UNIVERSIDAD NACIONAL DE JAÉN

FACULTAD DE INGENIERÍA

CARRERA PROFESIONAL DE INGENIERÍA FORESTAL Y AMBIENTAL

CARBONO ALMACENADO EN EL FUSTE DE Cinchona micrantha Ruiz y Pavón Y Cinchona pubescens Vahl EN EL CENTRO POBLADO LA CASCARILLA, JAÉN, CAJAMARCA

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO FORESTAL Y AMBIENTAL

Autoras:

Bach. Marly Jessenia Mejia Chuquillanque Bach. Fiorella Neyra Garcia

Asesora:

Mg. Annick Estefany Huaccha Castillo

Línea de investigación: Conservación, manejo y aprovechamiento de los recursos

naturales

JAÉN – PERÚ 2025

Marly J. Mejia Chuquillanque Fiorella Neyra Garcia CARBONO ALMACENADO EN EL FUSTE DE Cinchona micrantha Ruiz y Pavón Y Cinchona pubescens Vahl EN EL CENTRO POBL...

📋 Quick Submit

Quick Submit

Universidad Nacional de Jaen

Detalles del documento

Identificador de la entrega trn:oid:::1:3233301835

Fecha de entrega 29 abr 2025, 10:42 a.m. GMT-5

Fecha de descarga 29 abr 2025, 10:47 a.m. GMT-5

Nombre de archivo LA_NEYRA_-TESIS_-CINCHONA_22-04_2025_-_FIORELLA_NEYRA_GARCIA.pdf

Tamaño de archivo

3.9 MB

NIVERSIOAD NACIONAL DE JAEN xander Huamán Mera de la Unidad de Investigación de la Facultad de Ingeniería

54 Páginas

12.788 Palabras

59.701 Caracteres

4% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- Bibliography
- Quoted Text
- Small Matches (less than 15 words)

Top Sources

- 1% 📕 Publications
- 3% 💄 Submitted works (Student Papers)

Integrity Flags

1 Integrity Flag for Review

Replaced Characters 35 suspect characters on 7 pages Letters are swapped with similar characters from another alphabet. Our system's algorithms look deeply at a document for any inconsistencies that would set it apart from a normal submission. If we notice something strange, we flag it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

ACTA DE SUSTENTACIÓN

En la ciudad de Jaén, el 15 de mayo del 2025, siendo las <u>11:00</u> horas, se reunieron los integrantes del Jurado Evaluador designados con Resolución N° 342 – 2025 – UNJ / FI

Presidente, Mg. Gustavo Adolfo Martínez Sovero Secretario, Dr. Mario Ruiz Ramos Vocal, Dr. Segundo Sánchez Tello

para evaluar la sustentación del Informe Final de Tesis titulado: "CARBONO ALMACENADO EN EL FUSTE DE Cinchona micrantha Ruiz y Pavón Y Cinchona pubescens Vahl EN EL CENTRO POBLADO LA CASCARILLA, JAÉN, CAJAMARCA", cuyas autoras son las bachilleres Mejía Chuquillanque Marly Jessenia y Neyra Garcia Fiorella, de la Escuela Profesional de Ingeniería Forestal y Ambiental, teniendo como asesora Mg. Annick Estefany Huaccha Castillo.

Después de la sustentación y defensa, el Jurado Evaluador acuerda:

(X) Aprobar () Desaprobar (X) Unanimidad () Mayoría Con la siguiente mención:

Excelente	18, 19, 20	{)	
Muy bueno	16, 17	()	
Bueno	14, 15	(19	5)	
Regular	13	(1	
Desaprobado	12 o menos	ţ	}	

Siendo las 43:00 horas, el Jurado Evaluador concluye el acto de sustentación confirmando su participación con la suscripción de la presente.

Mg. C

Presidente Jurado Evaluador

/ Dr. Marlo Ruiz Ramos secretario Jurado Evaluador

Dr. Segundo Sánc

Vocal Jurado Evaluador

"Año de la recuperación y consolidación de la economía peruana"

ANEXO N° 06:

DECLARACIÓN JURADA DE AUTENTICIDAD Y DE NO PLAGIO DE LA TESIS O TRABAJO DE INVESTIGACIÓN (PREGRADO)

Yo, Marly Jessenia Mejia Chuquillanque, egresada de la Carrera Profesional de Ingeniería Forestal y Ambiental de la Facultad de Ingeniería de la Universidad Nacional de Jaén, identificada con DNI Nº 72806721.

Declaro bajo juramento que:

- Soy Autora del trabajo titulado: "CARBONO ALMACENADO EN EL FUSTE DE Cinchona micrantha Ruiz y Pavón Y Cinchona pubescens Vahl EN EL CENTRO POBLADO LA CASCARILLA, JAÉN, CAJAMARCA'' Asesorada por la Mg. Annick Estefany Huaccha Castillo El mismo que presento bajo la modalidad de Tesis para optar; el Título Profesional de Ingeniero Forestal y Ambiental.
- 2. El texto de mi trabajo final respeta y no vulnera los derechos de terceros, incluidos los derechos de propiedad intelectual. En el sentido, el texto de mi Tesis no ha sido plagiado total ni parcialmente, para la cual he respetado las normas internacionales de citas y referencias de las fuentes consultadas.
- 3. El texto del trabajo final que presento no ha sido publicado ni presentado antes en cualquier medio electrónico o físico.
- 4. La investigación, los resultados, datos, conclusiones y demás información presentada que atribuyo a mi autoría son veraces.
- 5. Declaro que mi trabajo final cumple con todas las normas de la Universidad Nacional de Jaén.
- 6. Soy consciente de que el hecho de no respetar los derechos de autor y hacer plagio, es objeto de sanciones universitarias y/o legales.

El incumplimiento de lo declarado da lugar a responsabilidad del declarante, en consecuencia; a través del presente documento asumo frente a terceros, la Universidad Nacional de Jaén y/o la Administración Pública toda responsabilidad que pueda derivarse por el trabajo final presentado. Lo señalado incluye responsabilidad pecuniaria incluido el pago de multas u otros por los daños y perjuicios que se ocasionen.

Jaén, 16 de mayo de 2025

here here

Bach. Marly Jessenia Mejia Chuquillanque

"Año de la recuperación y consolidación de la economía peruana"

ANEXO N° 06:

DECLARACIÓN JURADA DE AUTENTICIDAD Y DE NO PLAGIO DE LA TESIS O TRABAJO DE INVESTIGACIÓN (PREGRADO)

Yo, Fiorella Neyra Garcia, egresada de la Carrera Profesional de Ingeniería Forestal y Ambiental de la Facultad de Ingeniería de la Universidad Nacional de Jaén, identificada con DNI № 75317545.

Declaro bajo juramento que:

- Soy Autora del trabajo titulado: "CARBONO ALMACENADO EN EL FUSTE DE Cinchona micrantha Ruiz y Pavón Y Cinchona pubescens Vahl EN EL CENTRO POBLADO LA CASCARILLA, JAÉN, CAJAMARCA'' Asesorada por la Mg. Annick Estefany Huaccha Castillo El mismo que presento bajo la modalidad de Tesis para optar; el Título Profesional de Ingeniero Forestal y Ambiental.
- 2. El texto de mi trabajo final respeta y no vulnera los derechos de terceros, incluidos los derechos de propiedad intelectual. En el sentido, el texto de mi Tesis no ha sido plagiado total ni parcialmente, para la cual he respetado las normas internacionales de citas y referencias de las fuentes consultadas.
- 3. El texto del trabajo final que presento no ha sido publicado ni presentado antes en cualquier medio electrónico o físico.
- 4. La investigación, los resultados, datos, conclusiones y demás información presentada que atribuyo a mi autoría son veraces.
- 5. Declaro que mi trabajo final cumple con todas las normas de la Universidad Nacional de Jaén.
- 6. Soy consciente de que el hecho de no respetar los derechos de autor y hacer plagio, es objeto de sanciones universitarias y/o legales.

El incumplimiento de lo declarado da lugar a responsabilidad del declarante, en consecuencia; a través del presente documento asumo frente a terceros, la Universidad Nacional de Jaén y/o la Administración Pública toda responsabilidad que pueda derivarse por el trabajo final presentado. Lo señalado incluye responsabilidad pecuniaria incluido el pago de multas u otros por los daños y perjuicios que se ocasionen.

Jaén, 16 de mayo de 2025

Bach. Fiorella Neyra Garcia

ÍNDICE

ÍND	ICE DE	TABLAS	.VI
ÍND	ICE DE	FIGURAS	VII
RES	UMEN		/III
ABS	TRAC	۲	. IX
I.	INTRO	ODUCCIÓN	10
II.	MATE	ERIALES Y MÉTODOS	12
	2.1 Ut	picación del área de estudio	12
	2.2 Po	blación, muestra y muestreo	15
	2.3 M	etodología	16
	2.3.1	Cálculo de la densidad de la madera de C. micrantha Ruiz y Pavón y	<i>y C</i> .
		pubescens Vahl de forma no destructiva	16
	2.3.2	Determinación de la biomasa almacenada en el fuste de C. micrantha F	Ruiz
		y Pavón y C. pubescens Vahl	16
	2.3.3	Aplicación de modelos alométricos para la estimación del contenido) de
		biomasa y carbono almacenado en el fuste de C. micrantha Ruiz y Pa	vón
		y C. pubescens Vahl	18
	2.3.4 A	nálisis de datos	19
III.	RESU	LTADOS	20
	3.1 De	ensidad de la madera de C. micrantha Ruiz y Pavón y C. pubescens Vah	l de
	forn	na no destructiva	20
	3.2 Bi	omasa de árboles de C. micrantha Ruiz y Pavón y C. pubescens Vahl	20
	3.3 M	odelos alométricos para la estimación del contenido de biomasa y carb	ono
	alm	acenado en el fuste de C. micrantha Ruiz y Pavón y C. pubescens Vahl.	21
IV.	DISCU	JSIÓN	36
V.	CONC	LUSIONES Y RECOMENDACIONES	38
	5.1 Co	onclusiones	38
	5.2 Re	comendaciones	38
VI.	REFE	RENCIAS	40
DED	DICATC	ORIA	46
AGF	RADEC	IMIENTO	47
ANE	XOS		48

ÍNDICE DE TABLAS

Tabla 1 Características taxonómicas para la identificación de C. micrantha Ruiz y Pavón y
C. pubescens Vahl
Tabla 2 Modelos alométricos a emplear en la investigación. 18
Tabla 3 Biomasa en el fuste de C. micrantha Ruiz y Pavón estimada con modelos
alométricos
Tabla 4 Parámetros de bondad de ajuste de los 20 modelos para predecir la biomasa de C.
micrantha Ruiz y Pavón
Tabla 5 Carbono almacenado en el fuste de C. micrantha Ruiz y Pavón estimado con
modelos alométricos
Tabla 6 Parámetros de bondad de ajuste de los 20 modelos para predecir el carbono
almacenado en el fuste de C. micrantha Ruiz y Pavón
Tabla 7 Biomasa en el fuste de C. pubescens Vahl estimada con modelos alométricos 29
Tabla 8 Parámetros de bondad de ajuste de los 20 modelos para predecir la biomasa en el
fuste de <i>C. pubescens</i> Vahl
Tabla 9 Carbono almacenado en el fuste de C. pubescens Vahl estimado con modelos
alométricos
Tabla 10 Parámetros de bondad de ajuste de los 20 modelos para predecir el carbono
almacenado en el fuste de C. pubescens Vahl

ÍNDICE DE FIGURAS

Figura 1 Ubicación del área en estudio
Figura 2 Ubicación de especies de C. micrantha Ruiz y Pavón y C. pubescens Vahl 14
Figura 3 Densidad de la madera de C. micrantha Ruiz y Pavón y C. pubescens Vahl 20
Figura 4 Biomasa acumulada en el fuste de C. micrantha Ruiz y Pavón y C. pubescens Vahl
Figura 5 Inventario de especies de C. micrantha Ruiz y Pavón y C. pubescens Vahl 55
Figura 6 Medición de características dasométricas de C. micrantha Ruiz y Pavón y C.
pubescens Vahl
Figura 7 Extracción de tarugos de fuste de C. micrantha Ruiz y Pavón y C. pubescens Vahl
con barreno
con barreno
con barreno
 con barreno

RESUMEN

El almacenamiento, la fijación y el secuestro de carbono en los árboles son procesos clave en la mitigación del cambio climático. El objetivo del presente estudio fue determinar el carbono almacenado en el fuste de C. micrantha Ruiz y Pavón y C. pubescens Vahl, situadas en el Centro Poblado La Cascarilla, en Jaén, Cajamarca, mediante el uso de 20 modelos alométricos. Se estimó la biomasa y el contenido de carbono en función de variables dasométricas como el diámetro a la altura del pecho (DAP) y la altura del árbol (H). Los modelos más precisos fueron seleccionados tomando en cuenta el coeficiente de determinación (R²), el error absoluto medio (MAE), el error cuadrático medio (MSE), la raíz del error cuadrático medio (RMSE) y el criterio de información de Akaike (AIC). Los resultados indicaron que los modelos que incluyen interacciones cuadráticas entre DAP y H (DAP²×H) fueron los más precisos. Los valores de R² alcanzaron hasta 0.95 para C. micrantha R. y P., 0.97 para C. pubescens Vahl, lo que muestra la eficacia de los modelos seleccionados. Asimismo, incorporando la variable altura reduce significativamente los errores en comparación con los modelos que solo consideraron el DAP. En cuanto a la densidad de la madera, C. micrantha R. y P. presentó un promedio de 0.50 g/cm³, mientras que C. pubescens Vahl 0.44 g/cm³. Las estimaciones de biomasa fueron de aproximadamente 15 kg para C. micrantha R. y P. y 47 kg para C. pubescens Vahl, lo que refleja su capacidad para capturar carbono con papel importante en la conservación de los remanentes forestales de los andes peruanos. Finalmente se demuestra la efectividad de los modelos alométricos para estimar de manera no destructiva la biomasa y el carbono almacenado en el fuste de C. micrantha R. y P. y C. pubescens Vahl.

Palabras clave: biomasa, árbol de la quina, sumidero de carbono, modelos alométricos.

ABSTRACT

The storage, fixation and sequestration of carbon in trees are fundamental processes to mitigate climate change. This study aimed to determine the amount of carbon stored in the stem of C. micrantha and C. pubescens, located in the La Cascarilla Population Center, in Jaén, Cajamarca, through the use of 20 allometric models. Biomass and carbon content were estimated based on dasometric variables such as diameter at breast height (DAP) and tree height (H). The most accurate models were selected taking into account the coefficient of determination (R²), the mean absolute error (MAE), the mean square error (MSE), the root mean square error (RMSE) and the Akaike information criterion (AIC). The results indicated that models including quadratic interactions between DAP and H (DAP²×H) were the most accurate. The R² values reached up to 0.97 for C. pubescens Vahl and 0.95 for C. micrantha R. y P., showing the effectiveness of the selected models. Likewise, incorporating the height variable significantly reduces errors compared to models that only considered DBH. Regarding wood density, C. micrantha R. y P. presented an average of 0.50 g/cm³, while C. pubescens Vahl reached 0.44 g/cm³. Biomass estimates were approximately 15 kg for C. micrantha R. y P. and 47 kg for C. pubescens Vahl, this reflects their carbon capture capacity, playing an important role in the conservation of forest remnants in the Peruvian Andes. Finally, the effectiveness of allometric models is non-destructively estimating the biomass and carbon stored in the stems of C. micrantha R. y P. and C. pubescens Vahl.

Key words: biomass, cinchona tree, carbon sink, allometric models.

I. INTRODUCCIÓN

En la actualidad el planeta sufre alteraciones y degradaciones ambientales de gran envergadura como consecuencia del calentamiento global (Organización Panamericana de la Salud, 2024), Burbano (2018) y Sánchez *et al.* (2019) refieren que es un fenómeno que emerge del manejo inadecuado de los recursos naturales y que origina la acumulación de gases atmosféricos, siendo el dióxido de carbono (CO₂) el más predominante.

Clemente (2021) señala que el calentamiento global está causando daños ambientales significativos a nivel mundial, atribuibles al uso inadecuado de recursos naturales y a la acumulación excesiva de gases en la atmósfera. La Agencia de Protección Ambiental de los Estados Unidos (2024) destaca que el dióxido de carbono (CO₂) es uno de los principales gases de efecto invernadero, contribuyendo en un 50% al calentamiento global.

Palacios *et al.* (2022) y la Agencia de Protección Ambiental de los Estados Unidos (EPA, 2024) resaltan que el CO₂ es uno de los principales gases de efecto invernadero (GEI), responsable del 50% del calentamiento global. Asimismo, la Organización de las Naciones Unidas (ONU, 2022), señala que las emisiones de CO₂ en el 2021 alcanzaron aproximadamente 36 300 millones de toneladas, con aumento del 6% en comparación con el 2020, siendo importante conocer la capacidad de tienen los ecosistemas forestales para capturar carbono actuando como sumideros naturales que ayudan a regular el CO₂ en la atmósfera y el calentamiento global.

De acuerdo con Mirez (2021), las áreas forestales como los sistemas agroforestales, las plantaciones forestales y los bosques naturales, son clave para reducir los gases de efecto invernadero. Mita (2020) destaca que las plantas capturan CO₂ durante la fotosíntesis, y algunas tienen una mayor capacidad para hacerlo; así mismo, refiere que la estimación de la captura de carbono en la biomasa arbustiva, la biomasa radicular, la biomasa vegetal y el suelo es fundamental para cuantificar el carbono almacenado en las especies vegetales y su contribución en el cuidado del ambiente.

En Perú, el Ministerio del Ambiente (2024) señala que la deforestación es un problema crítico ligado a la agricultura migratoria como principal responsable, impactando de manera negativa en la biodiversidad. Albán *et al.* (2020) refiere que *Cinchona sp.* es un género explotado intensamente por su corteza rica en quinina, un alcaloide utilizado para combatir la malaria por más de tres siglos. Villar *et al.* (2018) refiere que su explotación intensiva ha dejado escasos fragmentos de bosques de *Cinchona* amenazando su supervivencia y su papel en la integridad de los ecosistemas. Chan *et al.* (2022) mencionan que la carencia de estudios científicos que resalten el potencial de captura de carbono en su biomasa arbustiva dificulta su conservación. Por otro lado, Gutierrez y Flores (2019) refieren que en la actualidad existen diversas ecuaciones alométricas para estimar la captura de carbono permitiendo calcular el almacenamiento de cualquier especie en un menor tiempo.

Es bajo este contexto que se desarrolló esta investigación en el Centro Poblado La Cascarilla donde aún se encuentran remanentes de *Cinchona* y se tuvo como objetivo general, determinar el contenido de carbono almacenado en el fuste de *C. micrantha* R. y P. y *C. pubescens* Vahl mediante los siguientes objetivos específicos: estimar la densidad de la madera de *C. micrantha* R. y P. y *C. pubescens* Vahl de forma no destructiva; determinar la biomasa en el fuste de *C. micrantha* R. y P. y *C. pubescens* Vahl de forma no destructiva; determinar la biomasa en el fuste de *C. micrantha* R. y P. y *C. pubescens* Vahl, y; aplicar modelos alométricos para la estimación del contenido de biomasa y carbono almacenado en el fuste de *C. micrantha* R. y P. y *C. pubescens* Vahl, con miras a implementar planes de manejo que contribuyan a la sostenibilidad de los ecosistemas forestales y al combate del cambio climático.

II. MATERIALES Y MÉTODOS

2.1 Ubicación del área de estudio

El estudio se desarrolló en el Centro Poblado La Cascarilla, provincia de Jaén, región Cajamarca, ubicado en ceja de selva (Figura 1) entre las coordenadas 732792.01 m E y 9372631. 61 m N con una altitud de 1968 m.s.n.m., con precipitación anual es de 1730 mm, temperatura mínima de 13 °C y máxima de 20.5 °C.

Las especies fueron identificadas en remantes forestales de *Cinchona* localizados dentro de un área delimitada (Figura 2) por las siguientes coordenadas UTM: 734511.45 m E, 9372528.63 m S; 731484.79 m E, 9372652.70 m S; 731603.32 m E, 9369809.47 m S; 732793.77 m E, 9369924.44 m S.

Figura 1 Ubicación del área en estudio

UNIVERSIDAD NACIONAL

DE JAÉN

REGIÓN : CAJAMARCA

Bach. García Fiorella Neyra

ABRIL-2025

COORDENADAS: UTM- 84

Figura 2 *Ubicación de especies de C. micrantha* Ruiz y Pavón y C. *pubescens* Vahl

								724000		740	000	756000	
FOREGUE	CÁDIC	Coorden	adas UTM	CÁDICO	Coordena	adas UTM	SAN			A			1
ESPECIE	CODIGC	Este(X)	Norte(Y)	CODIGO	Este(X)	Norte(Y)							
	CM1	734079	9372476	CM27	734085	9372452	1	N 🔁	1 1 A		$\sqrt{7}$		
	CM2	734079	9372472	CM28	7340801	9372456	8	Λ .	HUABAL	mar h			\sim
	CMB	734079	9372473	CM29	734080	9372456			<u> </u>		AS / L		
	CM4	734083	9372468	CM30	734060	9372460	37	th)		V XI			5.
	CM5	734082	9372468	CM31	734042	9372455	S		2				11
	CM6	734087	9372465	CM32	731688	9370890						5	
	CM7	734087	9372469	CM33	731677	9370876] СН						
	CM8	734089	9372465	CM34	731682	9370869		1. 新聞教授	· · · · · · · · · · · · · · · · · · ·			BELLAVISTA	
	CM9	734089	9372469	CM35	731690	9370877							$\mathbf{\lambda}$
	CM10	734092	9372465	CM36	731686	9370879			5				
	CM11	734095	9372467	CM37	731693	9370876	1				Sal not		
	CM12	734087	9372461	CM38	731688	9370893	1			1 . 1 ~			
Cinchona micrantha	CM13	734092	9372461	CM39	731703	9370882	1						
Ruiz y Pavón	CM14	734092	9372460	CM40	731697	9370924	1	7		AND A CONTRACTOR			5
	CM15	734097	9372459	CM41	731697	9370937	1						~ \
	CM16	734095	9372457	CM42	731703	9370948				E 6 3			
	CM17	734096	9372465	CM43	731707	9370942] [2					
	CM18	734101	9372453	CM44	731716	4370948						a	
	СМ19	734096	9372448	CM45	731881	9370772	9						
	CM20	734098	9372443	CM46	731872	9370767							
	CM21	734085	9372446	CM47	731866	9370752	360		· · · / 🖍	TAÉN 👂			5
	CM22	734089	9372449	CM48	731880	9370750	ົດ		· · · / · · ·	JALIN			1
	CM23	734087	9372449	CM49	731989	9370671		~	S 5 8				
	CM24	734093	4372449	CM50	731986	9370670	1 🖌		~ 2				
	CM25	734086	9372451	CM51	731980	9370659		110					$\backslash ($
	CM26	734090	9372453	CM52	732107	9370676	4		100				2
	CP1	734066	9373031	CP16	733769	9372157	<u>1</u>				F		
	CP2	734084	9373023	CP17	733768	9372155					P	5	
	CP3	734056	9373023	CP18	733768	9372154					\boldsymbol{P}	(1
	CP4	734050	9073025	CP19	733769	9372154						LEVENDA	
	CP5	733787	9372170	CP20	733767	9372154			3			LETENDA	
	CP6	733768	9372162	CP21	733769	9372155	. 🕐	GOLASA	NY .		1 a	Distrito Igán	
	CP7	733769	9372161	CP22	733780	9372151		A	A CONTRACT			Distrito Jacii	
Cinchona pubescens Vahl	CP8	733770	9372160	CP23	733778	9372147		5			сн 🔾	Cinchona pubescens Vah	1
	CP9	733770	9372160	CP24	733781	9372148	P 🥖						
	CP10	733772	9372161	CP25	733781	9372143	8 🔊	/ / <i>/</i>				Cinchona micrantha Ru	iz y Pavón
	CP11	733768	9372161	CP26	733779	9372140	3-5-					- Red hídrica	
	CP12	733769	9372159	CP27	733777	9372145	8					- Rea marica	
	CP13	733768	9372158	CP28	733784	9372143	° 📈	500		~		Red víal	
	CP14	733770	9372156	CP29	733776	9372141							
	CP15	733773	9372154	CP30	733778	9372138		<u> </u>					X
								724000		740	000	756000	
				UBICLOIÓN				SISTEMA DE COODDENADAS	FECALA				
		ESIS						UBICACIÓN		MAPA UDICA CIÓN DE		SISTEMA DE COURDENADAS	ESCALA:
		2010						DISTRITO :	JAÉN	Cinchana miana	LAS ESPECIES DE	PROYECCIÓN : UTM	1/260 000
			n n n n n n n n n n n n n n n n n n n	IMAGENT	DOPUEL	FUCTE DE				Cinchona micran	una Kuizy Pavon y nubescens Vahl		
		"CA	ARBONO A	LMACENA	DO EN EL I	FUSTE DE		PROVINCIA		Cinchona	ancounto vani		FECHA:
	EN	Cinchona	micrantha	Kuiz y Pavó	n y Cinchon	<i>a pubescens</i>	Vahl MARCA"	PROVINCIA:	JAEN	Elaborado a		ZONA : 17 SUR	
UNIVERSIDAD NACION		LLCENTR	TO FUBLA	DOLACAS	CARILLA, J	ABN, CAJA	MARCA			Elaborado por: Bach Maila	Chuquillangua Marly Jaconi		ABRIL- 2025
DE JAÉN	DE JAÉN				REGIÓN :	CAJAMARCA	Bach, García	Fiorella Nevra	COORDENADAS: UTM- 84				

2.2 Población, muestra y muestreo

El estudio se basa en un diseño de investigación cuantitativo con muestreo no probabilístico por conveniencia, estando la población conformada por individuos de *Cinchona* ubicados en remanentes forestales en el C. P. La Cascarilla.

La selección de individuos se realizó siguiendo los criterios morfológicos de *C. micrantha* R. y P. y *C. pubescens* Vahl descritos por Pollito (1989) (Tabla 1), considerando como criterio de inclusión un diámetro a la altura del pecho (DAP=1,3 m del suelo) mayor a 5 cm y, que los individuos no presenten intervención humana (aprovechado o procesado). El muestreo registró un total de 82 árboles, distribuidos en 52 individuos de *C. micrantha* R. y P. y 30 de *C. pubescens* Vahl.

Tabla 1

Características taxonómicas para la identificación de C. micrantha Ruiz y Pavón y C. pubescens Vahl

Característica	C. micrantha Ruiz y Pavón	C. pubescens Vahl				
Altura	6 a 10 m	8 a 9 m				
Fuste	cilíndrico de 20 a 35 cm de diámetro	cilíndrico de 18 a 28 cm de diámetro.				
Hojas	ovada sin pubescencia	ovada con pubescencia				
Peciolo	de 2 a 7 cm de longitud	de 3 a 7 cm de longitud				
Fruto	en cápsula oblonga	en capsula ovoide				
Flores	blanca con corola blanca	rojas con corola blanca				
Corteza marrón cenizo o marrón gris		rojiza				
Copa globosa regular		globosa irregular				
Estípulas	ovadas	redondeadas				

2.3 Metodología

La investigación fue de tipo no experimental, debido a que no se manipularon variables. La técnica empleada fue de observación y recolección de datos en campo, ya que se caracterizó y se describió muestras de *Cinchona*.

