UNJUniversidad Nacional de Jaén
Servicios
 

Coffee Rust Severity Analysis in Agroforestry Systems Using Deep Learning in Peruvian Tropical Ecosystems

dc.contributor.authorOcaña Zúñiga,Candy Lisbeth
dc.date.accessioned2026-01-22T20:18:15Z
dc.date.available2026-01-22T20:18:15Z
dc.date.issued2024-12-27
dc.description.abstractAgroforestry systems can influence the occurrence and abundance of pests and diseases because integrating crops with trees or other vegetation can create diverse microclimates that may either enhance or inhibit their development. This study analyzes the severity of coffee rust in two agroforestry systems in the provinces of Jaén and San Ignacio in the department of Cajamarca (Peru). This research used a quantitative descriptive approach, and 319 photographs were collected with a professional camera during field trips. The photographs were segmented, classified and analyzed using the deep learning MobileNet and VGG16 transfer learning models with two methods for measuring rust severity from SENASA Peru and SENASICA Mexico. The results reported that grade 1 is the most prevalent rust severity according to the SENASA methodology (1 to 5% of the leaf affected) and SENASICA Mexico (0 to 2% of the leaf affected). Moreover, the proposed MobileNet model presented the best classification accuracy rate of 94% over 50 epochs. This research demonstrates the capacity of machine learning algorithms in disease diagnosis, which could be an alternative to help experts quantify the severity of coffee rust in coffee trees and broadens the field of research for future low-cost computational tools for disease recognition and classification
dc.formatapplication/pdf
dc.identifier.doihttps://doi.org/10.3390/agriculture15010039
dc.identifier.urihttp://hdl.handle.net/20.500.14689/1062
dc.language.isoeng
dc.publisherAgriculture
dc.publisher.countryCH
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceUniversidad Nacional de Jaén||Repositorio Institucional – UNJ
dc.subjectagroforestry
dc.subjectdisease assessment
dc.subjectcoffee diseases
dc.subjectconvolutional neural networks
dc.subjectAI in agriculture
dc.subjectdeep learning
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.00
dc.titleCoffee Rust Severity Analysis in Agroforestry Systems Using Deep Learning in Peruvian Tropical Ecosystems
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
renati.author.dni44798819

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
01_ARTÍCULO CIENTÍFICO_ACCESO ABIERTO.pdf
Tamaño:
84.61 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: