Intelligent Automated Monitoring and Curing System for Cracks in Concrete Elements Using Integrated Sensors and Embedded Controllers
Cargando...
Fecha
2025-07-02
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Technologies
Resumen
This study addresses the formation, detection, and repair of cracks in concrete elements exposed to temperatures above 25 ◦C, where accelerated evaporation compromises their
structural strength. An automated intelligent curing system with embedded sensors (DS18B20, HD-38) and Arduino controllers was developed and applied to solid slabs, columns, and concrete test specimens (1:2:3.5 mix ratio). The electronic design was simulated in Proteus and validated experimentally under tropical conditions. Data with normal distribution (p > 0.05) showed a significant correlation between internal and ambient temperature (r = 0.587; p = 0.001) and a low correlation in humidity (r = 0.143; p = 0.468), indicating hygrometric independence. The system healed cracks of 0.01 mm observed two hours after pouring the mixture, associated with an evaporation rate of 1.097 mL/s in 4 m2 . For 28 days, automated irrigation cycles were applied every 30 to 60 min, with a total of 1680 L, achieving a 20% reduction in water consumption compared to traditional methods. The system maintained stable thermal conditions in the concrete despite ambient temperatures of up to 33.85 ◦C. A critical evaporation range was identified between 11:00 and 16:00 (UTC-5). The results demonstrate the effectiveness of the embedded system in optimizing curing, water efficiency, and concrete durability
Descripción
Palabras clave
concrete cracking, temperature and humidity control, water evaporation