2.3.1 Cálculo de la densidad de la madera de *C. micrantha* Ruiz y Pavón y *C. pubescens* Vahl de forma no destructiva

Se tomaron muestras (tarugos) del fuste de cada árbol empleando un barreno de Pressler (diámetro = 0.43 cm), realizando el proceso de extracción a una altura de 1.30 m del suelo acorde con lo estipulado por la Unión Internacional de Organizaciones de Investigación Forestal (IUFRO). Una vez extraído el tarugo, se pesó, se colocó en dentro de un recipiente de plástico a fin de preservarlo, debidamente rotulados, luego fueron trasladados al laboratorio de Ingeniería Forestal y Ambiental de la Universidad Nacional de Jaén. En laboratorio, los tarugos se colocaron en estufa a 105 °C por 48 horas, a fin de eliminar la humedad. Secos los tarugos, se pesaron y se calculó de la densidad básica utilizando la siguiente fórmula:

$$\delta = \frac{P}{V}$$

Donde:

δ = densidad básica de la madera (g/cm³)
P = peso seco de la madera (g)
V = volumen de la madera en estado verde (cm³)

2.3.2 Determinación de la biomasa almacenada en el fuste de *C. micrantha* Ruiz y Pavón y *C. pubescens* Vahl

Para calcular la biomasa se aplicó la formula recomendada por Díaz *et al.* (2016), además de medir variables dasométricas:

$$\boldsymbol{B} = (\boldsymbol{V} \ge \delta / 1000 \ \boldsymbol{K} \boldsymbol{g}) \ge \boldsymbol{f} \boldsymbol{e}$$

Donde:

B = biomasa (Kg) V = volumen (m³)

- δ = densidad básica de la madera (g/cm³)
- fe = factor de expansión (latifoliado 1.6; conífera 1.4)
- Altura: Se midió con un clinómetro Sunto mediante la fórmula:

$$\boldsymbol{H} = (\boldsymbol{L}\boldsymbol{c} / \boldsymbol{1}\boldsymbol{0} \ge \boldsymbol{d}) + \boldsymbol{h}\boldsymbol{o}$$

Dónde:

H = altura del árbol (m)
Lc = lectura del clinómetro (%)
D = distancia entre el especialista y el árbol (m)

ho = altura hasta el ojo del operador (m)

- Diámetro a la altura del pecho (DAP): Se midió la circunferencia de cada individuo con una cinta métrica a 130 cm desde el suelo. Los datos obtenidos se dividieron por 3.1416 para obtener el DAP de la planta.
- Cálculo del volumen: Se realizó mediante la siguiente fórmula:

$$V = \pi/4 \ge H \ge DAP^2 \ge FF$$

Dónde: V = volumen (m³) H = altura del árbol (m) DAP = diámetro a la altura del pecho (m) FF = factor de forma (latifoliadas 0.79; coníferas 0.65)

La biomasa es la base para calcular el carbono almacenado (kg) en un árbol. Es por ello que, se determinó en laboratorio el porcentaje (%) de carbono total con el uso de las muestras de madera obtenidas en campo (Laboratorio de Agua, Suelos y Foliares del Instituto Nacional de Innovación Agraria, sede central - Lima), con la aplicación de la norma CN828: Determination of Carbon and Nitrogen in Soil, ISO 10694:1996, ISO 13878:1998 NT. Se aplicó la formula:

Carbono
$$(kg) = Biomasa seca (kg) \times \frac{\% Carbono}{100}$$

El valor típico utilizado es 47–50% para madera seca, según el IPCC (Panel Intergubernamental sobre Cambio Climático).

2.3.3 Aplicación de modelos alométricos para la estimación del contenido de biomasa y carbono almacenado en el fuste de *C. micrantha* Ruiz y Pavón y *C. pubescens* Vahl

El diámetro del fuste a 1.3 m de altura (DAP) y la altura del árbol (H) son las dos variables a nivel de árbol más comunes y ampliamente usadas para generar modelos de biomasa del tallo. En el estudio se emplearon 20 modelos alométricos generales descritos en la Tabla 2, usando las dos variables (Huaccha et al., 2023).

Ecuació	n de los modelos	Variable	Modelo	
a	$y = ae^{bx}$	DAP	exponencial	
b	y = ax + b	DAP	lineal	
С	y = aln(x) + b	DAP	logarítmica	
d	$y = ax^2 - bx + c$	DAP	polinómica	
e	$y = ax^b$	DAP	potencial	
f	$y = ae^{bx}$	DAPxH	exponencial	
g	y = ax + b	DAPxH	lineal	
h	y = aln(x) + b	DAPxH	logarítmica	
i	$y = ax^2 - bx + c$	DAPxH	polinómica	
j	$y = ax^b$	DAPxH	potencial	
k	$y = ae^{bx}$	DAP ² _X H	exponencial	
l	y = ax + b	DAP ² _X H	lineal	
m	y = aln(x) + b	DAP ² _X H	logarítmica	
п	$y = ax^2 - bx + c$	DAP ² _X H	polinómica	
0	$y = ax^b$	DAP ² _X H	potencial	
р	$y = ae^{bx}$	DAPxH ²	exponencial	
q	y = ax + b	DAPxH ²	lineal	
r	y = aln(x) + b	DAPxH ²	logarítmica	
S	$y = ax^2 - bx + c$	DAPxH ²	polinómica	
t	$\mathbf{v} = \mathbf{a}\mathbf{x}^{\mathbf{b}}$	DAPxH ²	potencial	

Tabla 2

11 11	1 1	1	1 .	· · · /
Modelos	alometricos	a emplear e	en la inve	stigacion
moucios	<i>aiomenicos</i>	a chipicai c		sugacion.

Donde: Y = biomasa o carbono; DAP = diámetro a la altura del pecho; H = altura; a, b y c = coeficientes de los modelos y e = 2.71828

2.3.4 Análisis de datos

Finalmente, una vez obtenidos los datos de laboratorio y campo, se utilizaron diagramas de cajas y bigotes para mostrar los resultados de densidad y biomasa de las especies en estudio. Luego, con cada modelo matemático y variable propuesta se procedió a estimar la biomasa y carbono almacenado en el fuste de cada especie estudiada. Finalmente, se calcularon el error cuadrático medio (RMSE) y el criterio de información de Akaike (AIC). La elección del modelo alométrico final se realizó considerando el coeficiente de determinación (R²) más alto y los valores más bajos de RMSE y AIC; además, para analizar las tendencias en la desviación de los valores observados en comparación con los esperados, se calculó el ABL. Un menor ABL sugirió un sesgo reducido y, por lo tanto, un mejor desempeño del modelo.

III. RESULTADOS

3.1 Densidad de la madera de *C. micrantha* Ruiz y Pavón y *C. pubescens* Vahl de forma no destructiva

La Figura 3 muestra un gráfico box plot que compara la densidad (g/cm³) de *C. micrantha* R. y P. y *C. pubescens* Vahl. La mediana de la densidad de *C. micrantha* R. y P. está cerca de 0.50 g/cm³, mientras que la mediana de la densidad de *C. pubescens* Vahl es de 0.44 g/cm³. La distribución de los datos de densidad de *C. micrantha* R. y P. presenta una mayor amplitud que la de *C. pubescens* Vahl, cuyos valores extremos están entre 0.3 g/cm³ y 0.7 g/cm³.

Figura 3

3.2 Biomasa de árboles de C. micrantha Ruiz y Pavón y C. pubescens Vahl

La Figura 4 muestra un gráfico box plot que compara la biomasa (Kg) de *C. micrantha* R. y P. y *C. pubescens*. Se aprecia que la biomasa de *C. micrantha* R. y P. se encuentra principalmente concentrada entre 2.4 y 20 Kg, con presencia de diferentes valores atípicos y la mediana está entorno a los 5 Kg, mientras que la biomasa de *C. pubescens* Vahl se encuentra concentrada entre 1.8 y 100 Kg, con presencia de valores atípicos, no obstante, son menos numerosos que en *C. micrantha* R. y P., y su mediana se encuentra en torno a 21 Kg, lo que indica una biomasa significativamente mayor en comparación con el primer gráfico. La amplitud de los bigotes en ambos casos se debe al crecimiento desigual de los árboles de las especies en estudio producto de factores edafoclimáticos.

Figura 4

Biomasa acumulada en el fuste de C. micrantha Ruiz y Pavón y C. pubescens Vahl

3.3.1. C. micrantha Ruiz y Pavón

A. Estimación de biomasa de C. micrantha Ruiz y Pavón

La Tabla 3 muestra el promedio estimado de biomasa en el fuste de *C. micrantha* R. y P., empleando los 20 modelos alométricos.

Tabla 3

	Modelo	Variable	Biomasa estimada (Kg)
a	$y = 0.3482e^{0.4703x}$	DAP	14.16
b	y = 9.2092x - 46.816	DAP	14.78
c	$y = 69.911 \ln(x) - 115.84$	DAP	14.79
d	$y = 0.8582x^2 - 4.8212x + 5.6304$	DAP	14.78
e	$y = 0.008 x^{3.704}$	DAP	13.72
f	$y = 2.8871e^{2.8649x}$	DAP x H (m)	15.89
g	y = 54.591x - 4.8588	DAP x H (m)	14.78
h	$y = 21.58\ln(x) + 43.858$	DAP x H (m)	14.78
i	$y = 14.049x^2 + 36.861x - 1.8311$	DAP x H (m)	14.78
j	$y = 46.333x^{1.2951}$	DAP x H (m)	13.99
k	$y = 4.0171e^{0.0024x}$	$DAP^{2} \times H(m)$	16.22
1	y = 0.0484x + 0.5367	$DAP^{2} \times H(m)$	14.78
m	$y = 17.844 \ln(x) - 76.691$	$DAP^{2} \times H(m)$	14.78
n	$y = -9E - 06x^2 + 0.0601x - 0.9308$	$DAP^{2} \times H(m)$	14.68
0	$y = 0.0391x^{1.0403}$	$DAP^{2} \times H(m)$	14.82
р	$y = 4.4606e^{0.0022x}$	DAP x H^2 (m)	15.21
q	y = 0.0447x + 2.9155	DAP x H^2 (m)	14.79
r	$y = 11.68 \ln(x) - 39.496$	DAP x $H^2(m)$	14.78
S	$y = -4E - 06x^2 + 0.0504x + 2.3635$	DAP x H^2 (m)	14.84
t	$y = 0.2895 x^{0.7167}$	DAP x $H^2(m)$	13.27
		Promedio	14.73

Biomasa en el fuste de C. micrantha Ruiz y Pavón estimada con modelos alométricos

La Tabla 4 resume los resultados de la evaluación estadística de diferentes modelos alométricos para estimar la biomasa, utilizando diversas combinaciones de variables independientes relacionadas con el DAP (diámetro a la altura del pecho) y la altura del árbol (H). Cada modelo se describe mediante su ecuación funcional, variable independiente utilizada, y se evalúa en términos de los coeficientes de determinación (R²), el error absoluto medio (MAE), el error cuadrático medio (MSE), la raíz del error cuadrático medio (RMSE) y el criterio de información de Akaike (AIC). Estas métricas permiten comparar la precisión y el ajuste de cada modelo según la variable empleada, siendo:

Modelos basados únicamente en DAP: Los modelos que utilizan únicamente el DAP como variable predictora incluyen funciones exponenciales (modelos a y e), lineales (b), logarítmicas (c), polinómicas de segundo grado (d) y potencia ®. Entre estos, el modelo

y= $0.8582x^2-4.8212x+5.6304$ (modelo d) presentó el mejor desempeño con R²=0.86, MAE de 4.96, RMSE de 7.19 y un AIC de 351.89, lo que indica un equilibrio favorable entre precisión y complejidad.

- Modelos basados en DAP×H: Los modelos que combinan el DAP con la H del árbol incluyen funciones exponenciales (f), lineales (g), logarítmicas (h), polinómicas (i), y potencia (j). En esta categoría, el modelo y=14.049x²+36.861x-1.8311 (modelo i) alcanzó el mejor ajuste, con R²=0.92, MAE de 2.76, RMSE de 5.38 y un AIC de 322.27. Este resultado sugiere que la inclusión de la altura mejora significativamente el poder predictivo, especialmente cuando se utiliza una estructura polinómica.
- Modelos basados en DAP²×H: En esta categoría, los modelos exploran la interacción cuadrática del DAP con la altura. El modelo y=-9E-06x²+0.0601x-0.9308 (modelo n) sobresalió, con el mayor R²=0.95, MAE más bajo (2.31), RMSE de 4.36 y un AIC de 300.77. Este modelo destaca como el más preciso dentro de la tabla.
- Modelos basados en DAP×H²: Los modelos que consideran la interacción del DAP con el cuadrado de la H incluyen funciones exponenciales (p), lineales (q), logarítmicas ®, polinómicas (s) y potencia (t). El modelo y=-4E-06x²+0.0504x+2.3635 (modelo s) presentó el mejor desempeño en esta categoría, con R²=0.88, MAE de 3.16, RMSE de 6.63 y un AIC de 343.58.

