicación de la zona 4.
Proyecto: "Determinación de la calidad del aire en las principales vías de tránsito vehicular en la ciudad de Jaén empleando líquenes como bioindicadores, Cajamarca, 2019".

Anexo 7: Ficha de campo para recolección de datos

<table>
<thead>
<tr>
<th>Zona: gradilla con sp</th>
<th>Fecha:</th>
<th>Coordenadas:</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forofito</th>
<th>CAP</th>
<th>Especies</th>
<th>Cobertura (cm²)</th>
<th>Abundancia</th>
<th>Frecuencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Código fotográfico:

Orientación: N() S() E() O()

Fuente: Elaboración propia
Anexo 8: Constancia de identificación taxonómica

CONSTANCIA DE IDENTIFICACIÓN TAXONÓMICA

La que suscribe Yuriko S. Murillo Domen de profesión Biólogo-Botánico, hago constar lo siguiente:

Que los tesisas de la Universidad Nacional de Jaén, Bach. Henry Lívía Astolado y Bach. Roxana Rojas Segura identificados con DNI N° 47278283 y N° 76852914 respectivamente; solicitaron la determinación de muestras de líquenes en el marco del proyecto de investigación denominado “Determinación de la calidad del aire en las principales vías de tránsito vehicular en la ciudad de Jaén empleando líquenes como bioindicadores, Cajamarca, 2019”, las cuales fueron debidamente recolectadas y codificadas.

Revisada las características de cada muestra se determinaron los siguientes géneros y especies a fines: Candelaria concolor, Flavoparmelia soredians, Graphis sp., Lepraria sp., Lobaria sp., Parmelia caperata, Pertusaria sp., Phaeophyscia sp., Physcia sp.

Se expide a solicitud de los interesados para fines que se estime por conveniente.

Jaén, 09 de setiembre del 2019

[Signature]

M.Sc. Yuriko S. Murillo Domen
Anexo 9: información de campo de los puntos muestreados

<table>
<thead>
<tr>
<th>Código</th>
<th>Coordenadas</th>
<th>Forofito</th>
<th>DAP (m)</th>
<th>Orientación</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01-Z1</td>
<td>744061</td>
<td>Cedrela odorata L.</td>
<td>0.30</td>
<td>-</td>
</tr>
<tr>
<td>A02-Z1</td>
<td>744066</td>
<td>Cedrela odorata L.</td>
<td>0.20</td>
<td>Este</td>
</tr>
<tr>
<td>A03-Z1</td>
<td>744077</td>
<td>Cedrela odorata L.</td>
<td>0.24</td>
<td>Sur</td>
</tr>
<tr>
<td>A04-Z1</td>
<td>744093</td>
<td>Cedrela odorata L.</td>
<td>0.24</td>
<td>Oeste</td>
</tr>
<tr>
<td>A05-Z1</td>
<td>744098</td>
<td>Cedrela odorata L.</td>
<td>0.30</td>
<td>-</td>
</tr>
<tr>
<td>A06-Z1</td>
<td>744137</td>
<td>Cedrela odorata L.</td>
<td>0.30</td>
<td>Este</td>
</tr>
<tr>
<td>A07-Z1</td>
<td>744141</td>
<td>Cedrela odorata L.</td>
<td>0.29</td>
<td>Este</td>
</tr>
<tr>
<td>A08-Z1</td>
<td>744070</td>
<td>Cedrela odorata L.</td>
<td>0.24</td>
<td>Sur</td>
</tr>
<tr>
<td>A09-Z1</td>
<td>744066</td>
<td>Cedrela odorata L.</td>
<td>0.30</td>
<td>Sur</td>
</tr>
<tr>
<td>A10-Z1</td>
<td>744056</td>
<td>Cedrela odorata L.</td>
<td>0.25</td>
<td>Este</td>
</tr>
<tr>
<td>A11-Z1</td>
<td>743896</td>
<td>Cedrela odorata L.</td>
<td>0.28</td>
<td>Norte</td>
</tr>
<tr>
<td>A12-Z1</td>
<td>743879</td>
<td>Cedrela odorata L.</td>
<td>0.39</td>
<td>Este</td>
</tr>
<tr>
<td>A13-Z1</td>
<td>743792</td>
<td>Cedrela odorata L.</td>
<td>0.35</td>
<td>Sur</td>
</tr>
<tr>
<td>A14-Z1</td>
<td>743789</td>
<td>Cedrela odorata L.</td>
<td>0.35</td>
<td>Sur</td>
</tr>
<tr>
<td>A15-Z1</td>
<td>743784</td>
<td>Cedrela odorata L.</td>
<td>0.33</td>
<td>Sur</td>
</tr>
<tr>
<td>A16-Z1</td>
<td>743776</td>
<td>Cedrela odorata L.</td>
<td>0.33</td>
<td>Norte</td>
</tr>
<tr>
<td>A17-Z1</td>
<td>743762</td>
<td>Cedrela odorata L.</td>
<td>0.30</td>
<td>Sur</td>
</tr>
<tr>
<td>A18-Z1</td>
<td>743757</td>
<td>Cedrela odorata L.</td>
<td>0.36</td>
<td>Oeste</td>
</tr>
<tr>
<td>A19-Z1</td>
<td>743742</td>
<td>Cedrela odorata L.</td>
<td>0.33</td>
<td>Oeste</td>
</tr>
<tr>
<td>A01-Z2</td>
<td>745104</td>
<td>Jacaranda mimosifolia D. Don. L.</td>
<td>0.14</td>
<td>Oeste</td>
</tr>
<tr>
<td>A02-Z2</td>
<td>745083</td>
<td>Mangifera indica L.</td>
<td>0.26</td>
<td>Sur</td>
</tr>
<tr>
<td>A03-Z2</td>
<td>745044</td>
<td>Cedrela odorata L.</td>
<td>0.33</td>
<td>Este</td>
</tr>
<tr>
<td>A04-Z2</td>
<td>745063</td>
<td>Jacaranda mimosifolia D. Don. L.</td>
<td>0.25</td>
<td>Este</td>
</tr>
<tr>
<td>A05-Z2</td>
<td>745014</td>
<td>Inga edulis Mart.</td>
<td>0.39</td>
<td>Este</td>
</tr>
<tr>
<td>A06-Z2</td>
<td>745002</td>
<td>Cocos nucifera L.</td>
<td>0.22</td>
<td>Sur</td>
</tr>
<tr>
<td>A07-Z2</td>
<td>744869</td>
<td>Inga edulis Mart.</td>
<td>0.29</td>
<td>Sur</td>
</tr>
<tr>
<td>A08-Z2</td>
<td>744642</td>
<td>Theobroma cacao L.</td>
<td>0.14</td>
<td>Oeste</td>
</tr>
<tr>
<td>A09-Z2</td>
<td>744573</td>
<td>Cedrela odorata L.</td>
<td>0.23</td>
<td>Este</td>
</tr>
<tr>
<td>A10-Z2</td>
<td>744283</td>
<td>Mangifera indica L.</td>
<td>0.37</td>
<td>Este</td>
</tr>
<tr>
<td>A11-Z2</td>
<td>743863</td>
<td>Azaridachta indicis A. Juss. L.</td>
<td>0.22</td>
<td>Este</td>
</tr>
<tr>
<td>A12-Z2</td>
<td>743866</td>
<td>Guazuma ulmifolia Lam.</td>
<td>0.17</td>
<td>Oeste</td>
</tr>
<tr>
<td>A01-Z3</td>
<td>742576</td>
<td>Ficus benjamina L.</td>
<td>0.36</td>
<td>-</td>
</tr>
<tr>
<td>A02-Z3</td>
<td>742556</td>
<td>Terminalia catappa L.</td>
<td>0.38</td>
<td>Este</td>
</tr>
<tr>
<td>A03-Z3</td>
<td>742636</td>
<td>Terminalia catappa L.</td>
<td>0.13</td>
<td>Norte</td>
</tr>
<tr>
<td>A04-Z3</td>
<td>742797</td>
<td>Artocarpus altilis (S. Park.) Fosb. L.</td>
<td>0.41</td>
<td>Norte</td>
</tr>
<tr>
<td>A05-Z3</td>
<td>742794</td>
<td>Artocarpus altilis (S. Park.) Fosb. L.</td>
<td>0.21</td>
<td>Oeste</td>
</tr>
<tr>
<td>A06-Z3</td>
<td>742805</td>
<td>Terminalia catappa L.</td>
<td>0.26</td>
<td>Norte</td>
</tr>
<tr>
<td>A01-Z4</td>
<td>744546</td>
<td>Mangifera indica L.</td>
<td>0.17</td>
<td>Este</td>
</tr>
<tr>
<td>A02-Z4</td>
<td>744536</td>
<td>Terminalia catappa L.</td>
<td>0.14</td>
<td>Este</td>
</tr>
<tr>
<td>A03-Z4</td>
<td>744316</td>
<td>Mangifera indica L.</td>
<td>0.27</td>
<td>Sur</td>
</tr>
<tr>
<td>A04-Z4</td>
<td>744252</td>
<td>Mangifera indica L.</td>
<td>0.32</td>
<td>Norte</td>
</tr>
<tr>
<td>Código</td>
<td>Número</td>
<td>Ubicación</td>
<td><code>Ficus benjamina L.</code></td>
<td>Ubicación</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>A05-Z4</td>
<td>744175</td>
<td>0.45</td>
<td>Cedrela odorata L.</td>
<td>Este</td>
</tr>
<tr>
<td>A06-Z4</td>
<td>744027</td>
<td>0.32</td>
<td>Ficus benjamina L.</td>
<td>Norte</td>
</tr>
<tr>
<td>A07-Z4</td>
<td>744013</td>
<td>0.31</td>
<td>Ficus benjamina L.</td>
<td>Norte</td>
</tr>
<tr>
<td>A08-Z4</td>
<td>744032</td>
<td>0.29</td>
<td>Ficus benjamina L.</td>
<td>Oeste</td>
</tr>
<tr>
<td>A09-Z4</td>
<td>744007</td>
<td>0.25</td>
<td>Ficus benjamina L.</td>
<td>Norte</td>
</tr>
<tr>
<td>A10-Z4</td>
<td>743931</td>
<td>0.26</td>
<td>Ficus benjamina L.</td>
<td>Norte</td>
</tr>
<tr>
<td>A11-Z4</td>
<td>743909</td>
<td>0.33</td>
<td>Ficus benjamina L.</td>
<td>Oeste</td>
</tr>
<tr>
<td>A12-Z4</td>
<td>743756</td>
<td>0.24</td>
<td>Persea americana Mill.</td>
<td>Este</td>
</tr>
<tr>
<td>A13-Z4</td>
<td>743743</td>
<td>0.20</td>
<td>Mangifera indica L.</td>
<td>-</td>
</tr>
<tr>
<td>A14-Z4</td>
<td>743568</td>
<td>0.25</td>
<td>Mangifera indica L.</td>
<td>Sur</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Anexo 10: Panel fotográfico