Tabla 4Parámetros de bondad de ajuste de los 20 modelos para predecir la biomasa de C. micrantha Ruiz y Pavón

	Modelo	Variable	\mathbf{R}^2	MAE	MSE	RMSE	AIC
а	$y = 0.3482e^{0.4703x}$	DAP	0.7933	5.80	95.48	9.77	369.99
b	y = 9.2092x - 46.816	DAP	0.8337	5.27	59.28	7.70	358.92
с	y = 69.9111n(x) - 115.84	DAP	0.7946	5.99	73.18	8.55	369.67
d	$y = 0.8582x^2 - 4.8212x + 5.6304$	DAP	0.8551	4.96	51.64	7.19	351.89
e	$y = 0.008x^{3.704}$	DAP	0.8428	5.11	58.65	7.66	356.06
f	$y = 2.8871e^{2.8649x}$	DAP x H (m)	0.8043	6.25	186.62	13.66	367.21
g	y = 54.591x - 4.8588	DAP x H (m)	0.9125	3.38	31.19	5.58	326.17
h	y = 21.58ln(x) + 43.858	DAP x H (m)	0.7628	6.78	84.54	9.19	377.03
i	$y = 14.049x^2 + 36.861x - 1.8311$	DAP x H (m)	0.9189	2.76	28.89	5.38	322.27
j	$y = 46.333x^{1.2951}$	DAP x H (m)	0.9194	2.70	30.85	5.55	321.97
k	$y = 4.0171e^{0.0024x}$	$DAP^{2} \times H(m)$	0.7689	7.44	278.56	16.69	376.11
1	y = 0.0484x + 0.5367	$DAP^{2} \times H(m)$	0.9433	2.49	20.22	4.50	304.71
m	$y = 17.844 \ln(x) - 76.691$	$DAP^{2} \times H(m)$	0.8335	5.75	59.32	7.70	358.96
n	$y = -9E - 06x^2 + 0.0601x - 0.9308$	$DAP^{2} \times H(m)$	0.9468	2.31	19.01	4.36	300.77
0	$y = 0.0391 x^{1.0403}$	$DAP^{2} \times H(m)$	0.9416	2.57	23.29	4.83	305.58
р	$y = 4.4606e^{0.0022x}$	DAP x H^2 (m)	0.6835	7.33	299.95	17.32	390.94
q	y = 0.0447x + 2.9155	DAP x $H^2(m)$	0.8754	3.22	44.40	6.66	344.19
r	y = 11.68ln(x) - 39.496	DAP x $H^2(m)$	0.6929	7.68	109.43	10.46	390.19
S	$y = -4E - 06x^2 + 0.0504x + 2.3635$	DAP x $H^2(m)$	0.8769	3.16	43.90	6.63	343.58
t	$y = 0.2895 x^{0.7167}$	DAP x H^2 (m)	0.8724	3.92	57.66	7.59	345.41

Nota. DAP: diámetro a la altura de pecho, H: altura, R2: coeficiente de determinación, MAE: error absoluto medio, MSE: error cuadrático medio, RMSE: raíz del error cuadrático medio, AIC: criterio de información de Akaike.

Finalmente, los modelos que incluyen interacciones cuadráticas y cúbicas del DAP y la H presentaron mejores desempeños en general para la estimación de biomasa de *C. micrantha*, destacándose el **"modelo n"** como el más eficiente (R^2 =0.95, AIC = 300.77).

En contraste, los modelos basados únicamente en DAP (sin considerar H) tienden a mostrar menores valores de ajuste y mayores errores predictivos.

B. Estimación de carbono almacenado en el fuste de C. micrantha Ruiz y Pavón

La Tabla 5 muestra el promedio estimado de carbono almacenado en el fuste de árboles de *C. micrantha* R. y P., empleando los diferentes modelos alométricos.

Tabla 5

Carbono almacenado en el fuste de C. micrantha Ruiz y Pavón estimado con modelos alométricos

	Modelo	Variable	Carbono estimado (Kg)
а	$y = 0.1701e^{0.4696x}$	DAP	6.87
b	y = 4.4576x - 22.655	DAP	7.16
c	$y = 33.838 \ln(x) - 56.064$	DAP	7.16
d	$y = 0.4175x^2 - 2.3689x + 2.8627$	DAP	7.16
e	$y = 0.0039 x^{3.6979}$	DAP	6.60
f	$y = 1.4075e^{2.8555x}$	DAP x H (m)	7.68
g	y = 26.383x - 2.3316	DAP x H (m)	7.16
h	$y = 10.43\ln(x) + 21.213$	DAP x H (m)	7.16
i	$y = 6.7522x^2 + 17.862x - 0.8764$	DAP x H (m)	7.16
j	$y = 22.347 x^{1.2896}$	DAP x H (m)	6.77
k	$y = 1.9556e^{0.0024x}$	$DAP^{2} \times H(m)$	7.90
1	y = 0.0234x + 0.2734	$DAP^{2} \times H(m)$	7.16
m	$y = 8.6273 \ln(x) - 37.066$	$DAP^{2} \times H(m)$	7.16
n	$y = -4E - 06x^2 + 0.0291x - 0.4406$	$DAP^{2} \times H(m)$	7.20
0	$y = 0.0194 x^{1.0365}$	$DAP^{2} \times H(m)$	7.18
р	$y = 2.1714e^{0.0022x}$	DAP x H^2 (m)	7.40
q	y = 0.0216x + 1.428	DAP x H^2 (m)	7.17
r	$y = 5.6435 \ln(x) - 19.066$	DAP x H^2 (m)	7.16
S	$y = -2E - 06x^2 + 0.0244x + 1.1589$	DAP x H^2 (m)	7.19
t	$y = 0.14295 x^{0.7133}$	DAP x H^2 (m)	6.42
		Promedio	7.14

La Tabla 6 muestra los resultados de la evaluación estadística de diferentes modelos matemáticos diseñados para estimar el carbono almacenado en el fuste de *C. micrantha* R. y P. en función del DAP (diámetro a la altura del pecho) y la altura del árbol (H). Se

analizaron múltiples combinaciones de estas variables mediante ecuaciones lineales, logarítmicas, exponenciales, polinómicas y de potencia. Los modelos se evaluaron con base en el coeficiente de determinación ajustado (\mathbb{R}^2), el error absoluto medio (MAE), el error cuadrático medio (MSE), la raíz del error cuadrático medio (RMSE) y el criterio de información de Akaike (AIC), permitiendo comparar su precisión y ajuste según la variable empleada, siendo:

- Modelos con DAP como única variable independiente: Los modelos que utilizan exclusivamente el DAP incluyen funciones exponenciales (a), lineales (b), logarítmicas (c), polinómicas de segundo grado (d) y de potencia (e). El modelo polinómico y=0.4175x²-2.3689x+2.8627 (modelo d) mostró el mejor desempeño en esta categoría, con un R²=0.8569, un MAE de 2.38, un RMSE de 3.45 y un AIC de 277.15. Por el contrario, el modelo exponencial y=0.1701e^{0.4696x} (modelo a) tuvo un ajuste menor (R²=0.796) y presentó el mayor error predictivo (MAE = 2.79), un RMS de 4.7 y un AIC de 295.23.
- Modelos con DAP y altura (H) como variables independientes: Los modelos que combinan el DAP y la altura incluyen ecuaciones exponenciales (f), lineales (g), logarítmicas (h), polinómicas (i) y de potencia (j). El modelo y=22.347x^{1.2896} (modelo j) destacó en esta categoría con R²=0.9181, un MAE de 1.32, un RMSE de 2.71 y un AIC de 248.67, lo que indica un excelente equilibrio entre ajuste y simplicidad. El modelo polinómico y=6.7522x²+17.862x-0.8764 (modelo i) obtuvo resultados similares (R²=0.9176, MAE = 1.35), pero con un AIC ligeramente inferior (248.97).
- Modelos basados en DAP²×H: Estos modelos exploran interacciones cuadráticas entre el DAP y la altura. El modelo y=-4E-06x²+0.0291x-0.4406 (modelo n) presentó el mejor ajuste en toda la tabla, con R²=0.9464, el menor MAE (1.12), un RMSE de 2.12 y el AIC más bajo (227.12). El modelo lineal y=0.0234x+0.2734 (modelo l) también mostró un desempeño notable (R²=0.9427).
- Modelos basados en DAP×H2: En esta categoría se analizaron interacciones cuadráticas de la altura al cuadrado con el DAP. El modelo y=-2E-06x²+0.0244x+1.1589 (modelo s) obtuvo un buen ajuste (R²=0.875), con un MAE de 1.54, un RMSE de 3.23 y un AIC de 270.23. El modelo lineal y=0.0216x+1.428 (modelo q) tuvo resultados similares (R²=0.8735, AIC = 270.84).

Finalmente, los modelos que incluyen interacciones cuadráticas y cúbicas del DAP y la H presentaron mejores desempeños en general para la estimación de carbono almacenado en el fuste de *C. micrantha* Ruiz y Pavón destacando el **"modelo n"** como el más eficiente (R^2 =0.946, AIC = 227.11).

	Modelo	Variable	\mathbf{R}^2	MAE	MSE	RMSE	AIC
a	$y = 0.1701e^{0.4696x}$	DAP	0.7960	2.79	22.12	4.7	295.23
b	y = 4.4576x - 22.655	DAP	0.8352	2.54	13.74	3.71	284.35
с	$y = 33.838 \ln(x) - 56.064$	DAP	0.7960	2.89	17	4.12	295.23
d	$y = 0.4175x^2 - 2.3689x + 2.8627$	DAP	0.8569	2.38	11.93	3.45	277.15
e	$y = 0.0039 x^{3.6979}$	DAP	0.8449	2.45	13.51	3.67	281.25
f	$y = 1.4075e^{2.8555x}$	DAP x H (m)	0.8037	3.01	43.12	6.57	293.26
g	y = 26.383x - 2.3316	DAP x H (m)	0.9113	1.65	7.39	2.72	252.76
h	$y = 10.43\ln(x) + 21.213$	DAP x H (m)	0.7619	3.27	19.84	4.45	303.11
i	$y = 6.7522x^2 + 17.862x - 0.8764$	DAP x H (m)	0.9176	1.35	6.86	2.62	248.97
j	$y = 22.347 x^{1.2896}$	DAP x H (m)	0.9181	1.32	7.37	2.71	248.67
k	$y = 1.9556e^{0.0024x}$	$DAP^{2} \times H(m)$	0.7689	3.62	66.63	8.16	302.14
1	y = 0.0234x + 0.2734	$DAP^{2} \times H(m)$	0.9427	1.21	4.77	2.18	230.43
m	$y = 8.6273 \ln(x) - 37.066$	$DAP^{2} \times H(m)$	0.8331	2.79	13.91	3.73	284.98
n	$y = -4E - 06x^2 + 0.0291x - 0.4406$	$DAP^{2} \times H(m)$	0.9464	1.12	4.48	2.12	227.11
0	$y = 0.0194x^{1.0365}$	$DAP^{2} \times H(m)$	0.9412	1.24	5.45	2.33	231.78
р	$y = 2.1714e^{0.0022x}$	DAP x $H^2(m)$	0.6830	3.57	71.63	8.46	317.05
q	y = 0.0216x + 1.428	DAP x $H^2(m)$	0.8735	1.57	10.54	3.25	270.84
r	$y = 5.6435 \ln(x) - 19.066$	DAP x $H^2(m)$	0.6917	3.72	25.69	5.07	316.28
S	$y = -2E - 06x^2 + 0.0244x + 1.1589$	DAP x H^2 (m)	0.8750	1.54	10.42	3.23	270.23
t	$y = 0.14295 x^{0.7133}$	DAP x H^2 (m)	0.8704	1.91	13.72	3.7	272.08

Parámetros de bondad de ajuste de los 20 modelos para predecir el carbono almacenado en el fuste de C. micrantha Ruiz y Pavón

Tabla 6

Nota. DAP: diámetro a la altura de pecho, H: altura, R²: coeficiente de determinación, MAE: error absoluto medio, MSE: error cuadrático medio, RMSE: raíz del error cuadrático medio, AIC: criterio de información de Akaike.

3.3.2. C. pubescens Vahl

A. Estimación de biomasa de C. pubescens Vahl

La Tabla 7 muestran el promedio estimado de la biomasa en el fuste de *C. pubescens* Vahl, empleando los 20 modelos alométricos.

	Modelo	Variable	Biomasa estimada (Kg)
a	$y = 1.4636e^{0.3086x}$	DAP	59.56
b	y = 12.091x - 59.787	DAP	47.26
c	$y = 112.29 \ln(x) - 187.8$	DAP	47.25
d	$y = -0.3402x^2 + 19.42x - 92.928$	DAP	79.12
e	$y = 0.0368x^{3.0641}$	DAP	49.88
f	$y = 5.1413e^{0.0153x}$	DAP x H (m)	58.17
g	y = 0.6343x - 13.852	DAP x H (m)	47.26
h	$y = 47.113\ln(x) - 149.25$	DAP x H (m)	47.25
i	$y = 0.0012x^2 + 0.3044x - 1.3845$	DAP x H (m)	46.69
j	$y = 0.07 x^{1.384}$	DAP x H (m)	45.70
k	$y = 7.7936e^{0.001x}$	$DAP^{2} \times H(m)$	78.14
1	y = 0.0427x - 0.3329	$DAP^{2} \times H(m)$	47.28
m	$y = 34.245 \ln(x) - 167.25$	$DAP^{2} \times H(m)$	47.26
n	$y = 2E - 06x^2 + 0.0364x + 2.2201$	$DAP^{2} \times H(m)$	48.30
0	$y = 0.0474x^{0.9837}$	$DAP^{2} \times H(m)$	46.73
р	$y = 8.9439e^{0.0007x}$	DAP x H^2 (m)	54.48
q	y = 0.033x + 5.3591	DAP x H^2 (m)	47.25
r	$y = 28.335 \ln(x) - 129.8$	DAP x H^2 (m)	47.25
S	$y = 8E - 07x^2 + 0.0289x + 7.3017$	DAP x H^2 (m)	43.99
t	$y = 0.1111x^{0.8498}$	$DAP \times H^{2}(m)$	44.34
		Promedio	51.65

Tabla 7

Biomasa en el fuste de C. pubescens Vahl estimada con modelos alométrico

La Tabla 8 presenta un análisis exhaustivo de modelos matemáticos diseñados para estimar la biomasa arbórea en función a combinaciones del diámetro a la altura del pecho (DAP) y la altura del árbol (H). Se incluyeron ecuaciones lineales, logarítmicas, exponenciales, polinómicas y de potencia. Para evaluar el desempeño de los modelos, se utilizaron métricas estadísticas como el coeficiente de determinación (R²), el error absoluto medio (MAE), el error cuadrático medio (MSE), la raíz del error cuadrático medio (RMSE) y el criterio de información de Akaike (AIC). Estas métricas permiten comparar la precisión y ajuste de los modelos según la variable empleada, siendo:

- Modelos basados únicamente en DAP: Esta categoría incluye ecuaciones exponenciales (a), lineales (b), logarítmicas (c), polinómicas de segundo grado (d) y de potencia (e). En esta categoría, el modelo lineal y=12.091x-59.787 (b) destacó con R²=0.772, un MAE de 13.53, un RMSE de 25.37 y un AIC de 285.15, reflejando un buen equilibrio entre simplicidad y ajuste. El modelo exponencial y=1.4636e^{0.3086x} (a) tuvo un desempeño significativamente inferior (R²=0.246), con un MAE elevado de 34.21 y un RMSE de 124.20, indicando que no es adecuado para la estimación.
- Modelos basados en DAP×H: Estos modelos exploran la relación entre el DAP y la altura para mejorar las estimaciones: El modelo polinómico y=0.0012x²+0.3044x-1.3845 (i) mostró el mejor rendimiento con R²=0.923, un MAE bajo de 8.09, un RMSE de 14.47 y un AIC de 251.30. El modelo de potencia y=0.07x^{1.384} (j) tuvo un ajuste similar (R²=0.922), con un MAE de 8.41 y un RMSE de 15.01, ofreciendo una alternativa eficaz.
- Modelos con DAP²×H: La inclusión de DAP²×H mejora considerablemente la precisión de las estimaciones: El modelo polinómico y=2E-06x²+0.0364x+2.2201 (n) obtuvo el mayor ajuste global (R²=0.971), el menor MAE (6.21) y RMSE (9.29), junto con el AIC más bajo (223.23). Este resultado lo posiciona como el modelo más robusto de toda la tabla. El modelo lineal y=0.0427x^{-0.3329} (l) también sobresalió con R²=0.967, un MAE de 6.15 y un AIC de 226.49.
- Modelos con DAP×H²: Esta categoría explora el impacto cuadrático de la altura por el DAP. Los modelos y=0.033x+5.3591 (q) y y=8E-07x²+0.0289x+7.3017 (s) alcanzaron un R²=0.880 con errores moderados (MAE de 10.25 y 11.67, respectivamente) y valores competitivos de AIC (266.34). El modelo exponencial y=8.9439e^{0.0007x} (p) tuvo un desempeño deficiente (R²=0.585), con un RMSE elevado de 104.56 y un AIC de 302.32.

	Modelo	Variable	R ²	MAE	MSE	RMSE	AIC
а	$y = 1.4636e^{0.3086x}$	DAP	0.2464	34.21	15425.34	124.20	321.10
b	y = 12.091x - 59.787	DAP	0.7726	13.53	643.54	25.37	285.15
с	$y = 112.29 \ln(x) - 187.8$	DAP	0.7570	17.85	687.85	26.23	287.14
d	$y = -0.3402x^2 + 19.42x - 92.928$	DAP	0.7868	33.47	2462.68	49.63	285.15
e	$y = 0.0368x^{3.0641}$	DAP	0.5338	16.75	2538.62	50.38	306.69
f	$y = 5.1413e^{0.0153x}$	DAP x H (m)	0.7021	26.86	7302.18	85.45	293.21
g	y = 0.6343x - 13.852	DAP x H (m)	0.9010	11.11	280.32	16.74	260.21
h	$y = 47.113\ln(x) - 149.25$	DAP x H (m)	0.7006	20.65	847.42	29.11	293.40
i	$y = 0.0012x^2 + 0.3044x - 1.3845$	DAP x H (m)	0.9264	8.09	209.24	14.47	251.30
j	$y = 0.07 x^{1.384}$	DAP x H (m)	0.9227	8.41	225.23	15.01	252.76
k	$y = 7.7936e^{0.001x}$	$DAP^2 \ge H(m)$	0.5981	46.70	38483.81	196.17	303.62
1	y = 0.0427x - 0.3329	$DAP^2 \ge H(m)$	0.9678	6.15	91.10	9.54	226.49
m	$y = 34.245 \ln(x) - 167.25$	$DAP^{2} \times H(m)$	0.7401	19.44	735.66	27.12	289.16
n	$y = 2E - 06x^2 + 0.0364x + 2.2201$	$DAP^2 \times H(m)$	0.9713	6.21	86.35	9.29	223.23
0	$y = 0.0474x^{0.9837}$	$DAP^{2} \times H(m)$	0.9671	6.39	95.85	9.79	227.16
р	$y = 8.9439e^{0.0007x}$	DAP x H^2 (m)	0.5851	33.53	70932.53	104.56	302.32
q	y = 0.033x + 5.3591	DAP x H^2 (m)	0.8785	10.25	343.84	18.54	266.34
r	$y = 28.335 \ln(x) - 129.8$	DAP x H^2 (m)	0.6517	21.67	985.80	31.40	297.94
S	$y = 8E - 07x^2 + 0.0289x + 7.3017$	DAP x H^2 (m)	0.8807	11.67	392.85	19.82	266.34
t	$y = 0.1111x^{0.8498}$	DAP x H^2 (m)	0.8734	9.99	377.01	19.42	267.57

Tabla 8Parámetros de bondad de ajuste de los 20 modelos para predecir la biomasa en el fuste de C. pubescens Vahl

Nota. DAP: diámetro a la altura de pecho, H: altura, R2: coeficiente de determinación, MAE: error absoluto medio, MSE: error cuadrático medio, RMSE: raíz del error cuadrático medio, AIC: criterio de información de Akaike.

Los resultados subrayan la importancia de incluir tanto el DAP como la altura (H) para mejorar la estimación de la biomasa arbórea. Las interacciones cuadráticas (DAP²×H) y modelos no lineales ofrecen los mejores resultados, con un rendimiento óptimo demostrado por el **"modelo l".** En general, la elección del modelo dependerá del equilibrio deseado entre precisión, simplicidad y disponibilidad de datos.

B. Estimación de carbono almacenado en el fuste de C. pubescens Vahl

La Tabla 9 muestra el promedio estimado del contenido de carbono almacenado en el fuste de *C. pubescens* Vahl, empleando los 20 modelos alométricos.

Tabla 9

Carbono almacenado en el fuste de C. pubescens Vahl estimado con modelos alométricos

	Modelo	Variable	Carbono estimado (Kg)
а	$y = 0.6841e^{0.3119x}$	DAP	29.32
b	y = 5.8474x - 28.641	DAP	23.13
c	$y = 54.628 \ln(x) - 91.22$	DAP	23.13
d	$y = -0.2016x^2 + 10.191x - 48.282$	DAP	23.12
e	$y = 0.0163x^{3.1045}$	DAP	24.53
f	$y = 2.427e^{0.0155x}$	DAP x H (m)	28.73
g	y = 0.307x - 6.4537	DAP x H (m)	23.12
h	y = 23.058 ln(x) - 73.042	DAP x H (m)	23.13
i	$y = 0.0004x^2 + 0.2022x - 2.4922$	DAP x H (m)	23.24
j	$y = 0.0308x^{1.4057}$	DAP x H (m)	22.45
k	$y = 3.7129e^{0.001x}$	$DAP^{2} \times H(m)$	37.23
1	y = 0.0205x + 0.3231	$DAP^{2} \times H(m)$	23.18
m	$y = 16.729 \ln(x) - 81.66$	$DAP^{2} \times H(m)$	23.13
n	$y = -2E - 07x^2 + 0.0211x + 0.0592$	$DAP^{2} \times H(m)$	18.09
0	$y = 0.0208 x^{0.9983}$	$DAP^{2} \times H(m)$	22.90
р	$y = 4.2558e^{0.0007x}$	DAP x H^2 (m)	25.92
q	y = 0.0159x + 2.9829	DAP x H^2 (m)	23.17
r	$y = 13.892\ln(x) - 63.676$	DAP x H^2 (m)	23.13
s	$y = -2E - 07x^2 + 0.017x + 2.4489$	DAP x H^2 (m)	24.03
t	$y = 0.0491 x^{0.8636}$	DAP x H^2 (m)	21.78
		Promedio	24.32

La Tabla 10 muestra a los 20 modelos matemáticos diseñados para estimar el contenido de carbono en el fuste de *C. pubescens*, utilizando diferentes combinaciones de variables dendrométricas: diámetro a la altura del pecho (DAP), altura del árbol (H), DAP²xH, DAPxH². Los modelos se clasificaron en cuatro grupos según las variables utilizadas. Cada modelo fue evaluado con base en su coeficiente de determinación (R²), error absoluto medio (MAE), error cuadrático medio (MSE), raíz del error cuadrático medio (RMSE), y el criterio de información de Akaike (AIC), permitiendo comparar su precisión y ajuste según la variable empleada, siendo:

- Modelos Basados exclusivamente en DAP: Los modelos de este grupo utilizan únicamente el DAP como variable independiente. El modelo lineal b (y = 5.8474x 28.641) presentó un R²=0.779, indicando un ajuste sólido. Sus errores fueron relativamente bajos (MAE = 13.53, RMSE = 25.37), y su AIC de 285.1 lo posiciona como la mejor opción dentro de este grupo. El modelo exponencial a (y = $0.6841e^{0.3119x}$) mostró un R²=0.231, reflejando un ajuste muy deficiente. Sus errores extremadamente altos (MAE = 422.76, RMSE = 1730.9) y un AIC de 325 lo convierten en la peor opción.
- Modelos basados en DAP×H: Estos modelos combinan el DAP y la altura del árbol (H) como variables independientes. El modelo polinómico i (y = 0.0004x² + 0.2022x 2.4922) obtuvo el R² más alto del grupo (0.922) y los errores más bajos (MAE = 8.09, RMSE = 14.47). Además, su AIC de 251.3 lo posiciona como el modelo más eficiente. El modelo h (y= 47.113ln(x) 149.25) mostró un ajuste mucho más bajo (R²=0.724) y errores relativamente altos (MAE = 20.65, RMSE = 29. Con un AIC de 293.4, se identifica como el peor modelo dentro de este grupo.
- Modelos basados en DAP²×H: Este grupo incluye modelos que utilizan el DAP²×H como variable independiente, explorando relaciones más complejas. El modelo n (y = $-2E-07x^2 + 0.0211x + 0.0592$) se destacó con un R²=0.958, el más alto entre todos los modelos evaluados, y errores mínimos (MAE = 7.52, RMSE = 9.84). Su AIC de 223.2 es el más bajo de toda la tabla, consolidándolo como la opción más eficiente y precisa. El modelo k (y= $7.7936e^{0.001x}$) tuvo un R²=0.504, lo que indica un ajuste deficiente. Además, presentó los errores más altos en este grupo (MAE = 46.7, RMSE = 196.17) y un AIC elevado (303.6), clasificándolo como la peor opción.

- Modelos basados en DAP×H²: En esta categoría, los modelos incorporan DAP×H² como variable independiente para explorar el impacto de las interacciones cuadráticas de la altura. El modelo lineal q (y = 0.0159x + 2.9829) mostró un ajuste sólido (R²=0.876) y errores bajos (MAE = 10.25, RMSE = 18.54). Su AIC de 266.3 es el más competitivo dentro de este grupo. El modelo exponencial p (y= $4.2558e^{0.0007x}$) tuvo un ajuste muy limitado (R²=0.495).

Finalmente, los modelos que incluyen interacciones cuadráticas y cúbicas del DAP y la H presentaron mejores desempeños en general para la estimación de carbono almacenado en el fuste de *C. pubescens*, destacando el **"modelo l"** como el más eficiente (R^2 =0.958, AIC = 226.5).

Tabla 10	
Parámetros de bondad de ajuste de los 20 modelos para predecir el carbono almacenado en el fuste de C. pubescen	ns Vahl.

	Modelo	Variable	R ²	MAE	MSE	RMSE	AIC
a	$y = 0.6841e^{0.3119x}$	DAP	0.2315	422.76	2995858.2	1730.9	325.0
b	y = 5.8474x - 28.641	DAP	0.7796	13.53	643.54	25.37	285.1
c	$y = 54.628 \ln(x) - 91.22$	DAP	0.7729	17.85	687.85	26.23	287.1
d	$y = -0.2016x^2 + 10.191x - 48.282$	DAP	0.8012	33.47	2462.68	49.63	285.1
e	$y = 0.0163x^{3.1045}$	DAP	0.5159	16.75	2538.62	50.38	306.7
f	$y = 2.427e^{0.0155x}$	DAP x H (m)	0.6194	26.86	7302.18	85.45	293.2
g	y = 0.307x - 6.4537	DAP x H (m)	0.9109	11.11	280.32	16.74	260.2
h	$y = 23.058 \ln(x) - 73.042$	DAP x H (m)	0.7240	20.65	847.42	29.11	293.4
i	$y = 0.0004x^2 + 0.2022x - 2.4922$	DAP x H (m)	0.9220	8.09	209.24	14.47	251.3
j	$y = 0.0308x^{1.4057}$	DAP x H (m)	0.9211	8.41	225.23	15.01	252.8
k	$y = 3.7129e^{0.001x}$	$DAP^{2} \times H(m)$	0.5041	46.7	38483.81	196.17	303.6
1	y = 0.0205x + 0.3231	$DAP^{2} \times H(m)$	0.9588	6.15	91.10	9.54	226.5
m	$y = 16.729 \ln(x) - 81.66$	$DAP^{2} \times H(m)$	0.7619	19.44	735.66	27.12	289.2
n	$y = -2E - 07x^2 + 0.0211x + 0.0592$	$DAP^{2} \times H(m)$	0.9586	7.52	96.74	9.84	223.2
0	$y = 0.0208x^{0.9983}$	$DAP^{2} \times H(m)$	0.9588	6.39	95.85	9.79	227.2
р	$y = 4.2558e^{0.0007x}$	DAP x $H^2(m)$	0.4951	33.53	10932.53	104.56	302.3
q	y = 0.0159x + 2.9829	DAP x H^2 (m)	0.8763	10.25	343.84	18.54	266.3
r	$y = 13.892\ln(x) - 63.676$	DAP x H^2 (m)	0.6758	21.67	985.8	31.4	297.9
S	$y = -2E - 07x^2 + 0.017x + 2.4489$	DAP x $H^2(m)$	0.8770	11.67	392.85	19.82	266.3
t	$y = 0.0491 x^{0.8636}$	DAP x H^2 (m)	0.8785	9.99	377.01	19.42	267.6

Nota. DAP: diámetro a la altura de pecho, H: altura, R2: coeficiente de determinación, MAE: error absoluto medio, MSE: error cuadrático medio, RMSE: raíz del error cuadrático medio, AIC: criterio de información de Akaike.