➢ Trabajo en campo

Foto 1: Geo referencia del forofito

Foto 2: Medición del DAP del forofito

Foto 3: Colocación de la gradilla

Foto 4: Identificación de especies liquénicas en el forofito
Foto 5: Registro de datos

Foto 6: Extracción de muestra del liquen

Foto 7: Muestras codificadas
Trabajo en laboratorio para identificación de especies

Foto 8: Observación de las especies de líquenes en el estereoscopio

Foto 9: Vista de las especies de líquenes en el estereoscopio

Trabajo en laboratorio para medición de pH de la corteza de los forofitos

Foto 10: Solución cloruro de potasio (Kcl)

Foto 11: Agua destilada
Foto 12: Pesado del KCl

Foto 13: Mezcla del KCl con agua destilada

Foto 14: Homogenización del KCl con el agua destilada

Foto 15: Muestras de 1 g de corteza en 50 ml de solución listas para poner a la estufa
Foto 16: Muestras en la estufa listas para ser retiradas luego de pasar 1 hora a 80°C

Foto 17: Muestras en proceso de enfriamiento para luego medir el pH.

Foto 17: Medición del pH
Especies de líquenes encontradas en la corteza de los forofitos

Foto 18: *Candelaria concolor*

Foto 19: *Physcia sp.*

Foto 20: *Flavoparmelia soredians*

Foto 21: *Parmelia caperata*