IV. DISCUSIÓN

El almacenamiento de carbono en áreas forestales es un factor clave en el estudio de los cambios ambientales globales, ya que contribuye al secuestro del exceso de gases de efecto invernadero (Ore *et al.*, 2021). En este estudio, se analizó el fuste de dos especies del género *Cinchona*, dado que aquí se almacena hasta el 84.5% de la biomasa total (Avendaño *et al.*, 2009).

Los resultados obtenidos mostraron una densidad promedio de 0.50 g/cm³ para *C. micrantha* R. y P., y de 0.44 g/cm³ para *C. pubescens* Vahl; similar a lo reportado por Ore *et al.* (2021) con (0.64 g/cm³). Además, se registraron valores máximos de densidad de madera de hasta 0.74 g/cm³. En el caso de *C. pubescens* Vahl Paz *et al.*, (2021) calcularon una densidad promedio de 0.78 g/cm³, significativamente mayor al promedio de 0.44 g/cm³ registrado en este estudio. Estas diferencias podrían atribuirse a variaciones en factores edafoclimáticos y la competencia intraespecífica

Los resultados demuestran que, al incluir la variable altura además del diámetro a la altura del pecho (DAP) se disminuye los errores de estimación de la biomasa, tal como lo señala Feldpausch *et al.* (2011). Utilizando modelos alométricos solo con la variable DAP se obtuvo un R² máximo de 0.86 para *C. micrantha* R. y P. y 0.79 para *C. pubescens*. Respectivamente; y al agregar la variable altura tenemos un R² de 0.95 para *C. micrantha* R. y P. y 0.97 para *C. pubescens* Vahl. Aunque en algunos casos incluir la variable altura no disminuye significativamente el error de estimación por lo que se coincide con Paul *et al.* (2016). Por otro lado; para seleccionar el modelo alométrico, el R² no debería ser el único parámetro a tomar en cuenta, sino también otros parámetros como el RMSE para una mejor decisión (Benitez, 2022), por su parte Montes *et al.* (2020) considera que el MSE (error cuadrático medio) y el AIC (criterio de información de Akaike), además del R² son de suma importancia para seleccionar la ecuación alométrica generada para estimar biomasa y carbono. En este estudio se tomaron en cuenta el error absoluto medio (MAE), el MSE, raíz del error cuadrático medio (RMSE) y el AIC.

Respecto a la biomasa almacenada en el fuste; para *C. micrantha* fue de 15 kg y 47 Kg para *C. pubescens* estas variaciones se deben a las diferencias de altura y DAP, los cuales fueron de 5.06 m y 7.02 cm para *C. micrantha* y 9.33 m y 8.85 cm para *C. pubescens*, con esto se demuestra que ambas especies de *Cinchona* tienen potencial en producción de biomasa. No se tiene registro de estudios que reporten la biomasa y Carbono del género *Cinchona*, pero en estudios del género *Palicourea* (Taicud & Collahuazo, 2018), para el caso de *Calycophyllum spruceanum* se informó una biomasa de 49.46 kg para un DAP de 14 cm y una altura comercial de 6 m (Mercado & Brian, 2024); las diferencias observadas en los resultados pueden estar influenciadas por diversos factores, como la edad de la plantación, la especie estudiada, la densidad poblacional y las propiedades del suelo. Esto se debe a que el CO₂ es capturado y almacenado por los árboles a través del proceso de fotosíntesis, el cual permite la absorción de este gas atmosférico durante su crecimiento y desarrollo (Ortiz, 2024).

V. CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

- La inclusión de la variable altura del árbol (H) mejoró significativamente la precisión de las estimaciones, reduciendo los errores predictivos en comparación con modelos basados únicamente en el DAP. Este enfoque refuerza la necesidad de considerar múltiples variables dendrométricas para la modelización alométrica en especies forestales.
- Se demostró la eficacia de los modelos alométricos para estimar biomasa y carbono almacenado en el fuste de *C. micrantha* y *C. pubescens* mediante un enfoque no destructivo. El modelo "n" presentó el mejor ajuste para ambas especies, con coeficientes de determinación (R2) de 0.95 y 0.97, respectivamente, lo que respalda su aplicabilidad en ecosistemas forestales similares.
- Las ecuaciones alométricas generadas no solo son confiables, sino que también ofrecen una herramienta práctica para implementar estrategias de manejo sostenible y conservación, contribuyendo a mitigar el cambio climático mediante la evaluación y valorización del carbono almacenado.
- Los resultados revelan que *C. micrantha* y *C. pubescens* tienen un potencial moderado para la captura de carbono en comparación con otras especies arbóreas, pero representan una contribución valiosa en la conservación de remanentes forestales de los andes peruanos.

5.2 Recomendaciones

- Se recomienda a futuros investigadores a realizar el estudio de biomasa y carbono, en plantas adultas de *Cinchona* u otras especies que se encuentran en asociación con las ya estudiadas en este trabajo, además de evaluar parámetros del suelo, puesto que es de vital importancia para determinar la capacidad total de biomasa y carbono que tienen estos remanentes en el C. P. La Cascarilla.
- Se insta a tesistas de la carrera de Ingeniería forestal y Ambiental de las Universidad Nacional de Jaén y Universidad Nacional de Cajamarca a realizar estudios de este tipo

y generar conocimiento del género *Cinchona*, ya que es una especie poca estudiada, amenazada y desplazada de los bosques, donde está crece.

Se recomienda a la Universidad Nacional de Jaén, que por medio del Centro de Investigación que promuevan este tipo de proyectos a estudiar los remanentes que aún quedan, con metodologías no destructivas, fomentando la conservación, el cuidado y aprovechamiento de estos remanentes sin dañarlos ni provocando grandes cambios en estos, pues queda demostrado que el uso de análisis no destructivo, como las ecuaciones alométricas son confiables para determinar la biomasa y carbono.

VI. REFERENCIAS

- Agencia de Protección Ambiental de los Estados Unidos. (2024). *Descripción general de los gases de efecto invernadero*. https://espanol.epa.gov/la-energia-y-el-medioambiente/descripcion-general-de-los-gases-de-efecto-invernadero
- Albán, J., Chilquillo, E., Melchor, B., Arakaki, M., León, B., Suni, M. (2020). Efecto del sustrato en la germinación de Cinchona officinalis L. (Rubiaceae). *Revista peruana de biología*, 27(3), 423-426. https://doi.org/10.7818/ECOS.2314
- Avendaño, D. M., Acosta, M., Carrillo, F., Etchevers, J. D. (2009). Estimación de biomasa y carbono en un bosque de Abies religiosa. *Revista fitotecnia mexicana*, 32(3), 233-238. Recuperado en 19 de abril de 2025, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73802009000300011&lng=es&tlng=es.
- Benitez, F. M., Gonçalves, L. A., Eleto, M. M., Serruto S., Silva, S. J., Olivera T., Oliveira R., Fernandez, L. Vidal, E., Cargia, H. Lynn C., Fearnside, P. M. (2022).
 Aboveground biomass allometric models for large trees in southwestern Amazonia.
 Trees, Forests and People, 9, 100317. https://doi.org/10.1016/j.tfp.2022.100317
- Brindis, A. I., Sánchez, R., Mata, E. E., Palma, D. J., Sánchez, F., Cámara, L. D. (2021). Almacenamiento de carbono en la biomasa aérea de agrosistemas tropicales en Tabasco, México. *Ecosistemas y recursos agropecuarios*, 7(3), 1-13. doi:https://doi.org/10.19136/era.a7n3.2532
- Bruno, L., Sylvain, L. (2011). Un método para medir el Carbono almacenado en los bosques de malleco (Chile). BOIS ET FORÊTS DES TROPIQUES,, 267(1), 1-13. https://agritrop.cirad.fr/478866/1/document_478866.pdf
- Burbano, H. (2018). El carbono orgánico del suelo y su papel frente al cambio climático. *Revista de Ciencias Agrícolas, 35*(1), 82-96. http://www.scielo.org.co/scielo.php? script=sci_arttext&pid=S0120-01352018000100082
- Chan, G., Bernardus, J. D., González, N. A., López, J. C., Morales, D. E., Venegas, J. A., ... Raj, D. (2022). Densidad de madera de especies arbóreas dominantes de la selva

tropical subperennifolia de Calakmul, México. *Ecosistemas y recursos agropecuarios*, 9(3), 1-13. doi:https://doi.org/10.19136/era.a9n3.3386

- Churampi, B. S. (2017). Cuantificación de la captura de Carbono en la biomasa aérea de la Guayaba (Psidium guajava L.) en el fundo Conde Vargas, Cajabamba -Cajamarca. [Tesis de posgrado, Universidad Nacional de Cajamarca].: http://hdl.handle.net/20.500.14074/1918
- Clemente, M. (2021). La Contaminación Ambiental- Meredith Clemente Roque Q F B. https://www.calameo.com/read/00685176839f94a0c60f5#google_vignette.
- Díaz, N. (2020). Estimación de la fijación de carbono en un bosque de transición en la microcuenca Arroyohondo. [Tesis de pregrado, Universidad Autónoma de Occidente]. Repositorio institucional. https://red.uao.edu.co/bitstream/handl e/10614/12376/T09232.pdf?sequence=5&isAllowed=y
- Díaz, M., Vázquez, A., Uribe, M., Sánchez, A., Lara, A., Cruz, A. (2016). Ecuaciones alométricas para estimar biomasa y carbono en aile obtenidas mediante un método no destructivo. *Revista mexicana de ciencias agrícolas, 16*(16), 3235-3249. doi:http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342016001203235&lng=es&tlng=es.
- Feldpausch, T. R., Banin, L., Phillips, O. L., Baker, T. R., Lewis, S. L., Quesada, C. A., Affum-Baffoe, K., Arets, E. J. M. M., Berry, N. J., Bird, M., Brondizio, E. S., de Camargo, P., Chave, J., Djagbletey, G., Domingues, T. F., Drescher, M., Fearnside, P. M., França, M. B., Fyllas, N. M., ... Lloyd, J. (2011). Height-diameter allometry of tropical forest trees. *Biogeosciences*, 8(5), 1081–1106. https://doi.org/10.5194/bg-8-1081-2011
- Gutiérrez, G., Ricker, M. (2014). Manual para tomar virutas de madera con el barreno de Pressler en el Inventario Nacional Forestal y de Suelos. [Tesis de pregrado, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), México DF, México]. Repositorio institucional. http://dx.doi.org/10.13140/RG.2.1.2730.992 5

- Gutiérrez, B. N., Flores, A. (2018). Captura de carbono y modelos alométricos para estimar biomasa en rodales naturales de Pinus oocarpa Schl. et Cham. En Chiapas, México. *Foresta Veracruzana*, 20(2), 21-28. https://www.redalyc.org/journal/497/4975834 0005/html/
- Gutierrez, B., Flores, A. (2019). Captura de carbono y modelos alométricos para estimar biomasa en rodales naturales de Pinus oocarpa Schl. et Cham. en Chiapas, México Carbon. January.
- Herrera, S. C., Padilla, M. A. (2019). Captura de Dióxido de Carbono del Fuste de Acacia macracantha "Faique" y Capparis scabrida "Sapote de perro" en el Bosque Seco Distrito de Jaén Cajamarca. [Tesis de pregrado, Universidad Nacional de Jaén]. Repositorio institucional. http://repositorio.unj.edu.pe/handle/UNJ/142
- Huaccha, A. E., Fernandez, F. H., Pérez, L. J., Tantalean, K. S., Vaca, S. P., Sanchez, T., Morales, E., Seminario, A., Quiñones, L. (2023). Non-destructive estimation of leaf area and leaf weight of *Cinchona officinalis* L. (Rubiaceae) based on linear models. *Forest* Science and Technology, 19(1), 59-67. https://doi.org/10.1080/21580103.2023.2170473
- IBERDROLA. (2022). Sumideros de carbono, un soplo de oxígeno natural. https://www.iberdrola.com/sostenibilidad/sumideros-carbono
- Méndez, J., Luckie, L., Capó, M. Á., Nájera, A. (2011). Ecuaciones alométricas y estimación de incrementos en biomasa aérea y carbono en una plantación mixta de Pinus devoniana lindl. y P. pseudostrobus lindl., en Guanajuato, México. Agrociencia, 45(4), 479–491.
- Mercado, O., Brian, J. (2024). Determinación del contenido de carbono en la biomasa aérea en dos áreas boscosas, Río Negro. http://repositorio.uncp.edu.pe/handle/20.500.12894/12113
- Ministerio de Agricultura. (2024). "Guía de campo para la estimación del carbono almacenado en la biomasa de los bosques administrados por la comunidad nativa ese'eja de infierno y su concesión de ecoturismo en la Region Madre de Dios".

https://www.itto.int/files/itto_project_db_input/2944/technical/Guia%20Estimacion %20CO2%20Bosques.pdf?v=1709095604

- Ministerio del Ambiente. (2024). El 91% de la deforestación de los bosques de la Amazonía se da por la agricultura informal (La República – 17/08/2017). https://www.minam.gob.pe/medios/prensa-escrita/el-91-de-la-deforestacion-de-losbosques-de-la-amazonia-se-da-por-la-agricultura-informal-la-republica-17082017/
- Mirez, S. (2020). Reservas de carbono en la biomasa fustal de Cordia alliodora (Ruiz y Pav.) Oken de sistemas agroforestales en el distrito Tabaconas, San Ignacio Cajamarca. [Tesis de posgrado, Universidad Nacional de Jaén]. http://repositorio.unj.edu.pe/handle/UNJ/182
- Mita, M. A. (2020). Evaluación de la captura de carbono en los bofedales de la laguna de conococha en base a la especie de flora predominante del área de estudio provincia de Recuay departamento de Ancash 2018. [Tesis de posgrado, Universidad Nacional Santiago Antúnez de Mayolo]. https://repositorio.unasam.edu.pe/handle/UNASAM/4145
- Montes, E., Salvador, Á., Nájera, J. A., Corral, S., Méndez, J. (2020). Ecuaciones alométricas para estimar biomasa y carbono en Trichospermum mexicanum (DC.) Baill. *Colombia Forestal*, 23(2), 89–98. https://doi.org/10.14483/2256201X.15836
- Olaya, L., Silva, J. C., Herrera, S. C. (2019). Cuantificación de Carbono Almacenado en un Sistema Agroforestal de Café (Coffea arabica L.), Asociado con Guaba (Inga edulis sp.), Distrito Jaén – Cajamarca. [Tesis de pregrado, Universidad Nacional de Jaén]. Repositorio institucional. http://repositorio.unj.edu.pe/handle/UNJ/133
- Ore, L. E., Vargas, J. B., Loarte, W. C., Oré, J. D., Díaz, E. (2021). *Carbon capture in living aerial biomass in Tingo María National Park.*
- Organización de las Naciones Unidas (2022). *Las emisiones mundiales de CO₂ repuntaron en 2021 hasta su nivel más alto de la historia*. https://unfccc.int/es/news/lasemisiones-mundiales-de-CO2-repuntaron-en-2021-hasta-su-nivel-mas-alto-de-lahistoria

- Organización Paramericana de la Salud. (2024). *Calidad del aire*. https://www.paho.org/es/temas/calidad-aire
- Ore, L., Vargas, J., Loarte, W., Oré, J., Díaz E. (2021). Captura de carbono en biomasa aérea viva en el parque nacional Tingo María. *Revista de Investigación Científica Tayacaja*, 4(2), 131–142. https://revistas.unat.edu.pe/index.php/RevTay a/article/view/180
- Orellana, J. B. (2024). Determinación del contenido de carbono en la biomasa aérea en dos áreas boscosas, Río Negro.
- Ortiz, D. I. (2024). Almacenamiento de carbono total de un sistema forestal asociado de Schizolobium amazonicum (pino chuncho) Y Ladenbergia oblongifolia (árbol de la quina) en Saipai, Pueblo Nuevo. <u>https://hdl.handle.net/20.500.14292/2770</u>
- Palacios, Í. D., y Moreno, D. W. (2022). Contaminación ambiental. *Revista Científica Mundo de la Investigación y el Conocimiento*, 6(2), 1-11. doi:https://doi.org/10.26820/recimundo/6.(2).abr.2022.93-103
- Pantoja, T., Katherine, K., Santander, C., Salomé, R., Montenegro, G., Carlos, J. (2018). Evaluación de carbono fijo en bosque nublado en la reserva sabia esperanza ubicada en Imbabura-Ecuador.
- Paul, K. I., Roxburgh, S. H., Chave, J., England, J. R., Zerihun, A., Specht, A., Lewis, T., Bennett, L. T., Baker, T. G., Adams, M. A., Huxtable, D., Montagu, K. D., Falster, D. S., Feller, M., Sochacki, S., Ritson, P., Bastin, G., Bartle, J., Wildy, D., ... Sinclair, J. (2016). Testing the generality of above-ground biomass allometry across plant functional types at the continent scale. *Global Change Biology*, 22(6), 2106– 2124. https://doi.org/10.1111/gcb.13201
- Paz, F., Velázquez, A., Sánchez, C., Salas, V., Méndez, J., Acosta, M., Nájera, J. A. (2021).
 Alometría generalizada para la estimación de la biomasa aérea total de plantas leñosas: marco teórico general y aplicaciones. Madera y bosques, 27(SPE).
- Pollito, P. (1989). Taxonomía, distribución geográfica y status del género Cinchona en el Perú.

- Programa de las Naciones Unidas para el Desarrollo . (2023). *Cómo pueden ayudarnos los bosques a limitar los impactos del cambio climático*. https://climatepromise.undp.org/es/news-and-stories/como-pueden-ayudarnos-los-bosques-limitar-los-impactos-del-cambio-climatico
- Sánchez, J., Domínguez, R., Leon, M., Samaniego, J., Sunkel, O. (2019). *Recursos naturales* , *medio ambiente y sostenibilidad*. 70 años de pensamiento de la CEPAL, Libros de la CEPAL, N° 158 (LC/PUB.2019/18-P), Santiago, Comisión Económica para América Latina y el Caribe
- SERFOR. (2018). COP25: Perú logró reducir deforestación en la amazonía en el 2018. https://www.gob.pe/institucion/serfor/noticias/214421-cop25-peru-logro-reducirdeforestacion-en-la-amazonia-en-el-2018
- Tacarpo, A. M. (2018). Estimación del potencial de captura de carbono de las especies de flora predominante de la parte alta del bosque de la comunidad campesina de Tumpa provincia de Yungay, 2018. [Tesis de pregrado, Universidad Nacional Santiago Antúnez de Mayolo]. Repositorio institucional. http://repositorio.unasam.edu.pe/bitstream/handle/UNASAM/2780/T033_7056912 7_T.pdf?sequence=1&isAllowed=y
- Taicud, K. K., Collahuazo, R. S. (2018). Evaluación de carbono fijo en bosque nublado en la reserva sabia esperanza ubicada en Imbabura-Ecuador. https://repositorio.utn.edu.ec/handle/123456789/8595
- Villar, M. Á., Marcelo, F. E., Baselly, J. R. (2018). Evaluación de la regeneración natural de la Cinchona officinalis L. en la zona de amortiguamiento del bosque de protección de pagaibamba- II etapa. [Tesis de pregrado, Instituto Nacional de Investigación Agraria]. Repositorio institucional. https://hdl.handle.net/20.500.12955/905

DEDICATORIA

A mí misma por el esfuerzo y perseverancia que tuve durante este largo trayecto de vida universitaria, a Juan Mejía y Gladys Chuquillanque, mis padres, por su gran confianza que depositaron en mí, porque con gran esfuerzo me dieron la oportunidad de poder llegar hasta donde estoy, a Exdinson Cruz por nunca soltar mi mano, por ser esa persona que siempre fue soporte cuando quise rendirme, mi apoyo moral y mi ejemplo a seguir, a mis 7 hermanos que siempre me brindaron un apoyo incondicional y por la gran confianza que siempre mantuvieron hacia mí persona , Yanina la hermana que siempre me renegaba todo y por sus sabios consejos logre muchas cosas buenas, infinitas gracias a mi gran familia que nunca dudaron y siempre estuvieron

Marly Jessenia Mejia Chuquillanque

Llena de felicidad y amor, dedico esta tesis a mis seres queridos mis padres, que con su amor su sacrificio y su apoyo incondicional, sus sabios consejos han logrado ser uno de los pilares fundamentales para seguir adelante, a mi compañero de vida por ser mi soporte y mi apoyo moral y mi ejemplo y mis hermanos por ser la razón de seguir adelante, y gracias a ellos por confiar en mí, y nunca soltar mi mano. Es para mí una gran satisfacción dedicarles a ellos que con mucho esfuerzo me lo he ganado y a toda mi familia gracias por ser parte de mi vida y ser su orgullo.

Fiorella Neyra Garcia

AGRADECIMIENTO

A Dios, a nuestra familia, a la Universidad Nacional de Jaén, a nuestra asesora la Mg. Ing. Huaccha Castillo Annick Estefany y al Instituto Internacional de Investigación en el Árbol de la Quina – INIAQ de la Universidad Nacional de Jaén por el valioso apoyo fundamental para la construcción de este trabajo. También se agradece al Mg. Ing. Fernandez Zarate Franklin Hitler y al Instituto Nacional de Innovación Agraria a través del proyecto de inversión denominado "Mejoramiento de los Servicios de Investigación y Transferencia de Tecnología Agraria en la Estación Experimental Agraria Baños del Inca en la localidad Los Baños del Inca del distrito Los Baños del Inca - provincia de Cajamarca - departamento de Cajamarca", identificado con el código único de inversión 2472675.

> Marly Jessenia Mejia Chuquillanque Fiorella Neyra Garcia

ANEXOS

Anexo 1

Características dasométricas de C. micrantha Ruiz y Pavón

			Ι	Datos daso	métricos	Biomasa
Código	Coordenada X	Coordenada Y	DAP	Altura	Volumon (m ³)	del fuste
			(cm)	(m)	volumen (m)	(t)
CM1	734079.00	9372476.00	6.50	3.50	0.009	0.005
CM2	0734079	9372472.00	5.10	3.80	0.006	0.002
CM3	0734079	9372473.00	5.70	4.20	0.008	0.009
CM4	0734083	9372468.00	5.10	3.16	0.005	0.005
CM5	734082.00	9372468.00	5.10	2.50	0.004	0.003
CM6	734087.00	9372465.00	5.70	2.90	0.006	0.005
CM7	734087.00	9372469.00	5.90	2.50	0.005	0.002
CM8	734089.00	9372465.00	5.22	4.10	0.007	0.006
CM9	734089.00	9372469.00	5.88	2.10	0.005	0.003
CM10	734092.00	9372465.00	5.73	2.50	0.005	0.005
CM11	734095.00	9372467.00	5.50	3.20	0.006	0.005
CM12	734087.00	9372461.00	5.96	3.00	0.007	0.005
CM13	734092.00	9372461.00	5.20	4.30	0.007	0.005
CM14	734092.00	9372460.00	6.29	2.60	0.006	0.004
CM15	734097.00	9372459.00	5.20	5.00	0.008	0.005
CM16	734095.00	9372457.00	6.00	1.60	0.004	0.003
CM17	734096.00	9372465.00	5.54	2.70	0.005	0.004
CM18	734101.00	9372453.00	5.48	5.81	0.011	0.004
CM19	734096.00	9372448.00	5.81	2.20	0.005	0.005
CM20	734098.00	9372443.00	6.03	2.50	0.006	0.005
CM21	734085.00	9372446.00	5.57	2.30	0.004	0.003
CM22	734089.00	9372449.00	6.19	2.30	0.005	0.005
CM23	734087.00	9372449.00	5.95	2.40	0.005	0.004
CM24	734093.00	4372449.00	5.64	2.50	0.005	0.004
CM25	734086.00	9372451.00	5.23	2.00	0.003	0.002
CM26	734090.00	9372453.00	5.18	2.10	0.003	0.003
CM27	734085.00	9372452.00	6.11	2.00	0.005	0.003
CM28	7340801.00	9372456.00	6.71	3.40	0.009	0.010

CM29	734080.00	9372456.00	5.55	1.30	0.002	0.002
CM30	734060.00	9372460.00	8.90	2.60	0.013	0.011
CM31	734042.00	9372455.00	8.60	2.30	0.011	0.011
CM32	731688.00	9370890.00	5.00	2.30	0.004	0.002
CM33	731677.00	9370876.00	12.10	6.70	0.061	0.067
CM34	731682.00	9370869.00	5.00	3.80	0.006	0.005
CM35	731690.00	9370877.00	11.90	10.30	0.091	0.058
CM36	731686.00	9370879.00	9.80	9.30	0.055	0.043
CM37	731693.00	9370876.00	11.10	12.10	0.093	0.073
CM38	731688.00	9370893.00	10.10	10.00	0.063	0.047
CM39	731703.00	9370882.00	10.80	12.00	0.087	0.077
CM40	731697.00	9370924.00	6.40	11.00	0.028	0.025
CM41	731697.00	9370937.00	6.00	6.00	0.013	0.013
CM42	731703.00	9370948.00	6.60	7.00	0.019	0.016
CM43	731707.00	9370942.00	6.40	5.30	0.013	0.010
CM44	731716.00	4370948.00	6.00	7.20	0.016	0.024
CM45	731881.00	9370772.00	24.00	18.00	0.643	0.088
CM46	731872.00	9370767.00	6.36	8.00	0.020	0.014
CM47	731866.00	9370752.00	7.00	7.50	0.023	0.023
CM48	731880.00	9370750.00	8.50	8.00	0.036	0.033
CM49	731989.00	9370671.00	6.00	6.00	0.013	0.012
CM50	731986.00	9370670.00	6.50	8.00	0.021	0.019
CM51	731980.00	9370659.00	7.00	5.00	0.015	0.012
CM52	732107.00	9370676.00	10.00	10.00	0.062	0.035
	Promedic)	7.02	5.06	0.030	0.015

Anexo 2

	Coordenada	Coordenada	Ι	Datos dasomé	tricos	Biomasa
Código	X	V	DAP (cm)	Altura (m)	Volumen (m ³)	del fuste
	28	•	Diff (cm)		volumen (m)	(t)
CP1	734066.00	9373031.00	20.37	6.00	0.154	0.113
CP2	734084.00	9373023.00	5.09	2.00	0.003	0.002
CP3	734056.00	9373023.00	6.68	4.20	0.012	0.005
CP4	734050.00	9073025.00	5.33	4.10	0.007	0.005
CP5	733787.00	9372170.00	5.00	3.00	0.005	0.004
CP6	733768.00	9372162.00	10.00	11.34	0.070	0.060
CP7	733769.00	9372161.00	7.32	8.28	0.028	0.025
CP8	733770.00	9372160.00	7.00	7.89	0.024	0.016
CP9	733770.00	9372160.00	16.00	20.00	0.318	0.233
CP10	733772.00	9372161.00	12.00	14.43	0.129	0.065
CP11	733768.00	9372161.00	13.00	16.30	0.171	0.139
CP12	733769.00	9372159.00	12.00	14.43	0.129	0.075
CP13	733768.00	9372158.00	10.00	11.34	0.070	0.049
CP14	733770.00	9372156.00	13.00	16.30	0.171	0.120
CP15	733773.00	9372154.00	8.00	9.05	0.036	0.030
CP16	733769.00	9372157.00	13.00	16.30	0.171	0.094
CP17	733768.00	9372155.00	5.00	4.11	0.006	0.005
CP18	733768.00	9372154.00	7.00	7.89	0.024	0.020
CP19	733769.00	9372154.00	12.00	14.43	0.129	0.089
CP20	733767.00	9372154.00	8.00	9.05	0.036	0.021
CP21	733769.00	9372155.00	11.00	12.00	0.090	0.069
CP22	733780.00	9372151.00	5.80	5.00	0.010	0.008
CP23	733778.00	9372147.00	13.00	16.30	0.171	0.099
CP24	733781.00	9372148.00	5.00	4.11	0.006	0.005
CP25	733781.00	9372143.00	8.00	9.00	0.036	0.021
CP26	733779.00	9372140.00	5.00	6.00	0.009	0.007
CP27	733777.00	9372145.00	7.00	12.00	0.036	0.021
CP28	733784.00	9372143.00	5.00	5.00	0.008	0.006
CP29	733776.00	9372141.00	5.00	5.00	0.008	0.005
CP30	733778.00	9372138.00	5.00	5.00	0.008	0.007
	Promedio)	8.85	9.33	0.069	0.047

Características dasométricas de C. pubescens Vahl

Anexo 3

Resultados de análisis de % de carbono en laboratorio

(inia)		
o Nacional de Innovación Agraria		
	INFORME DE ENSAYO N° 04001-24/SU/ LABSAF - SEDE CENTRAL	
Dirección del cliente	· Coordinación de investigación y Transferencia	
Muestreado por	: El Cliente	
Numero de muestra(s) Producto declarado	: 46 : Foliar	
Presentación de las muestras(s) Referencia del muestreo	: Bolsa de Papel : Reservado por el Cliente	
Procedencia de muestra(s) Fecha(s) de muestreo	: Centro Poblado La Cascarilla, Jaén, Cajamarca : 15/03/2024	
Fecha de recepción de muestra(s) Lugar de ensayo	: 04/04/2024 : Avenida La Molina 1981 - La Molina	
Fecha(s) de análisis	: 04/04/2024 : 040-24-SC	
Fecha de emisión	:04/04/2024 ro Suelos y Aguas	
L'ANT	LABSAF	
	Firmadio digitalimente por: ESPIRITU NATITODAD JIMMY EDWARD	
	Annual Light and Annual Light and Annual Light and Annual Light and Annual Light An	
	Red de Laboratorios de Suelos, Aguas y Foliares	Página 1

II. RESULTADO DE ANÁLISIS

INFORME DE ENSAYO N° 04001-24/SU/ LABSAF - SEDE CENTRAL

ITEM			1	2	3	4	5	6	
Código de Laboratorio			F082-SC-24	F083-SC-24	F084-SC-24	F085-SC-24	F086-SC-24	F087-SC-24	
Matriz Analizada			FOLIAR	FOLIAR	FOLIAR	FOLIAR	FOLIAR	FOLIAR	
Fecha de Muestreo			2024-03-15	2024-03-15	2024-03-15	2024-03-15	2024-03-15	2024-03-15	
Hora de Inicio de Muestreo	o (h)		10:00:00	10:00:00	10:00:00	10:00:00	10:00:00	10:00:00	
Condición de la muestra			BOLSA DE PAPEL						
Código/Identificación de la Cliente	Cd01-CM	Cd03-CM	Cd06-CM	Cd08-CM	Cd09-CM	Cd10-CM			
Ensayo	Unidad	LC			Resu	tados		•	
Carbono Total **	%		48.70	49.10	48.90	47.90	48.00	48.40	
	_								
ITEM			7	8	9	10	11	12	
Código de Laboratorio			F088-SC-24	F089-SC-24	F090-SC-24	F091-SC-24	F092-SC-24	F093-SC-24	
Matriz Analizada	- 11	-	FOLIAR	FOLIAR	FOLIAR	FOLIAR	FOLIAR	FOLIAR	
Fecha de Muestreo	- 1	Pr	2024-03-15	2024-03-15	2024-03-15	2024-03-15	2024-03-15	2024-03-15	
Hora de Inicio de Muestreo	o (h)		10:00:00	10:00:00	10:00:00	10:00:00	10:00:00	10:00:00	
Condición de la muestra	Condición de la muestra			BOLSA DE PAPEL					
Código/Identificación de la Cliente	a Muestra po	rel	Cd11-CM	Cd13-CM	Cd15-CM	Cd17-CM	Cd18-CM	Cd20-CM	
Ensayo	Unidad	LC			Resu	ados			
Carbono Total **	%		47.10	47.90	48.20	48.60	48.20	48.50	
(TEM	- V - P		12		45	40	47	40	
IIEM Cédine de Lebereterie			13	14	15	16	17	18	
Motriz Apolizado			F094-5C-24	F095-5C-24	F096-5C-24	F097-SC-24	F098-5C-24	F099-50-24	
Matriz Analizada			FULIAR	FULIAR	FULIAR	FULIAR	FULIAR	FULIAR	
recha de Muestreo			2024-03-15	2024-03-15	2024-03-15	2024-03-15	2024-03-15	2024-03-15	
Hora de Inicio de Muestrec	5 (n)		10:00:00	10:00:00	10:00:00	10:00:00	10:00:00	10:00:00	
Condición de la muestra			BOLSA DE PAPEL						
Código/Identificación de la Cliente	a Muestra poi	rel	Cd21-CM	Cd23-CM	Cd26-CM	Cd27-CM	Cd28-CM	Cd30-CM	
Ensayo	Unidad	LC			Resu	tados		•	
Carbono Total **	%		48.50	48.40	53.10	50.10	48.40	49.00	

PERÚ Ministerio de Desarrolo Agrario Vilego

Red de Laboratorios de Suelos, Aguas y Foliares Acreditado con la Norma NTP-ISO/IEC 17025:2017 Direccion: Av. La Molina Nº 1981 - La Molina - Lima Página 2 de 4 F-46 / Ver.04 www.inia.gob.pe

			INFOR		SAYO			
		N° 040	01-24/SU/	LABSAF -	SEDE CEN	ITRAL		
ITEM			19	20	21	22	23	24
Código de Laboratorio			FO100-SC-24	FO101-SC-24	FO102-SC-24	FO103-SC-24	FO104-SC-24	FO105-SC-24
Matriz Analizada			FOLIAR	FOLIAR	FOLIAR	FOLIAR	FOLIAR	FOLIAR
Fecha de Muestreo			2024-03-15	2024-03-15	2024-03-15	2024-03-15	2024-03-15	2024-03-15
Hora de Inicio de Muestreo	o (h)		10:00:00	10:00:00	10:00:00	10:00:00	10:00:00	10:00:00
Condición de la muestra			BOLSA DE PAPEL					
Código/Identificación de la Cliente	rel	Cd32-CM	Cd33-CM	Cd34-CM	Cd35-CM	Cd36-CM	Cd37-CM	
Ensayo	Unidad	LC			Resu	tados		
Carbono Total **	%		48.20	48.70	48.00	48.30	48.50	48.60
ITEM			25	26	27	28	29	30
Código de Laboratorio			FO106-SC-24	FO107-SC-24	FO108-SC-24	FO109-SC-24	F0110-SC-24	F0111-SC-2
Matriz Analizada			FOLIAR	FOLIAR	FOLIAR	FOLIAR	FOLIAR	FOLIAR
Fecha de Muestreo			2024-03-15	2024-03-15	2024-03-15	2024-03-15	2024-03-15	2024-03-15
Hora de Inicio de Muestreo	5 (h)		10:00:00	10:00:00	10:00:00	10:00:00	10:00:00	10:00:00
Condición de la muestra			BOLSA DE PAPEL					
Código/Identificación de la Cliente	a <mark>Mues</mark> tra por	rel	Cd38-CM	Cd52-CM	CP-CD01	Cd02-CP	Cd03-CP	Cd04-CP
Ensayo 🖉 🔳	Unidad	LC			Resu	tados		
Carbono Total **	%		47.90	48.70	47.90	46.60	47.50	47.70
ITEM			31	32	33	34	35	36
Código de Laboratorio	1.7.1		F0112-SC-24	F0113-SC-24	F0114-SC-24	F0115-SC-24	FO116-SC-24	F0117-SC-2
Matriz Analizada			FOLIAR	FOLIAR	FOLIAR	FOLIAR	FOLIAR	FOLIAR
Fecha de Muestreo			2024-03-15	2024-03-15	2024-03-15	2024-03-15	2024-03-15	2024-03-15
Hora de Inicio de Muestreo (h)			10:00:00	10:00:00	10:00:00	10:00:00	10:00:00	10:00:00
Condición de la muestra		BOLSA DE PAPEL						
Código/Identificación de la Cliente	a Muestra por	rel	Cd05-CP	Cd08-CP	Cd09-CP	Cd12-CP	Cd13-CP	Cd18-CP
Ensayo	Unidad	LC			Resu	tados		
Carbono Total **	%		47.60	49.60	43.90	40.90	62.00	49.20
			-					

PERÚ Ministerio de Desarrolo Agrario

Red de Laboratorios de Suelos, Aguas y Foliares Acreditado con la Norma NTP-ISO/IEC 17025:2017 Direccion: Av. La Molina Nº 1981 - La Molina - Lima

Página 3 de 4 F-46 / Ver.04 www.inia.gob.pe

PERÚ Ministerio de Desarrollo Agrario

INFORME DE ENSAYO N° 04001-24/SU/ LABSAF - SEDE CENTRAL

ITEM			37	38	39	40	41	42
Código de Laboratorio			FO118-SC-24	FO119-SC-24	FO120-SC-24	FO121-SC-24	F0122-SC-24	F0123-SC-24
Matriz Analizada			FOLIAR	FOLIAR	FOLIAR	FOLIAR	FOLIAR	FOLIAR
Fecha de Muestreo			2024-03-15	2024-03-15	2024-03-15	2024-03-15	2024-03-15	2024-03-15
Hora de Inicio de Muestreo	o (h)		10:00:00	10:00:00	10:00:00	10:00:00	10:00:00	10:00:00
Condición de la muestra			BOLSA DE PAPEL	BOLSA DE PAPEL	BOLSA DE PAPEL	BOLSA DE PAPEL	BOLSA DE PAPEL	BOLSA DE PAPEL
Código/Identificación de la Muestra por el Cliente			Cd19-CP	Cd21-CP	Cd22-CP	Cd23-CP	Cd25-CP	Cd26-CP
Ensayo	Ensayo Unidad LC				Resu	Itados		
Carbono Total ** %			53.60	32.40	46.50	64.60	50.20	43.60
TEM			43	44	45	46	1	
Código de Laboratorio			F0124-SC-24	F0125-SC-24	F0126-SC-24	F0127-SC-24		
Matriz Analizada			FOLIAR	FOLIAR	FOLIAR	FOLIAR		
Fecha de Muestreo			2024-03-15	2024-03-15	2024-03-15	2024-03-15		
Hora de Inicio de Muestrer	(h)		10:00:00	10:00:00	10:00:00	10:00:00		
		P	BOLSADE	BOLSADE	BOLSADE	BOLSADE		
Condición de la muestra			PAPEL	PAPEL	PAPEL	PAPEL		
Código/Identificación de la	Muestra po	rel	Cd27-CP	Cd28-CP	Cd29-CP	Cd30-CP		
Ensavo	Unidad				Resu	Itados		
Carbono Total **	%		51.70	50.30	56.80	34.30		
Carbono Total, Nitrogeno Total	GIN828: Deterr	nination of C	arbon and Nitrogen	11 301, 150 10694:1	1990, ISO 13878:19	1 11 0		
IV. CONSIDERACIONE	s							
Estado en las que ingre: Este informe no puede ser Los resultados se relaciona Los resultados se aplicar a Este documento es válidos El Laboratorio no es respon Medición de pH realizada a (*) Este dato ha sido proporcio (**) El (Los) resultado(s) obteni (**) El (Los) resultado(s) obteni	so la Muestras reproducido tota n solamente cor las muestras, ti ólo para el prod sable cuando la 25 °C nado por el clier do(s) correspon do(s) correspon	s: Buenas (Il, ni parcialn n los ítems s ales como si ucto mencio i informaciór nte, por lo qu de(n) a mét de(n) a mét	Condiciones de al nente sin la autorizar iometidos a ensayo e recibieron nado anteriormente. n proporcionada por ue el laboratorio no e codos de ensayo que odos de ensayo que	macenamiento ción de LABSAF y d el cliente pueda afec s responsable de dii no han sido acredit o han sido acredit	el cliente. :tar la validez de los cha información. ados por el INACAL: ados por el INACAL	resultados. -DA. -DA, debido a que la	a muestra no es idón	ea para el ensayo
V. AUTORIZACIÓN DE	Ayo ha sido auto	E DE EN	ISAYO	ritu Natividad - Resp	onsable del laborato	rio del LABSAF Sed	le Central.	
				REPÚBLICA DEL PERÚ Firme Digital Firme Digital	almente por: IVIDAD JIMMY EDWARD hard Lautor del documento 2024 16:38:39-0500			

Firma Lic. Quim. Jimmy Edward Espíritu Natividad Responsable de Laboratorio LABSAF Sede Central

> Página 4 de 4 F-46 / Ver.04 www.inia.gob.pe

FIN DE INFORME DE ENSAYO

Red de Laboratorios de Suelos, Aguas y Foliares Acreditado con la Norma NTP-ISO/IEC 17025:2017 Direccion: Av. La Molina Nº 1981 - La Molina - Lima

Panel fotográfico

Figura 6

Medición de características dasométricas de C. micrantha Ruiz y Pavón y C. pubescens Vahl

Figura 7 *Extracción de tarugos de fuste de C. micrantha* Ruiz y Pavón y C. *pubescens* Vahl con barreno

Figura 8

Preparación de muestras de tarugos de madera de C. micrantha Ruiz y Pavón y C. pubescens Vahl para secado

Figura 9

Pesado de tarugos de madera de C. micrantha Ruiz y Pavón y C. pubescens Vahl después de secarlos

